
...

...

...

DCBA

DCBA

BA

BA

DC

DC BA DC

A B DC

BA DC A B DC

...

...

...
...

... ...

...

...

...

DCBA

DCBA

BA

BA

DC

DC BA DC

A B DC

BA DC A B DC

...

...

...
...

... ...
...

...

...

DCBA

DCBA

BA

BA

DC

DC BA DC

A B DC

BA DC A B DC

...

...

...
...

... ...

Bayesian Phylogenetic Inference using 
Sequential Monte Carlo Algorithms

Alexandre Bouchard-Côté*, Sriram Sankararaman*, and Michael I. Jordan*,✝

* Computer Science Division, University of California Berkeley

✝ Department of Statistics, University of California Berkeley

Monday, July 5, 2010



Phylogenetic tree inference

Topic of this talk: integration over the space of trees using 
Sequential Monte Carlo (SMC)

Prelude: a parallel with the simpler problem of maximization 
over the space of trees

Motivation: Bayesian approach to phylogenetic inference
✦ Put a prior on trees, use the posterior for reconstruction
✦ Heavy use of integrals over the space of trees: e.g. for 

handling nuisance parameters, computing minimum risk 
estimators, Bayes factors, etc.
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Maximization over phylogenies

Key difference: representation
Local Sequential

State t
Trees over the 

observed species

A D CB

Two strategies: Local and sequential search
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Maximization: local strategy

Meta-algorithm:
1.Start at arbitrary state

BA DC
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BA DC

A B DC

B A DC

D C BA

C D BA

Maximization: local strategy

Meta-algorithm:
1.Start at arbitrary state
2. Iterate:

i. Evaluate neighbors
ii. Move to a nearby tree

A B DC
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Maximization: local strategy

Meta-algorithm:
1.Start at arbitrary state
2. Iterate:

i. Evaluate neighbors
ii. Move to a nearby tree

3.Return best state visited

Example: stochastic annealing

BA DC

A B DC

B A DC

D C BA

C D BA

A D CBA C DB
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Maximization over phylogenies

Key difference: representation
Local Sequential

State t Partial state p
Trees over the 

observed species
Forests over the 

observed species

BA DCA D CB

Two strategies: Local and sequential search
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Maximization over phylogenies

Key difference: representation
Local Sequential

State t Partial state p
Trees over the 

observed species
Forests over the 

observed species

BA DCA D CB

Two strategies: Local and sequential search

A B DC

A B DC

B A DC
BA DC
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⊥=

Maximization: sequential strategy

Meta-algorithm:
1.Start at the initial, 

unconstrained partial state

DCBA
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Maximization: sequential strategy

Meta-algorithm:
1.Start at the initial, 

unconstrained partial state
2. Iterate:

i. Extend partial state
ii. Estimate best successor 

DCBA

DCBA BA DCBA DCBA DCBA DCBA DC

⊥=
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Maximization: sequential strategy

Meta-algorithm:
1.Start at the initial, 

unconstrained partial state
2. Iterate:

i. Extend partial state
ii. Estimate best successor 

3.Return best final state

Example: neighbor joiningDCBA

DCBA

A B DC

A B DC

BA DCBA DCBA DCBA DC

DCBA B A DC

BA DC

⊥=
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Parallel

Local strategy Sequential strategy

Maximization Stochastic annealing, ... Neighbor-joining, ...

Integration

Classification of phylogenetic algorithms
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Parallel

Local strategy Sequential strategy

Maximization Stochastic annealing, ... Neighbor-joining, ...

Integration MCMC algorithms ???

Sequential Monte Carlo
(SMC)

Classification of phylogenetic algorithms
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Outline

Background: Importance sampling and 
Sequential Monte Carlo 

SMC for phylogenetic inference

Framework for designing proposals

Experiments: comparisons with MCMC
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Preview: Comparative advantages

+ Trivial to parallelize

+ Easier to get data 
likelihood estimate

+ No burn-in

+ Easier to resample 
hyper-parameters

+ Easier to design 
proposal distribution

MCMCSMC
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Preview: Comparative advantages

+ Trivial to parallelize

+ Easier to get data 
likelihood estimate

+ No burn-in

+ Easier to resample 
hyper-parameters

+ Easier to design 
proposal distribution

MCMCSMC

Not exclusive: the two approaches can be combined
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Y = y

T

X

Phylogenetic setup: ultrametric trees

root

EDCBA

AGTC..

ATTT..

GGTC..

AGAC..

AGAC..

}

}
Observations

Tree
Hidden sequences

AGAC..

AGAC..

AGAC..

