Sparse Memory Structures Detection

Alexandre Bouchard-Coté
Student ID: 110228970
Final Report for COMP-652

December 21, 2004

Exploiting lower dimensional structures of the state space is often consid-
ered as a potential cure for the lack of dimensional scalability of reinforcement
learning algorithms. Indeed, some approximation architectures, notably the
Sparse Distributed Memories architecture (SDM][3]), attempt to locate regions
of the state space that are “more interesting” and allocate proportionally more
memory resources to model them accurately. Unfortunately, this attractive and
intuitive idea is poorly formalized and the only empirical evidences of its effi-
ciency come from indirect observations such as total reward improvement on
reinforcement learning tasks. The aim of this paper is to describe a first at-
tempt to directly observe automatic lower dimensional structure discovery. A
larger program targeting a better understanding of these structures will also be
described.

1 Notation and Terminology

1.1 Reinforcement Learning

We are interested in a standard reinforcement learning task (S, A, K, g,7), S be-
ing the state space, A, the finite set of actions and each element of this set being
bijectively associated to a probability transition kernel in K := {Ker, (-,) }aca-
We will use the terminology policy () for sequences of maps from S. Note
that given a starting state xg and a policy P := (B;), the environment becomes
markovian by letting the state ;1 be distributed according to Kerg, 4, (i,),
given that the previous state was x;. Denoting by Eg[-|x¢] the expectation taken
with respect to this Markov chain, we use the reward function g : Sx AxS — R
and the discount factor 7y to define an ordering on the policies, given by com-
paring:
N
l}ﬁi?of Ey ; v g(xs, Pi(xi), ig1) ‘xo] .

We call this quantity the cost-to-go function associated to policy ‘B and we
denote it by Jy(x). The goal is to find the optimal policy, or equivalently, the

optimal cost-to-go function *:

J*(z) := min J .
() min p(2)

1.2 The SDM architecture

Assume that the state space is a closed multi-interval. A SDM architecture
contains:

e A similarity function or similarity
o:8%x85—10,1]

such that (1 — o) is a metric on S (such a function exists iff S is a metric
space),

o A set H of hard locations or basis points
{sl,-~- JSK ©Si ES}

such that every hard location is associated with a scalar weight w;. The
sequence 0 := (w;)X | forms the parameters vector of the architecture.

When an evaluation f (s) is required for a given point s € S, the first step is
to find the set Hy of active locations, that is, the set of hard locations with a
positive similarity with s. The estimate at s is then compute using the simple
rule that the weights of the active locations that are closer to s should have
more impact on the approximation of the value at s. Formally:

F o ZskeHS o (sk, s)wy
ZSkGHS O'(Sk78)

Training can be done using a standard gradient descent, and note that the
gradient takes this simple form:

: o o(s;,8)
ZskEHs G(Skv S) .
From this definition, two important observations can be made:

e For a fixed state, the gradient is a constant function of w: SDM is a linear
approximation architecture. We are therefore in a good position to get
convergence guarantees with standard RL algorithms.

L Also equivalently, optimal state-action value functions can be targeted (e.g. when there
is no model for the environment available):

Q*(z,0) = /S Kera(z, dy)(g(z, a,9) + J* (1)).

e The density of the hard locations across the space need not be constant:
we can use a mechanism that builds the set of hard locations so that
“important” regions of the state space are more densely covered by hard
locations

On the basis of the second observation, D. Precup and B. Ratitch [1] imple-
mented a dynamic memory allocation algorithm based on the following rules:

e If fewer than N locations are activated by the input §, add a new location
centered at s, if its addition does not violate the following condition:

11— ifN>3 .
o(5,1) <{ ; Nt ;fN;Z Yt € Hs. (1)
2

The current target value is stored in this location.

e If the number of activated locations is N’ < N, then (N — N') locations
are randomly placed in the neighborhood of the current sample. The
addresses of new locations are set by sampling uniformly randomly from
the intervals [s; — 3;, s; + 0i] in each dimension, where 8 = (B1,- 5 Bn)
is such that p(Z1,22) = 0 whenever for some ¢ the absolute value of the
i-th coordinate of the difference of 7 and #5 is greater than or equal to
0 (this quantity is called the activation radius, and it is a small value
for the type of SDM that we use since we assume ¢ to be symmetric
triangular functions). The new locations are selected such that condition
(1) is not violated. The value, currently predicted by the memory for the
corresponding address, is stored in such a location.

