
Sparse Distributed Memories in a Bounded

Metric State Space: Some Theoretical and

Empirical Results.

Alexandre Bouchard-Côté
School of Computer Science

McGill University
alexandre dot bouchard @ mail.mcgill.ca

September 7, 2004

Abstract

Sparse Distributed Memories (SDM) [7] is a linear, local function ap-
proximation architecture that can be used to represent cost-to-go or state-
action value functions of reinforcement learning (RL) problems. It offers
a possibility to reconcile the convergence guarantees of linear approxima-
tors and the potential to scale to higher dimensionality typically exclusive
to nonlinear architectures. We investigated both avenues to see if SDM
can fulfill its promises in the context of a RL problem with a bounded
metric state space. On the theoretical side, we found that using prop-
erties of interpolative approximators provided by [3], it can be proven
that a version of Q-learning converges with probability one when it is
used with a SDM architecture. On the other hand, an important non-
divergence result on the SARSA algorithm, an approximate, optimistic
policy iteration algorithm, failed to apply in our case because of our loose
assumptions on the nature of the state space. However, one of the most
important convergence result in reinforcement learning [6], the conver-
gence of TD(λ) was successfully translated into the language of measure
theory to cover the case of Markov processes with a general probability
state space. This forms the foundation for an eventual proof of conver-
gence of an approximate policy iteration algorithm. On the empirical side,
the first step was to design and implement a specialized data structure to
store and retrieve “hard locations” (basis points). The specifications of
this hash-based data structure will be discussed, as well as statistics on the
performances of SDM equipped with this data structure. We conclude by
presenting potential extensions to SDM. Their motivations and drawbacks
will be examined, focusing on the implications related to the hard loca-
tion storage data structure. These results form our basic toolbox for our
current work targeting a general-purpose, “tweaking-free” reinforcement
learning algorithm with flexible assumptions on the space, convergence
guarantees and high-dimensional scalability.

1

Contents

1 Introduction 3
1.1 Reinforcement Learning . 3
1.2 The SDM architecture . 4

2 Theoretical Results 5
2.1 Value Iteration Methods . 5
2.2 Policy Iteration Methods . 6

3 Empirical Results 10
3.1 Active Locations Search for Interpolative SDM’s 10
3.2 Better Performances Using a Hash 11
3.3 Extensions to SDM . 13

4 Annex 17

2

1 Introduction

The study of SDM as a value function approximator for reinforcement
learning is motivated by a well know duality problem between the conver-
gence guarantees of linear architectures and the dimensional scalability
of nonlinear approximation architectures. This architecture was proposed
by Kanerva in 1993 [7], used in RL for the first time by Sutton and Barto
in 1998 and revived by Doina Precup and Bohdana Ratitch in 2003. This
paper is a collection of many theoretical and empirical results related to
SDM in the context of a bounded metric state space. They form our basic
toolbox for our current work targeting a general-purpose, “tweaking-free”
reinforcement learning algorithm with flexible assumptions on the space,
convergence guarantees and high-dimensional scalability.

1.1 Reinforcement Learning

We are interested in a standard reinforcement learning task (S,A,K, g, γ),
S being the state space, A, the finite set of actions and each element
of this set being bijectively associated to a probability transition kernel
in K := {Kera(·, ·)}a∈A. We will use the terminology policy 1 (P) for
sequences of maps from S to A and stationary policy for constant se-
quences of such maps. Note that given a starting state x0 and a policy
p := (pi), the environment becomes markovian by letting the state xi+1

be distributed according to Kerpi(xi)(xi, ·), given that the previous state
was xi. Denoting by Ep[·|x0] the expectation taken with respect to this
Markov chain, we use the reward function g : S × A × S → R and the
discount factor γ to define an ordering on the policies, given by comparing:

lim inf
N→∞

Ep

"
NX

i=0

γig(xi, pi(xi), xi+1)
˛̨̨
x0

#
.

We call this quantity the cost-to-go function associated to policy p and we
denote it by Jp(x0). The goal is to find the optimal policy, or equivalently,
the optimal cost-to-go function 2:

J?(x) := min
p∈P

Jp(x).