AGTC..
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Phylogenetic setup: ultrametric trees

root

height
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T |Y d= π

γ(t)
Z

Target distribution:

with density:
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Phylogenetic setup: ultrametric trees

root

height

EDCBA

AGTC..
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AGAC..

}

}
Observations

Tree
Hidden sequences

AGAC..

AGAC..

AGAC..

AGTC..

T |Y d= π

γ(t)
Z

Target distribution:

with density:

Joint density evaluated 
at        , summing over 

hidden 
(t, y)

x
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Y = y

T

X

Phylogenetic setup: ultrametric trees

root

height

EDCBA

AGTC..

ATTT..

GGTC..

AGAC..

AGAC..

}

}
Observations

Tree
Hidden sequences

AGAC..

AGAC..

AGAC..

AGTC..

T |Y d= π

γ(t)
Z

Target distribution:

with density:

Joint density evaluated 
at        , summing over 

hidden 
(t, y)

x P(Y = y)
Data likelihood

(intractable)
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Sequential Monte Carlo (SMC)

DCBA

A B DC BA DCC D BA

1.Sample trees from a 
proposal q:  ti ~ qq

t1 t2 t3 IS : Approximation for 

Background: Importance Sampling (IS)

π
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Sequential Monte Carlo (SMC)

Background: Importance Sampling (IS)

A B DC
BA DCC D BA

1.Sample trees from a 
proposal q:  ti ~ q

2. Compute weights

3. Normalize weights

wi = γ(ti)/q(ti)

w1 w2 w3

IS : Approximation for π
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Sequential Monte Carlo (SMC)

Background: Importance Sampling (IS)

A B DC
BA DCC D BA

1.Sample trees from a 
proposal q:  ti ~ q

2. Compute weights

3. Normalize weights

wi = γ(ti)/q(ti)

w1 w2 w3

"Particle"

IS : Approximation for π
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Sequential Monte Carlo (SMC)

Background: 

A B DC
BA DC

ABD C

Problem with importance sampling:      is high-dimensional

Most particles will 
have tiny weights

π
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π̃ ≈ γ

Z

q
⊥

Sequential Monte Carlo (SMC)

Background: Importance Sampling
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π̃ ≈ γ

Z

q
⊥

Sequential Monte Carlo (SMC)

Background: Importance Sampling

SMC: a sequence of proposals

π1 π2 πR = π̃ ≈ γ

Z
...

q q q q

⊥
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π̃ ≈ γ

Z

q
⊥

Sequential Monte Carlo (SMC)

Background: Importance Sampling

SMC: a sequence of proposals

π1 π2 πR = π̃ ≈ γ

Z
...

q q q q

⊥

SMC for phylogenies:       are distributions over partial 
states (forest)      

πr
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Sequential Monte Carlo (SMC)

DCBA

DCBA BA DC BA DC

⊥

π1

1. Initialize [...]
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Sequential Monte Carlo (SMC)

DCBA
BA DC

BA DC

π1

1. Initialize [...]

i.  Sample partial states
2. Iterate : π2

SMC : Approximation for π

p′
i ∼ π1 × q
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Sequential Monte Carlo (SMC)

DCBA BA DC

BA DC

π1

i.  Sample partial states

1. Initialize [...]
2. Iterate : π2

p1 p2
p3

SMC : Approximation for π

p′
i ∼ π1 × q
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Sequential Monte Carlo (SMC)

BA DC A B DC
BA DC

DCBA

BA DC

B
A

DC

A B DC BA DC

B
A

DC

B
A

DC

π1

i.  Sample partial states

1. Initialize [...]
2. Iterate : π2

p1 p2
p3

p’1 p’2 p’3

SMC : Approximation for π

p′
i ∼ π1 × q
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Sequential Monte Carlo (SMC)

BA DC A B DC
BA DC

i.  Sample partial states

ii. Compute weights

wi =
γ(p′

i)
γ(pi)

1
q(pi → p′

i)

1. Initialize [...]
2. Iterate : 

iii. Normalize weights

w1 w2 w3

π2

SMC : Approximation for π

p′
i ∼ π1 × q
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DCBA

DCBA

BA DC

BA DC

BA DC

A B DC

BA DC
A B DC

BA DC

A B DC

Sequential Monte Carlo (SMC)

⊥

π1

i.  Sample partial states

ii. Compute weights

iii. Normalize weights

wi =
γ(p′

i)
γ(pi)

1
q(pi → p′

i)

1. Initialize [...]
2. Iterate : π2

π̃
SMC : Approximation for π

p′
i ∼ π1 × q
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w′′ =
γ(p′′)
γ(p′)

1
q(p′ → p′′)

w′ =
γ(p′)
γ(p)

1
q(p→ p′)

w =
γ(p)

