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Abstract

Sparse Distributed Memories (SDM) [3] is a linear, local function
approximation architecture having the potential to scale to problems
with a high dimensionality. We are testing this hypothesis with an
implementation of SDM using higher dimensional versions of existing
reinforcement learning (RL) problems [2]. In order to work efficiently,
our implementation of SDM needs a special data structure to store and
retrieve “active locations”. In this paper we discuss two possibilities
for this data structure: kd-tree and hash table. Our results suggest
that a hash-based implementation provides superior performances.

1 Introduction to SDM architectures and
data structure requirements

Let f : C — R be a function we wish to evaluate (for example Q values
for an RL problem), where C' C R™. We fix a similarity measure p : C'x
C — [0,1] such that 1—p is a metric on C. The current implementation
also assumes that (1) C is a closed multi-interval and (2) that there is
a 3= (B[1], - ,B[n]) such that (&, T;) = 0 whenever for some i the
absolute value of the i-th coordinate of the difference of Z; and 75 is
greater than or equal to S[i].

In the core of an SDM architecture is a set H of pairs (ﬁk, Wy Hk €
C,wy, € R) called the set of locations (HLs). To estimate the value at
Z we first find the set of active locations, that is the subset Hz of H
such that Hz contains precisely the locations with a positive similarity
measure with Z. This is the first operation that our data structure
must support. We will see in the following sections how it can be
implemented efficiently using assumption (2). Once Hjz is found, the



predicted value f(Z) of f(Z) is computed by:
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Upon receiving a training sample (Z, f(Z)) the values stored in all
the active locations are updated using the standard gradient descent
algorithm for linear approximations:
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where o € (0,1) is a fixed constant called the learning rate. We also
require the data structure to support the insertion and deletion of
locations for dynamic resource allocation purposes.

2 Reference implementation

The existing code, written by Bohdana Ratitch, uses the following
strategy to organize the storage of the locations: each dimension i is
partitioned into intervals I%,--- I’ of length fS[i] (this can be done
using assumption (1)). For each such interval, the sets t; of locations
with center in {§: 7[i] € I}} are maintained. On input #, we find the
set of intervals {1 }7; such that for all dimensions, Z[i] € I} . Since
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(because of assumption (2)) and that this set P of potentially active
locations is usually much smaller than H, this gives a relatively more
efficient way of finding Hz than testing all the elements of H. Unfor-
tunately, computing the above intersection can be time consuming and
we will see that we can achieve better performances using alternative
methods to store the locations.

3 Hash table

The general idea for the hash-based method is to partition the space
into a finite number of hyper-rectangular cells with edges parallel to
the coordinate axis and of length 3[i] in the i-th dimension. We index
those cells and use this index as the key for insertion and retrieval
in a hash table. In order to do that we define three auxiliary maps.
First, a map 7 : C — {cells} that gives the cell containing the given



point in the space C. Second, we assume that there is an injective
map ¢ : {cells} — {finite_strings} that gives a unique string repre-
sentation for any cell, so that it can be used by standard hashing al-
gorithms. The private method HLsupport::computeKey(-) in the class
HLsupport.cpp (see Annex) computes the composition map ¢ o 7 and
provides additional comments on implementation details. Finally, we
need a set map = : C — 2{c¢lls}t that returns, for any Z € C, the set
{&} of all hyper-cubic cells such that:

&N [Z1] = pAL 2] + B[] x -+ x [#]n] — Bln], Zn] + Bln]] # 0

Note that the returned set has a cardinality of at most 2". Again,
refer to the annex for additional comments on the implementation of
the map @oZ in HLsupport::getNeighborCubesRepresentatives(-) where
v is applied elementwise on E(+). With the above definitions, we can
now state the algorithms in pseudo-code for insertion, retrieval and
deletion of locations. From now on, index will refer to an identifier to
a location and state, to a point in C.

INSERT(state, index)

1 key — ¢ om(state)

2 list « hashMap .get(key)

3 if list = NIL

4 then list — new List

5 list insert(index)

6 hashMap .insert(list)
7 else list .insert(index)

DELETE(state, index)

1 key «— o m(state)

2 list < hashMap .get(key)

3 list .delete(index)

4 if list .isEmpty()

5 then hashMap .delete(key)

FIND-POTENTIALLY-ACTIVE-LOCATIONS(state)

1 listOfCubes < E(state)

2 returnedList < new List

3 for each cube € listOfCubes

4 do key «— ¢(cube)

5 list «— hashMap .get(key)

6 returnedList < returnedList U list
7 return returnedList

The method FIND-POTENTIALLY-ACTIVE-LOCATIONS returns a set cov-
ering Hgiqte SO it is easy from that to find the set Hgiqte.



These algorithms were implemented in c++ and they correspond
to the code for the class HLsupport in the SDM project. The hash
table used is the one designed by sgi in their free distribution of STL
[1]. The first step to verify correctness was to run low-level tests on the
different methods constituting the class HLsupport. Those tests can
be found in the file HLsupport.cpp. The second step was to fix the seed
for the randomized functions in SDM’s code and compare the output
of the new implementation against the reference implementation. The
fact that they behaved identically on both a supervised learning task
and on the mountain-car domain suggests that the new implementation
introduces no new bugs in the source code. An additional test to do
would be to use a memory leak detector on the current code to insure
that it is free of this type of problem.

In terms of speed, the delete and insert operations are not prob-
lematic since they only involve the insertion/deletion of the center
of the location in a constant number of data structures. The speed
bottleneck for the retrieval operation in both data structures is the
number of locations processed by the returned List in its life cycle.
First, each element in the list of potentially active locations returned
by HLsupport::potentiallyActiveSet(-) will be used individually so it
gives already O(N' - 3") and O(N' - 2™) List::find(-)’s for respectively
the old and new implementations, where N’ is the maximum number
of activated locations targeted by the SDM architecture. In the case
of the new implementation this is an upper bound since the other op-
erations (in particular, searching the hash table) are constant. On the
other hand, the calls of List::listIntersection(-) in the reference imple-
mentation can be costly, up to O(maxi{% -3N'}) where LJi] is the
length of the space along the i-th dimension. However, since the ac-
tual distribution of the locations is not uniform in general in SDMs,
it is hard to evaluate an expected running time, unless a particular
problem instance is fixed. This observation motivates the use of em-
pirical methods to estimate and compare the expected running times.
Our first benchmark was the mountain-car domain, in which the new
implementation outperformed the old one both asymptotically and in
every test. More details on the results and parameters of this bench-
mark are presented in the annex. The current candidate for the next
benchmark is the hunter-prey domain, because it can be made more
memory-intensive easily by increasing the number of hunters.

4 kd-tree

TODO
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6 Annex: Statistics and source code
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Greedy exploitation - iterations 5000 to 10000: Average time per trajectory of length 1000
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Learning - iterations 2500 to 4999: Average time per trajectory of length 1000
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Learning - iterations 5000 to 10000: Average time per trajectory of length 1000
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