1Stochastic policies, that map state to probability distributions on A will also be used, and
the RL problem can be stated with very little changes to take them into account.

2Also equivalently, optimal state-action value functions can be targeted (e.g. when there
is no model for the environement available):

Q?(x, a) :=

Z
S

Kera(x, dy)(g(x, a, y) + J?(y)).

3

1.2 The SDM architecture

Assume that the state space is a bounded metric space 3. A SDM archi-
tecture contains:

• A similarity function or similarity

σ : S × S → [0, 1]

such that (1 − σ) is a metric on S (such a function exists iff S is a
metric space),

• A set H of hard locations or basis points˘
s1, · · · , sK : si ∈ S

¯
such that every hard location is associated with a scalar weight wi.
The sequence ~w := (wi)

K
i=1 forms the parameters vector of the ar-

chitecture.

When an evaluation f̃(s) is required for a given point s ∈ S, the first step
is to find the set Hs of active locations, that is, the set of hard locations
with a positive similarity with s. The estimate at s is then compute using
the simple rule that the weights of the active locations that are closer
to s should have more impact on the approximation of the value at s.
Formally:

f̃~w(s) :=

P
sk∈Hs

σ(sk, s)wkP
sk∈Hs

σ(sk, s)
.

Training can be done using a standard gradient descent, and note that
the gradient takes this simple form:

(∇f̃~w(s))i :=
σ(si, s)P

sk∈Hs
σ(sk, s)

.

From this definition, two important observations can be made:

• For a fixed state, the gradient is a constant function of ~w: SDM
is a linear approximation architecture. We are therefore in a good
position to get convergence guarantees with standard RL algorithms.
This is what we will discuss in section 2.

• The density of the hard locations across the space need not be con-
stant: we can use a mechanism that builds the set of hard locations
so that “important” regions of the state space are more densely cov-
ered by hard locations 4. This is why we think that SDM can “break
the curse of dimensionality”, and we will discuss how it can be im-
plemented in practice in section 3.

3Note that we avoid the term “continuous space”. Although common in RL literature,
it is often left undefined and the closest mathematical concept that we know, the notion of
continuum (a compact connected set), does not correspond to the kind of hypothesis that we
are looking for.

4Precup and Ratitch provide an example of such a dynamic allocation algorithm [2].

4

2 Theoretical Results

The converge results on RL algorithms using SDM are quite promising,
as it was expected, and can be split into two categories. The first cat-
egory deals with value iteration techniques and is largely based on the
work of Szepesvári and Smart[3] on interpolative linear approximation
architectures. The second category concentrates on methods related to
policy iteration. The main result of this latter category, the convergence
of TD(λ), is essentially a translation into the language of measure theory
of the celebrated result by Bertsekas and Van Roy [6], but is more general
in its assumptions on the state space (in particular, closer to the type of
state space that we are interested in our framework).

2.1 Value Iteration Methods

Approximate value iteration algorithms such as Q-learning play an im-
portant role in RL, independently of their poor convergence guarantees.
Even a linear approximator hypothesis is not sufficient, for there is an
example of divergence of Q-learning with a linear approximation architec-
ture. There is, however, a special convergence result that applies in the
case of interpolative SDM’s.

An SDM is said to be interpolative if, for any basis point, the approx-
imator evaluated at this point equals to the weight carried by the basis
point. From this definition, it is easy to see that a SDM with a local
similarity function (e.g. symmetric triangular similarity functions) can be
made into an interpolative SDM simply by requiring the centers not to be
activated by other hard locations.