Refer to [1] for more details and for the specification of the special rules used
when the memory is full (in which case some memory locations are moved
around). When SDM is paired with this dynamic memory allocation algorithm,
it is observed that it outperforms (in terms of total rewards) CMAC (or SDM
with a static memory layout) in the mountain car task, especially when difficult
memory constraints are imposed. The current hypothesis is that it is caused
by the distribution of the hard locations generated by the above algorithm
that favors important regions of the state space. The next section describes an
experiment that attempts a first step towards proving this hypothesis: deter-
mining how far is this distribution from the uniform distribution (in terms of
#?-distance of their estimated probability density functions).

2 _¢? distances

2.1 A Probability Density Function Estimator

Given a set of points = = {{1, 52, e ,gm} in the unit n-dimensional multi-
interval J, we need to find a way to approximate the probability density function

f that generated them. In particular, we would like to have this approxima-
tion in a form that is easy to integrate and to combine with other measurable
functions.

The most straightforward approach is to partition each dimension into k
sub-intervals of the form [%, GT'H] and to count the number of points p in each
sub-multi-interval [“—kl, ‘“TH} XX [%‘*, aL—Ijl] The probability density function

could then be approximated by a simple measurable function taking the value:

total area number of points in the partition k"p

= (2)

X
partition area total number of points m

in the corresponding partition.

The problem with this method is that the resolution —controlled by the
parameter k— is the same on the entire space. This is not practical in our case,
where the density of the points can vary greatly over the space. Thus, variable
resolutions are required (i.e. more resolution where more points are available).
To overcome this problem, we use instead a tree-based scheme (which shares
some similarities with kd-trees). To create an adaptive partitioning of the state
space, we start with the whole space, and we iteratively select the partition
containing the highest number of points and split it into two halves. A priority
queue is used in order to do this efficiently. We iterate 7 times, where «
is a parameter controlling the number of points we would like to have in the
partitions. Again, we construct a simple measurable function from the obtained
partition by setting the value at each partition as in the left hand side of (2).
For instance:

L

In order to set the parameter o and to test the obtained method, we gen-
erated points using various distributions and compared the approximation ob-
tained with the true result both quantitatively and qualitatively. The quantita-
tive test was given by validating the #2 distance of the approximation f from
the uniform distribution:

/ (F — 1)%dp 3)
J

The results were conclusive (see Figure 1 and 2 for qualitative results) and
showed that a parameter a of about 10 is optimal in most of the cases.

” gaussian”

|

)
\
..... ...
)
...
"

l
)
il
i
A
i
AR
...............\
i o
QKA
V)
i

.
i

Figure 1: Approximation obtained from points drawn from a gaussian distribu-

tion (p1 = p2 = p

0,0’1 = 09 = 1)

”uniform?2”

Figure 2: Approximation obtained from points drawn from the uniform distri-

bution on [0, 0.5] x [0, 0.5]

8,88 M1 P S TS RN 8.88
s adgda gt
@86 7&3@@@% - @¢§¢¢f§‘¢ PN T ——
P gy, %@
B, 84 pa® e # Bimaay, - @.84
@ s
] B @9%@ @@-9”‘:% - .82
&

&
o
-B.82 —§®‘9 # < L ¢4 -@.82

&,

s [ey, F e W S nies

L# Foog e 3 ¢®WW %
—@LBE [, b &% ettt L @, @6

3 S T e b
-1 N N Y N N N N -5.88

-1.8-1-9.60.60.48.2 @ O.50, 48, -1.2-1-9.60.68.40.2 B @.20.40.6

- =}

Figure 3: Left: position of the hard locations after the execution of SDM on
the mountain-car domain. Right: the underlying 1-dimensional distribution is
easily seen.

