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Abstract

This document contains supplementary material for the paper ’Divide-and-Conquer

with Sequential Monte Carlo’. In Section A we prove Propositions 1 and 2 and pro-

vide additional details on how these propositions can be extended to the more ad-

vanced D&C-SMC implementations discussed in Section 4 of the main paper. Sec-

tion B provides detailed algorithmic descriptions of the (lightweight) mixture sampling

method (Section 4.1 of the main paper) and tempering method (Section 4.2 of the

main paper) in the context of the proposed D&C-SMC sampler. Sections C and D

contain additional details and results for the two numerical examples presented in

Sections 5.1 and 5.2 of the main paper, respectively. Finally, Section E provides an

overview of the implementation used in Sections 5.2 and 5.3 of the main paper.

A Theoretical Properties

A.1 Proof of Proposition 1

We consider all of the random variables simulated in the running of the algorithm, following

the approach of Andrieu et al. (2010) for standard SIR algorithms. A direct argument

provides for the unbiasedness of the normalizing constant estimate by demonstrating that

the ratio ẐN
r /Zr is equal to the Radon-Nikodým derivative of a particular extended target

distribution to the joint sampling distribution of all of the random variables generated during

the running of the algorithm (and is hence of unit expectation).
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This qualitative argument continues to hold when annealing or mixture sampling is em-

ployed within the algorithm; the expressions involved in verifying this are cumbersome and

so we provide explicit details only for the case in which T is a balanced binary tree (i.e.

|C(t)| = 2 for every non-leaf node). The more general case follows by the same argument

mutatis mutandis. We note in particular that:

1. the extension to balanced trees of degree greater than two is trivial and that unbalanced

trees may be addressed by the introduction of trivial dummy nodes (or directly, at the

expense of further complicating the notation);

2. the use of annealing can be addressed by introducing additional nodes with single

children;

3. the use of mixture sampling requires only the substitution of the appropriate weight

expressions within the argument which follows;

4. the use of lightweight mixture sampling results in a two-stage procedure (first sampling

independently mN offsprings for each child population, then resampling N particles

from the mN matchings) but both of these stages can be handled analogously to below.

We assume that subpopulation h at depth d is obtained from subpopulations 2h− 1 and

2h at depth d+ 1. Let,

x1:N
〈D〉2 := {xi(d,h) : (d, h) ∈ 〈D〉2, i ∈ {1, . . . , N}}

be the collection containing N particles within each sub-population and let

a1:N
〈D〉′2

:= {ai(d,h) : (d, h) ∈ 〈D〉′2, i ∈ {1, . . . , N}}

be the ancestor indices associated with the resampling step; ai(d,h) is the ancestor of the ith

particle obtained in the resampling step associated with subpopulation h at level d of the

tree.

First we specify sets in which multi-indices of particle populations live:

〈D〉2 =
D⋃
d=0

{d} ⊗ {1, . . . , 2d}, 〈D〉′2 =〈D〉2 \ {0} ⊗ {1}.

Thus, population h at depth d, where the root of the tree is at a depth of 0, may be identified

as (d, h) ∈ 〈D〉2 for any d ∈ {0, . . . , D}.
The joint distribution from which variables are simulated during the running of the
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algorithm may be written as:

q̃
(

dx1:N
〈D〉2 , da

1:N
〈D〉′2

)
=

2D∏
h=1

N∏
i=1

q(D,h)(dx
i
(D,h))×

∏
(d,h)∈〈D〉′2

N∏
i=1

W
ai
(d,h)

(d,h) dai(d,h)

×
∏

(d,h)∈〈D〉2

N∏
i=1

δ(
x
ai
(d+1,2h−1)

(d+1,2h−1)
,x

ai
(d+1,2h)

(d+1,2h)

)(d(xi(d,h) \ x̃i(d,h)))q(d,h)(dx̃
i
(d,h)|xi(d,h) \ x̃i(d,h))

where W i
(d,h) denotes the normalized (to sum to one within the realized sample) importance

weight of particle i in subpopulation h of depth d. Note that this distribution is over(
⊗(d,h)∈〈D〉2X(d,h)

)N ⊗ {1, . . . , N}|〈D〉′2|N and the da corresponds to a counting measure over

the index set. The inclusion of the singular transition emphasizes the connection between

this algorithm and the standard SIR algorithm.

It is convenient to define ancestral trees for our particles using the following recursive

definition:

bi(0,1) = i and bi(d,h) =

a
bi
(d−1,(h+1)/2)

(d,h) d odd,

a
bi
(d−1,h/2)

(d,h) d even,

the intention being that {bi(d,h) : (d, h) ∈ 〈D〉′2} contains the multi-indices of all particles

which are ancestral to the ith particle at the root.

It is also useful to define an auxiliary distribution over all of the sampled variables and

an additional variable k which indicates a selected ancestral tree from the collection of N ,

just as in the particle MCMC context. Here we recall that πr = γr/Zr:

π̃r

(
dx1:N
〈D〉2 , da

1:N
〈D〉′2

, dk
)

=

πr(dx
k
(0,1))

∏
(d,h)∈〈D〉2

δ
x
bk
(d,h)

(d,h)
\x̃

bk
(d,h)

(d,h)

(
d

(
x
bk
(d+1,2h−1)

(d+1,2h−1),x
bk
(d+1,2h)

(d+1,2h−1)

))
N |〈D〉2|

×
q̃
(

dx1:N
〈D〉2 , da

1:N
〈D〉′2

)
2D∏
h=1

q(D,h)(dx
bk
(D,h)

(D,h) )

( ∏
(d,h)∈〈D〉′2

W
bk
(d,h)

(d,h)

) ∏
(d,h)∈〈D〉2

q(d,h)(dx̃
bkd,h
(d,h)|x

bkd,h
(d,h) \ x̃

bkd,h
(d,h))

×

 ∏
(d,h)∈〈D〉2

δ(
x
bk
(d+1,2h−1)

(d+1,2h−1)
,x

bk
(d+1,2h)

(d+1,2h−1)

)(d

(
x
bk
(d,h)

(d,h) \ x̃
bk
(d,h)

(d,h)

))−1

dk

which can be straightforwardly established to be a properly-normalized probability. Note

that the division by a product of singular measures should be interpreted simply as removing
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the corresponding singular component of the numerator.