The main result that apply for approximate value algorithms using
SDM’s assumes the following update rule 5:

~wa,t+1 := ~wa,t+αt∇(f̃a)~wa,t

“
g(xt, at, xt+1)+γmax

b∈A
(f̃b)~wb,t

(xt+1)−(f̃a)~wa,t(xt)
”
,

where {f̃a}a∈A is a collection of interpolative SDM’s that represent state-
action values, ~wa,t are the corresponding parameter vectors at iteration t,
(αt) is the step-size sequence, and (xt, at, xt+1) is the observed transition
generated by a stochastic exploration policy. The important assumptions
6 include:

• S must be a Polish space (the homeomorphic image of a complete,
separable metric space),

• f̃a, seen as a map RK → B(S) (we will denote the space of bounded
function on X by B(X)), must be a non-expansion,

• the stochastic exploration policy must be stationary.

5The original result by Szepesvári and Smart is actually more general and the reader should
refer to the relevant paper [3] if different update rules are needed (e.g. with eligibility traces).

6Again, the reader should refer to [3] for the complete list of assumptions. The paper also
contains an extension of great interest for us, that takes into account SDM with a set of hard
locations that is constructed dynamically.

5

The two first items fit very well in our framework, but the third one
is much more restrictive. Indeed, except in the case that a suboptimal
exploration policy or a partially-tuned value function is available, it makes
the exploration of the space very slow.

The proof idea is to reduce the problem of the convergence of the
approximate value iteration algorithm to the simpler case of a tabular
algorithm (the finite set of states of this subproblem being the set of basis
points). This is done using the interpolative non-expansion property of
the approximation architecture. The stationary assumption on the ex-
ploration policy is used to prove the convergence of the subproblem. A
potential way to relax the third condition could be to reduce the con-
vergence to a different subproblem that would not require it. Another
planned future work related to this result is to test empirically if the in-
terpolative property actually improves the behavior of the algorithm or if
it is only an artifact needed by the proof of convergence.

2.2 Policy Iteration Methods

In this section, we look closely at some existing convergence results for
policy iteration methods using linear approximation architectures. The
main difference between those and the algorithms we want to consider
is on the assumptions on the state space. Indeed, most existing results
assume either a finite state space or a countable state space equipped
with a counting measure 7. We are rather interested in general state space
(that is, equipped with a countably generated σ-field) because we would
like to assign probabilities to intervals, for instance, instead to points only
8.

The first result we considered is a non-divergence proof of SARSA
under certain assumptions given by Gordon [5]. It uses the following facts
to build a region of convergence:

• If the policy were not changed at each iteration (SARSA is an op-
timistic policy iteration algorithm), the weights would converge to
a fixed point by the convergence of the policy evaluation algorithm
TD(λ),

• For a fixed ε, there are finitely many ε-greedy policies the algorithm
can consider.

We see that the second argument clearly does not hold for an arbitrary
metric space (it could be infinite). However, the failure of a proof is
not a proof of failure, and there is still a lot of research to be done on

7In particular, in the Neuro-Dynamic Programming Book [4], Bertsekas and Tsitsikilis
claim that the “continuous case” is treated in [6], but the latter reference is restricted to the
case of a state space with a counting measure.

8One may argue that it is futile to do this extension, for Turing machine cannot represent
elements of uncountable sets in general. We think that this approach is still worthy because
higher abstraction often play an important role to progress in mathematics. Also, in a more
pragmatic point of view, we will see shortly that it eliminates convergence results that depends
on the cardinality of S and that would give unrealistically big bounds for very large state
spaces.

6

the analysis of the asymptotic behavior of optimistic approximate policy
iteration algorithms 9.

On the other hand, the first argument (the convergence of TD(λ)) can
be translated into the language of measure theory to cover the case of a
general state space:

Theorem 1. Consider the sequence generated by the recurrence:

~wt+1 := ~wt + αtdt~zt

where:
dt := g(xt, xt+1) + γJ̃~wt(xt+1)− J̃~wt(xt)

is the temporal difference computed as soon as the transition generated by
the stationary policy p 10 is observed 11,

J̃~w(x) :=

KX
k=1

(~w)kφk(x)

is the linear approximation architecture with basis functions φk and

~zt : =

tX
k=0

(γλ)t−k ~∇ ˜J ~w(xk) (1)

=

tX
k=0

(γλ)t−k~φ(xk) (2)

= γλ~zt + ~φ(xt+1) (3)

is the eligibility vector with λ ∈ [0, 1] arbitrary but fixed and ~φ(x) :=
(φi(x))

K
i=1.