2.2 Results with the Mountain-Car Domain

Next, the same implementation of SDM as in [1] was used to solve the mountain
car problem. The parameters used for the experiment were selected from an
experiment in [1] that discriminates the total reward performances of SDM
versus CMAC (i.e. a maximum of 100 hard locations, N = 5, single start
state, activation radius < 0.28,0.023 > and exploration parameter € = 0.01). Tt
was expected that this discrepancy was caused by a non-uniform distribution
of the hard location and that this non-uniformity would be detected with the
£? metric. Surprisingly, the obtained distance from a uniform distribution is
very close to zero (i.e. 0.03654). Thus, this experiment does not confirm the
presence of non-uniform distribution. We shall now discuss the potential causes
and implications of this result.

Since the state space of this problem is 2-dimensional (position, speed), the
first thing to do was to look at the position of the hard locations in the space.
Qualitative analysis of Figure 3 shows that the location are indeed distributed
according to a lower-dimensional string structure (this is corroborated by the
fact that hard location are inserted by an agent following 1-dimensional trajec-
tories). However, these strings span a very large proportion of the state space,
which explains the fact that the .22 distance to the uniform distribution is
small. For larger domains (especially for those with a higher dimensionality)
this kind of phenomenon cannot happen unless an unreasonably large number
of hard location is used. Therefore, the .#? metric approach should not be
discarded, and tests on new, higher-dimensional problems are on the way, as
well as a mature implementation of SDM in java offering a easier framework to
design and execute such tests (the version used to perform the test described in
this section is in c++).

3 Other Metrics and Future Work

The .#? metric is not the only tool conceivable to investigate sparse memory
structures, it is actually a rather crude one. The next generation of measure-
ments could come from a family of metrics developed by the Labelled Markov
Processes research community [2]. These distance functions measure how dif-
ficult it is to differentiate two LMP’s (in terms of number of transitions and
probabilities). The first challenge is to find an algorithm that computes the
metrics in continuous state systems. We shall now describe a way in which
this metric could be used to confirm the benefits of dynamic memory allocation
algorithms. Let us look at SDM from a different perspective: instead of using
the usual SDM+SARSA system to produce a value function, let us keep only
the position of the hard location at the end of the execution of the algorithm.
We construct 2 LMP as follow:

e the first one is an exact representation of the dynamical behavior of the
environment. To start with, suppose that we only consider problems
for which the objective is to reach a goal state as fast as possible (e.g.
mountain-car). The first LMP has 2 labels. The first kernel of the LMP
is just the transition associated with each action when the best action is
greedily selected (so we restrict our study to problems for which a good
approximation of the optimal value function is known; this is a perfectly
reasonable assumption because we are studying the memory allocation
algorithm, not the algorithm that is supposed to discover the optimal
value function), and the second kernel is a self-loop with probability one
corresponding to the only action enabled when a goal state is reached.

e The second LMP is identical, except that instead of basing the first kernel
on the optimal value function, it is based on the value function obtained by
projecting back and forth the optimal value function on the basis points.

Finally, the goal is to compare with LMP metrics these 2 systems. We would get
a comparison method that is independent of the learning algorithm, numerical
values of the reward and really measures the impact of the position of the
hard locations. This would form a very good tool to evaluate dynamic memory
allocation algorithms.

References

[1] D. Precup B. Ratitch. Sparse distributed memories fo on-line, value-based
reinforcement learning. ECML, 2004.

[2] R. Jagadeesan P. Panangaden J. Desharnais, V. Gupta. Metrics for labelled
markov processes. Theoretical Computer Science, pages 323-354, 2003.

[3] P. Kanerva. Sparse distributed memory and related models. Associative
Neural Memories, pages 50-76, 1993.

