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Phylogenetic tree inference

Topic of this talk: integration over the space of trees using
Sequential Monte Carlo (SMC)

Motivation: Bayesian approach to phylogenetic inference

+ Put a prior on trees, use the posterior for reconstruction
+ Heavy use of integrals over the space of trees: e.g. for

handling nuisance parameters, computing minimum risk
estimators, Bayes factors, etc.

Prelude: a parallel with the simpler problem of maximization
over the space of trees




Maximization over phylogenies

Two strategies: Local and sequential search

Key difference: representation
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Maximization: /ocal strategy
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Meta-algorithm:&

1.Start at arbitrary state
2. lterate:
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. Move to a nearby tree

>

Monday, July 5, 2010



Maximization: local strategy
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Meta-algorithm:&

1.Start at arbitrary state
2. lterate:

.. Evaluate neighbors

ii. Move to a nearby tree
3.Return best state visited

Example: stochastic annealing
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Maximization over phylogenies

Two strategies: Local and sequential search

Key difference: representation
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Maximization: sequential strategy

Meta-algorithm:&

1. Start at the initial,
unconstrained partial state




Maximization: sequential strategy
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.. Extend partial state
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Maximization: sequential strategy
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Meta-algorithm:&

1.Start at the initial,

unconstrained partial state
2. |terate:

.. Extend partial state

Il. Estimate best successor
3.Return best final state

Example: neighbor joining
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Parallel

Classification of phylogenetic algorithms

Local strategy Sequential strategy

Maximization Stochastic annealing, ... Neighbor-joining, ...

Integration
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Parallel

Classification of phylogenetic algorithms

Local strategy Sequential strategy
Maximization Stochastic annealing, ... Neighbor-joining, ...
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Outline

Background: Importance sampling and
Sequential Monte Carlo

SMC for phylogenetic inference
Framework for designing proposals

Experiments: comparisons with MCMC




Preview: Comparative advantages

SMC MCMC

+ Trivial to parallelize + Easier to resample

hyper-parameters

+ Easier to get data

likelihood estimate . .
+ Easier to design

+ No burn-in proposal distribution




Preview: Comparative advantages

SMC MCMC

+ Trivial to parallelize + Easier to resample

hyper-parameters

+ Easier to get data

likelihood estimate . .
+ Easier to design

+ No burn-in proposal distribution

Not exclusive: the two approaches can be combined




Phylogenetic setup: ultrametric trees

root

Tree 1’

Hidden sequences X

VOV
VOV
“0199
111V
o199V

} Observations Y =y

Monday, July 5, 2010



Phylogenetic setup: ultrametric trees

root

Tree 1’

Hidden sequences X

VOV
VOV
“0199
111V
o199V

} Observations Y =y

Monday, July 5, 2010



Phylogenetic setup: ultrametric trees

root

Tree 1’

Hidden sequences X

} Observations Y = y

VOV
VOV
“0199
111V
o199V

Target distribution: Ty ==

V(1)

with density: — -




Phylogenetic setup: ultrametric trees
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Phylogenetic setup: ultrametric trees

root
Tree I’
N\ height Hidden sequences X
Joint density evaluated } Ob -
at (¢, y), summing over Data likelihood
hidden P(Y =y)

(intractable)

V(1)

with density: "




Sequential Monte Carlo (SMC)

Background: Importance Sampling (IS)
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Sequential Monte Carlo (SMC)

Background: Importance Sampling (IS)

2 IS : Approximation for 7T
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— < . < . 1.Sample trees from a
proposal g: ti~ g

2. Compute weights
w; = y(ti)/q(ti)
3. Normalize weights
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Sequential Monte Carlo (SMC)

Background: Importance Sampling (IS)

2 IS : Approximation for 7T
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— < . < . 1.Sample trees from a
proposal g: ti~ g

2. Compute weights
w; = y(ti)/q(ti)

Particle 3. Normalize weights
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Sequential Monte Carlo (SMC)

Background:

Problem with importance sampling: 7 Is high-dimensional
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Sequential Monte Carlo (SMC)

Background: Importance Sampling
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SMC for phylogenies: 7, are distributions over partial
states (forest)




Sequential Monte Carlo (SMC)
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Sequential Monte Carlo (SMC)

SMC : Approximation for 7T

code

1. Initialize [...] E
2. lterate :

.. Sample partial states
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Sequential Monte Carlo (SMC)
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Sequential Monte Carlo (SMC)

SMC : Approximation for 7T
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Sequential Monte Carlo (SMC)

SMC : Approximation for 7T

1. Initialize [...] :
o M 9@1 M 2. Iterate :

.. Sample partial states
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ii. Compute weights
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Sequential Monte Carlo (SMC)

- g ?\ §>‘\ SMC : Approximation for 7T
T 6oDEG JdO0OC
N \ f 1. Initialize [...] }
. o~ @J \@J 2. lterate :
[i /<’ . Sample partial states

/
p; ~T1 X Qg

U VNN L‘@/‘M W . Comput/e weights
Ja f o) 1
© (v a(pi — )

iil. Normalize weights

ANBNC)




Intuition: why it works

Basic result: SMC is asymptotically consistent
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Intuition: why it works

Basic result: SMC is asymptotically consistent
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Intuition: why it works

Compare:
Weights along a SMC path Importance sampling
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Designing a proposal ¢

Issue: Over-counting
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Designing a proposal g

Useful abstraction: ¢ induce a partial order (poset) P
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Designing a proposal g

Useful abstraction: ¢ induce a partial order (poset) P

Poset's Hesse diagram:




Designing

a proposal g

Useful abstraction: ¢ induce a partial order (poset) P

Poset's Hesse diagram:

FONERV/N

- R

Use proposal that
have tree-shaped

- Y

———

Hesse diagrams

d )i

N [ 7




Designing a proposal g

Example: a proposal that has a tree-shaped
Hesse diagram.

1. Pick a pair of trees to merge uniformly at random

2. Pick a height for the new tree such that
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Designing a proposal g
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Experiments: setup

Source

Synthetic-small Synthetic-med

Generated from the model

Real data

Subset of HGDP

Likelihood model

Brownian motion on frequencies

Number of sites 100 11,511
Number of nodes 25 51 25
Number of leaves 13 20 13
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Synthetic experiments

Goal: comparison against MCMC

Competitor: standard MCMC sampler, 4 tempering chains,
shared sum-product implementation

Metric: symmetric clade difference of the Minimum Bayes
Risk reconstructed tree to the generating tree

Datapoints computed by increasing the number of particles
(for SMC) and the number of sampling steps (for MCMC)




Comparison with MCMC
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Comparison with MCMC

Synthetic-medium
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Experiments on real data

Goal: show that the method scales to large number of sites

Number of particle (10,000) determined using synthetic
experiments, timing experiments with different numbers of
cores:
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Conclusion

SMC can be applied to a wide range of phylogenetic
models; previous work limited to Coalescent priors [Teh et al. 07]

Order theoretic framework for designing proposals

Experiments: There are regimes where SMC outperforms MCMC

Promising applications of SMC in phylogenetic inference:

1. Quickly analyze large datasets
2. Initialization and large step proposal for MCMC chains