The sequence (~wt) converges with probability one, assuming that:

1. the stepsize αt are positive, deterministic and satisfy
P∞

t=0 γt = ∞
and

P∞
t=0 γ

2
t <∞,

2. the Markov chain induced by p has an invariant measure π on the
countably generated σ-field of S

3. the basis functions are linearly independent,

4. the expected value of A(Xt) converges at least exponentially fast in
Euclidean matrix norms, where:

A(Xt) := ~zt

`
γ~φ(xt+1)

T − ~φ(xt)
T ´
.

To prove this theorem, we define, as Bertsekas and Tsitsiklis, a spe-
cial weighted quadratic norm using the invariant measure and start by

9A good characterization of the asymptotic behavior of SARSA is considered as one of the
main open problems in RL.

10The result can be easily extended for ε-soft policies.
11Note that the dependance on the policy is removed from the notation since the policy is

stationary and fixed.

7

establishing some properties of this norm 12. For a measurable function
f : S → R, put: ‚‚f‚‚2

π
:=

Z
S

(f(x))2π(dx).

We will now prove that the properties needed by the proof of the main
theorem still hold with uncountable space, and the main proof itself rely
on the same idea as [6], but is more messy and will not be included.

Lemma 1. If f : S → R is a measurable function, then:‚‚‚ Z
S

f(y)Ker(·, dy)
‚‚‚

π
≤

‚‚f‚‚
π
.

Proof. We have, by Jensen’s inequality:‚‚‚ Z
S

f(y)Ker(·, dy)
‚‚‚2

π
=

Z
S

π(dx)
“ Z

S

Ker(x, dy)f(y)
”2

(4)

≤
Z

S

π(dx)

Z
S

Ker(x, dy)(f(y))2. (5)

Now, using Fubini Theorem and the definition of an invariant measure
and of a ‖ · ‖π norm, we get:

=

Z
S

Z
S

π(dx)Ker(x, dy)(f(y)))2 (6)

=

Z
S

π(dy)(f(y))2 (7)

=
‚‚f‚‚2

π
. (8)

Lemma 2. ‚‚‚ Z
S

f(y)Kerm(·, dy)
‚‚‚

π
≤

‚‚f‚‚
π
.

Proof. We shall proceed inductively on m. The base case is given by
lemma 1. Suppose that the claim is true up to m. We then have:‚‚‚ Z

S

f(y)Kerm(·, dy)
‚‚‚2

π
=

‚‚‚ Z
S

f(y)

Z
S

Ker(·, dz)Pm−1(z, dy)
‚‚‚2

π
(9)

=
‚‚‚ Z

S

Ker(·, dz)
Z

S

f(y)Kerm−1(z, dy)
‚‚‚2

π
(10)

≤
‚‚‚ Z

S

f(y)Kerm−1(·, dy)
‚‚‚2

π
(11)

≤
‚‚f‚‚2

π
. (12)

12One easily checks that it is indeed a norm.

8

Lemma 3.‚‚‚(1− λ)

∞X
m=0

λmγm+1

Z
S

Kerm(·, dy)f(y)
‚‚‚2

π
=

‚‚‚M(·, dy)f(y)
‚‚‚2

π
(13)

≤ γ(1− λ)

1− λγ
‚‚f‚‚2

π
, (14)

where:

M(x,A) := (1− λ)

∞X
m=0

λmγm+1Kerm+1(x,A).