1
1

q(⊥→ p)

Intuition: why it works

DCBA

DCBA

BA DC

BA DC

BA DC

BA DC
A B DC

BA DC

A B DC

A B DC

Basic result: SMC is asymptotically consistent

p

p’

p’’
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w′′ =
γ(p′′)
γ(p′)

1
q(p′ → p′′)

w′ =
γ(p′)
γ(p)

1
q(p→ p′)

w =
γ(p)

1
1

q(⊥→ p)

w · w′ · w′′ =
γ(p′′)

q(⊥→ p′′)

Intuition: why it works

DCBA

DCBA

BA DC

BA DC

BA DC

BA DC
A B DC

BA DC

A B DC

A B DC

Basic result: SMC is asymptotically consistent

p

p’
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w′′ =
γ(p′′)
γ(p′)

1
q(p′ → p′′)

w′ =
γ(p′)
γ(p)

1
q(p→ p′)

w =
γ(p)

1
1

q(⊥→ p)

w · w′ · w′′ =
γ(p′′)

q(⊥→ p′′)

Intuition: why it works

DCBA

DCBA

BA DC

BA DC

BA DC

BA DC
A B DC

BA DC

A B DC

A B DC

Basic result: SMC is asymptotically consistent

p

p’

p’’
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w · w′ · w′′ =
γ(p′′)

q(⊥→ p′′)
w =

γ(t)
q(t)

Intuition: why it works

Compare:

Weights along a SMC path Importance sampling
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Designing a proposal q

DCBA

DCBA

BA

BA

DC

DC BA DC

A B DC

BA DC A B DC

Two ways of 
building t1

t1 t2 One way of 
building t2

Issue: Over-counting
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...

...

DCBA

DCBA

BA

BA

DC

DC BA DC

A B DC

BA DC A B DC

...

...

...
...

... ...

Designing a proposal q

Useful abstraction: q induce a partial order (poset) P
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DCBA

DCBA

BA

BA

DC

DC BA DC

A B DC

BA DC A B DC

...

...

...
...

... ...

Designing a proposal q

Useful abstraction: q induce a partial order (poset) P

≺
DCBA BA DC

if q can propose a path 
from p1 to p2

p1 p2
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Designing a proposal q

Useful abstraction: q induce a partial order (poset) P

Poset’s Hesse diagram:

DCBA

DCBA

BA

BA

DC

DC BA DC

A B DC

BA DC A B DC
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Designing a proposal q

Useful abstraction: q induce a partial order (poset) P

Poset’s Hesse diagram:

DCBA

DCBA

BA

BA

DC

DC BA DC

A B DC

BA DC A B DC

Use proposal that 
have tree-shaped 
Hesse diagrams

Monday, July 5, 2010



Designing a proposal q

Example: a proposal that has a tree-shaped 
Hesse diagram.

1. Pick a pair of trees to merge uniformly at random
2. Pick a height for the new tree such that

≺ =⇒ <
DCBA BA DC

height(            )
DCBA

height(            )
BA DC
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Designing a proposal q

DCBA

DCBA

BA

BA

DC

DC BA DC

A B DC

BA DC A B DC

t1 t2

≺ =⇒ <
DCBA BA DC

height(            )
DCBA

height(            )
BA DC
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Experiments: setup

Synthetic-small Synthetic-med Real data

Source Generated from the modelGenerated from the model Subset of HGDP

Likelihood model Brownian motion on frequenciesBrownian motion on frequenciesBrownian motion on frequencies

Number of sites 100100 11,511

Number of nodes 25 51 25

Number of leaves 13 26 13
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Synthetic experiments

Goal: comparison against MCMC

Competitor: standard MCMC sampler, 4 tempering chains, 
shared sum-product implementation

Metric: symmetric clade difference of the Minimum Bayes 
Risk reconstructed tree to the generating tree

Datapoints computed by increasing the number of particles 
(for SMC) and the number of sampling steps (for MCMC)
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Comparison with MCMC

Wall clock time (ms) in logscale
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Comparison with MCMC
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Experiments on real data

Goal: show that the method scales to large number of sites

1 2 3 4

45000

55000

65000

W
all

 cl
oc

k t
im

e (
ms

)

Number of cores

Number of particle (10,000) determined using synthetic 
experiments, timing experiments with different numbers of 
cores:
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Conclusion

Promising applications of SMC in phylogenetic inference:
1. Quickly analyze large datasets
2. Initialization and large step proposal for MCMC chains

SMC can be applied to a wide range of phylogenetic 
models; previous work limited to Coalescent priors 

Order theoretic framework for designing proposals

Experiments: There are regimes where SMC outperforms MCMC

[Teh et al. 07]
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