Proof. Using the previous lemma and triangle inequality:‚‚‚(1− λ)

∞X
m=0

λmγm+1

Z
S

Kerm(·, dy)f(y)
‚‚‚2

π
≤ (1− λ)γ

∞X
m=0

‚‚‚ Z
S

Kerm(·, dy)f(y)
‚‚‚2

π

(15)

≤ γ(1− λ)

1− λγ
‚‚f‚‚2

π
. (16)

Lemma 4. Z
S

π(dx)

Z
S

M(x, dy)(f(x)f(y)) ≤ α
‚‚f‚‚2

π
.

Proof. Using the Cauchy inequality and the previous lemmas:Z
S

π(dx)

Z
S

M(x, dy)(f(x)f(y)) =

Z
S

f(x)

Z
S

M(x, dy)f(y)π(dx) (17)

=
“ Z

S

(f(x))2π(dx)
” 1

2
“ Z

S

M(x, dy)f(y)
” 1

2

(18)

=
‚‚f‚‚

π

‚‚‚ Z
M(·, dy)f(y)

‚‚‚
π

(19)

≤
‚‚f‚‚

π

γ(1− λ)

1− γλ
‚‚f‚‚

π
(20)

≤
‚‚f‚‚2

π
. (21)

9

3 Empirical Results

As we mentioned in the introduction, we hope that it is possible to use
the first phases of learning to construct the set of hard locations so that
it has desirable properties (by using a dynamic memory allocation algo-
rithm). However, this algorithm involves a large amount of insertion and
deletion of hard locations. This fact explains the need for a specialized
data structure to index efficiently the hard locations. More precisely, the
operations that need to be optimized are:

• Find potentially active locations Find the potentially active locations
for a given point in the state space.

• Add a hard location Given a location in the state space, add a new
hard location at that point (if no hard location is already at that
position).

• Delete a hard location Given the location of a hard location in the
state space, remove the hard location from the data structure (if
such exists).

The post-condition for find is that it should return a set covering the set
of active locations corresponding to the given state. For obvious perfor-
mance reasons, we also expect this cover to be of cardinality close to the
cardinality of the set of active locations. The first part of this section,
covering a list-intersection and a hash method, concentrates on interpola-
tive SDM’s in a finite dimensional vector space. The second part discusses
variations on the definition of SDM’s, focusing on the implications on the
hard location data structure.

3.1 Active Locations Search for Interpolative SDM’s

We assume in this section that the set of states S is a bounded subset of a
finite dimensional vector space V . Let σ be a similarity function on S such
that {(σ,Hα)} is the collection of interpolative SDM architectures that can
be generated by a fixed dynamic memory allocation algorithm. Suppose
also without loss of generality that V is a n-affine F vector space with
orthogonal coordinates such that M ⊆ V is a hypercube with unit edges
parallel to the axis that encloses S. Observe that by the interpolative
property of the generated SDM’s, there is a δ such that:

d(x1, x2) ≥ δ ⇒ σ(x1, x2) = 0 ∀Hα ∀x1, x2 ∈ Hα.

We will call the smallest such scalar the activation radius and we will
denote it from now on by δ. Now by the symmetry of σ, we see that
we have reduced the problem of finding the set of activated location to a
standard range search problem of radius δ.

The existing code, written by Bohdana Ratitch, uses the following
strategy to organize the storage of the locations: each dimension i is
partitioned into intervals Ii

1, · · · , Ii
m of length δ. For each such interval,

the sets tij of locations with center in {~y : (~y)i ∈ Ii
j} are maintained. On

input ~x, we find the set of intervals {Ii
ji
}ni=1 such that for all dimensions,

10

(~x)i ∈ Ii
ji

. Since

P :=

n\
i=1

(tiji−1 ∪ tiji
∪ tiji+1) ⊇ H~x

and that this set P of potentially active locations is usually much smaller
than the whole set of hard locations Hα, this gives a relatively more effi-
cient way of findingH~x than testing all the elements ofHα. Unfortunately,
computing the above intersection can be time consuming and we will see
that we can achieve better performances using an alternative method to
store the locations.

3.2 Better Performances Using a Hash

Two alternative to list-intersection were considered: kd-tree-based and
hash-based. We selected the latter because it uses the extra information
available that all the range search queries will have the same radius, and
we will see shortly how this hash-based method partitions the space in a
way that is optimal for this type of queries.

The general idea for the hash-based method is to partition the space
into a finite number of hyper-cubic cells with edges parallel to the co-
ordinate axis. We want the cells to be the large enough, so that the
hash does not take too much memory space, but we also want the edges
of the cells to be no larger than 2δ for reasons that will become clear
when the algorithm for finding activated locations will be explained. So
we pick this optimal 2δ for the length of the edges of the partition cells.
We index those cells and use this index as the key for insertion and re-
trieval in a hash table. In order to do that we define three auxiliary
maps. First, a map π : C → {cells} that gives the cell containing the
given point in the space C. Second, we assume that there is an in-
jective map ϕ : {cells} → {finite strings} that gives a unique string
representation for any cell, so that it can be used by standard hashing
algorithms. The private method HLsupport::computeKey(·) in the class
HLsupport.cpp (see Annex) computes the composition map ϕ◦π and pro-
vides additional comments on implementation details. Finally, we need a
set map Ξ : C → 2{cells} that returns, for any ~x ∈ C, the set {ξi} of all
hyper-cubic cells (partitions) such that:

ξi ∩ [(~x)1 − δ, (~x)1 + δ]× · · · × [(~x)n − δ, (~x)n + δ] 6= ∅.

Note that the returned set has a cardinality of at most 2n. (this is why
we pick cells with edges of length 2δ: if the cells were bigger, the re-
turned set would still have cardinality of at most 2n but the union of
the cells in this set would have a bigger volume, and more potentially
active locations would have to be examined). Again, refer to the an-
nex for additional comments on the implementation of the map ϕ ◦ Ξ
in HLsupport::getNeighborCubesRepresentatives(·) where ϕ is applied el-
ementwise on Ξ(·). With the above definitions, we can now state the
algorithms in pseudo-code for insertion, retrieval and deletion of loca-
tions. From now on, index will refer to an identifier to a location and
state, to a point in C.

11

Insert(state, index)

1 key ← ϕ ◦ π(state)
2 list ← hashMap .get(key)
3 if list = nil
4 then list ← new List
5 list .insert(index)
6 hashMap .insert(list)
7 else if index /∈ list
8 then list .insert(index)

Delete(state, index)

1 key ← ϕ ◦ π(state)
2 list ← hashMap .get(key)
3 list .delete(index)
4 if list .isEmpty()
5 then hashMap .delete(key)

Find-potentially-active-locations(state)

1 listOfCubes ← Ξ(state)
2 returnedList ← new List
3 for each cube ∈ listOfCubes
4 do key ← ϕ(cube)
5 list ← hashMap .get(key)
6 returnedList ← returnedList ∪ list
7 return returnedList

The method Find-potentially-active-locations returns a set covering
Hstate so it is easy from that to find the set Hstate.

These algorithms were implemented in c++ and they correspond to
the code for the class HLsupport in the SDM project. The hash table used
is the one designed by sgi in their free distribution of STL [1]. The first
step to verify correctness was to run low-level tests on the different meth-
ods constituting the class HLsupport. Those tests can be found in the file
HLsupport.cpp. The second step was to fix the seed for the randomized
functions in SDM’s code and compare the output of the new implemen-
tation against the reference implementation. The fact that they behaved
identically on both a supervised learning task and on the mountain-car
domain suggests that the new implementation introduces no new bugs
in the source code. An additional test to do would be to use a memory
leak detector on the current code to insure that it is free of this type of
problem.

In terms of speed, the delete and insert operations are not problematic
since they only involve the insertion/deletion of the center of the location
in a constant number of data structures. The speed bottleneck for the
retrieval operation in both data structures is the number of locations pro-
cessed by the returned List in its life cycle. First, each element in the list of
potentially active locations returned by HLsupport::potentiallyActiveSet(·)
will be used individually so it gives already O(N ′ · 3n) and O(N ′ · 2n)
List::find(·)’s for respectively the old and new implementations, where N ′

is a parameter in our architecture that represents the maximum number

12

0

0.5

1

1.5

2

2.5

3

3.5

200 300 400 500 600 700 800 900

Time (sec)

Peak size of the memory (number of HLs)

Average time per learning trajectory of length 1000

List-Intersection Implementation

3
3

3
3

3

3

3

3
Hash-Based Implementation

+ + + + + + +

+

Figure 1: The comparative time required for executing a learning trajectory of
length 1000 with different memory densities (averaged over the first 2500 trials
of learning of three runs).

of activated locations targeted by the SDM architecture. In the case of
the new implementation this is an upper bound since the other opera-
tions (in particular, searching the hash table) are constant. On the other
hand, the calls of List::listIntersection(·) in the reference implementation

can be costly, up to O(3N′

δ
). However, since the actual distribution of

the locations is not uniform in general in SDMs, it is hard to evaluate
an expected running time, unless a particular problem instance is fixed.
This observation motivates the use of empirical methods to estimate and
compare the expected running times.

Our first benchmark was the mountain-car domain, in which the new
implementation outperformed the old one both asymptotically and in ev-
ery test. The current candidate for the next benchmark is the hunter-prey
domain, because it can be made more memory-intensive easily by increas-
ing the number of hunters.

3.3 Extensions to SDM

In this subsection we discuss potential variations on the definition of SDM
that could improve the behavior of this architecture when used with high
dimensional problems. More precisely, we look for modifications that
would decrease the memory requirements while keeping as much as pos-
sible the expressivity and the convergence qualities of the architecture.

The first variation assumes a sequence of decreasing similarity func-

13

tions (σi) instead of a unique similarity function over the experiment.
By that we mean that for i-th evaluation or training of the SDM, the
similarity function that will be used is σi and that for any x1, x2 ∈ S,

i < j ⇒ σi(x1, x2) ≥ σj(x1, x2).

The motivation to using a sequence of decreasing similarity functions
is to get both the fast learning of large radius SDM’s and the good asymp-
totic quality of the approximation of small radius SDM’s. These two ob-
jectives (speed of learning and quality of the solution) are often competing
in applications using constant radius SDM’s. Indeed, to get fast learning,
what is required is large radius at the beginning of the execution, whereas
to get a solution of good quality, it is a small radius that is needed in the
long term. Decreasing similarity functions would also eliminate the need
for tuning the radius parameter.

Note that the hash data structure that we described can also be used
by decreasing radius SDM’s. A periodic rehashing would be desirable
however, to ensure that the cardinality of the set of potential active loca-
tions stays close to the actual number of active locations. Another data
structure that would be worth trying with decreasing radius SDM is the
kd-tree data structure. It is well known that kd-trees are efficient data
structures for range search, but dynamically built kd-trees also work bet-
ter when they are periodically rebuilt. It is not clear whether the hash
or the kd-tree is better for decreasing radius and empirical tests are still
needed (in particular, the answer might be environment-dependent).

The second variation is more radical and involves attaching a similar-
ity function to each hard location instead of having a “global” similarity
function. This is motivated by the fact that some regions of the state
space might require a lower hard location density to get the same quality
of approximation. We would cover those regions by hard locations with
a bigger activation radius (by that, we mean that the similarity function
attached to those hard locations would have a bigger activation radius).
In other words, we would get an approximator with a variable resolution.
We hope that this could be a key property in order to get dimensional
scalability. There is, however, currently no theoretical or practical justifi-
cations for this hypothesis. An important planned future work is to test
it empirically with problems of dimensionality 15-20.

The modifications to the data structure required to carry these tests
will be more substantial. Indeed, the problem of finding active locations
can no longer be reduced to a range search problem in this case. If the
data structure partitions the space in some way, then hard locations should
be attached to each partition intersecting their activated region (instead
of just the partition in which their center lie). Then, only those hard
locations that are attached to the partition containing the query point
need to be examined. The problem with this approach is that the hard
location might have to be attached to a large number of partitions if the
activation radius of the inserted hard location is bigger than the size of
the partitions. In a kd-tree that uses hard locations as splitting points,
this problem could avoided by insuring that hard locations with bigger
radius are closer to the root of the tree. This would make, however, the

14

construction of such tree difficult for two independent constraints (the tree
have to be balanced and hard locations with bigger activation radius must
be close to the root) would have to be considered to get an efficient tree.
We propose a hash-based data structure that is simpler to implement and
that we shall call a B-hash.

If K is the maximum number of hard locations in the data strucutre,
let 1 ≤ ι ≤ K be arbitrary but fixed. Suppose that the sequence of add,
delete and find is not known in advance but that the distribution µd.a.r.

of the activation radius of the hard locations that will be inserted is given.
Pick r1 < r2 < · · · < rι such that the ri minimize:X

min
ri

(ri − r)2µd.a.r.(r).

Let πr and ϕr be respectively the maps π and ϕ described in section 3.3
with δ = r. Let ψ : F → {finite strings} be an injective map, where F
is the field of the finite dimensional vector space. With those definitions,
the algorithms for insertion, deletion and look-up for a B-hash are:

Insert(state, index , radius)

1 r ← arg minri(ri − radius)2

2 key ← (ψ(r)) ◦ (ϕr ◦ πr(state))
3 list ← hashMap .get(key)
4 if list = nil
5 then list ← new List
6 list .insert(index)
7 hashMap .insert(list)
8 else if index /∈ list
9 then list .insert(index)

Delete(state, index , radius)

1 r ← arg minri(ri − radius)2

2 key ← (ψ(r)) ◦ (ϕr ◦ πr(state))
3 list ← hashMap .get(key)
4 list .delete(index)
5 if list .isEmpty()
6 then hashMap .delete(key)

Find-potentially-active-locations(state)

1 returnedList ← new List
2 for each r ∈ {r1, · · · , rι}
3 do
4 key ← (ψ(r)) ◦ (ϕr ◦ πr(state))
5 list ← hashMap .get(key)
6 returnedList ← returnedList ∪ list
7 return returnedList

This method can be seen as maintaining multiple hashes, each one being
in charge of storing hard locations with a certain interval of activation
radius. The only difference is that those hashes are all combined into
a single hash, and the interval of activation radius (or more precisely its

15

representative in the set {r1, · · · , rι}) is also transformed into a string and
concatenated to the key.

The parameter ι should be chosen so that it is the biggest value such
that the expected value of the number of hard locations in line 5 that
are actually active is positive for each iteration of the for loop of line 2-6.
Since the distribution of the centers cannot be assumed to be uniform in
general, it might be necessary to use empirical tests to set this parameter
and evaluate the performance of the algorithm.

16

4 Annex

17

References

[1] Standard template library programmer’s guide.
http://www.sgi.com/tech/stl/index.html.

[2] D. Precup B. Ratitch. Sparse distributed memories fo on-line, value-
based reinforcement learning. ECML, 2004.

[3] W. Smart C. Szepesvari. Interpolation-based q-learning. ECML, 2004.

[4] J. Tsitsiklis D. Bertsekas. Neuro-Dynamic Programming. Athena Sci-
entific.

[5] G. Gordon. Reinforcement learning with function approximation con-
verges to a region. NIPS, 2000.

[6] B. Van Roy J. Tsitsiklis. An analysis of temporal-difference learning
with function approximation.

[7] P. Kanerva. Sparse distributed memory and related models. Associa-
tive Neural Memories, pages 50–76, 1993.

18