Augmenting the proposal distribution with k ∈ {1, . . . , N} obtained in the same way is

convenient (and does not change the result which follows as ẐN
r does not depend upon k):

q̄
(

dx1:N
〈D〉2 , da

1:N
〈D〉′2

, dk
)

= q̃
(

dx1:N
〈D〉2 , da

1:N
〈D〉′2

)
W k

(0,1)dk.

It is straightforward to establish that π̃r is absolutely continuous with respect to q̄. Taking

the Radon-Nikodým derivative yields the following useful result (the identification between

xk(0,1) and its ancestors is taken to be implicit for notational simplicity; as this equality holds

with probability one under the proposal distribution, this is sufficient to define the quantity

of interest almost everywhere). We allow πr and qd,h to denote the densities of the measures

which they correspond to (with respect to an appropriate version of Lebesgue or counting

measure)

dπ̃r
dq̄

(
x1:N
〈D〉2 , a

1:N
〈D〉′2

, k
)

=
πr

(
xk(0,1)

)
N |〈D〉2|

1
2D∏
h=1

q(D,h)(x
bk
(D,h)

(D,h) )
∏

(d,h)∈〈D〉2
q(d,h)(x̃

bkd,h
(d,h)|x

bkd,h
(d,h) \ x̃

bkd,h
(d,h))

∏
(d,h)∈〈D〉2

W
bk
(d,h)

(d,h)

=
πr

(
xk(0,1)

)
2D∏
h=1

q(D,h)(x
bk
(D,h)

(D,h) )
∏

(d,h)∈〈D〉2
q(d,h)(x̃

bkd,h
(d,h)|x

bkd,h
(d,h) \ x̃

bkd,h
(d,h))

∏
(d,h)∈〈D〉2

w
bk
(d,h)

(d,h)
1
N

∑N
i=1 w

i
(d,h)

where wi
(d,h) denotes the unnormalized importance weight of particle i in subpopulation h

at depth d.

We can then identify the product
∏

(d,h)∈〈D〉2 w
bk
(d,h)

(d,h) with the ratio of density πr to the

assorted proposal densities evaluated at the appropriate ancestors of the surviving particle

multiplied by the normalizing constant Zr (by construction; these are exactly the unnormal-

ized weights). Furthermore, we have that

∏
(d,h)∈〈D〉2

1

N

N∑
i=1

wi
(d,h) = ẐN

r

which implies that π̃r = (ẐN
r /Zr)q̄. Consequently, we obtain the result as:

Eq̄[ẐN
r ] = Eq̄[Zrπ̃r/q̄] = ZrEπ̃r [1] = Zr.
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A.2 Consistency – Proof of Proposition 2

We now turn to consistency. We make a few amendments to the notation used in the main

text. First, as we consider limits in the number of particles N , we add an index N the

particles and their weights. Second, as in the preceding proof we use W to denote the

normalized weights. For simplicity we also assume a perfect binary tree, C(t) = (t1, t2),

where t1 and t2 denote the left and right children of node t. The proof in this case captures

the essential features of m the general case. We base our argument on Douc and Moulines

(2008) (henceforth, DM08). We will use the following definitions and assumptions.

1. We require that the Radon-Nikodým derivative

dγt
d γt1 ⊗ γt2 ⊗ qt

(xt1 ,xt2 , x̃t) <∞, (1)

is well-defined and finite almost everywhere.

2. We define Ct to denote the collection of bounded integrable test functions as in DM08.

3. We also make the following assumption: there exists a constant C such that for all

t,xt1 ,xt2 , x̃t:

dγt
d γt1 ⊗ γt2 ⊗ qt

(xt1 ,xt2 , x̃t) < C,

This assumption is too strong to cover some of the algorithms and applications dis-

cussed in the main text. However the assumption simplifies exposition and could be

relaxed.

4. We assume that multinomial resampling—or its mixture resampling variant—is per-

formed at every step.

Proposition A1. Under the above assumptions, the normalized weighted particles (xiN ,W
i
N :

i ∈ {1, . . . , N}), W i
N = wi

N/
∑

j w
j
N , obtained from dc smc(r) are consistent with respect to

(π,Cr), i.e.: for all test function f ∈ Cr, as the number of particles N →∞:

N∑
i=1

W i
Nf(xiN)

P−→
∫
f(x)π(dx).
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Lemma A1. Let F denote a σ-algebra generated by a semi-ring A, F = σ(A). Let π be a

finite measure constructed using a Carathéodory extension based on A. Then, given ε > 0

and E ∈ F , there is a finite collection of disjoint simple sets R1, . . . , Rn that cover E and

provide an ε-approximation of its measure:

µ(A) ≤ µ(E) + ε,

A =
n⋃
j=1

Rj ⊃ E.

Proof. From the definition of the Carathéodory outer measure, and the fact that it coincides

with π on measurable sets such as E, we have a countable cover R1, R2, . . . with:

µ(Ã) ≤ µ(E) +
ε

2
,

Ã =
∞⋃
j=1

Rj ⊃ E.

Moreover, since µ(E) < ∞, the sum can be truncated to provide a finite ε-approximation.

Finally, since A is a semi-ring, we can rewrite the finite cover as a disjoint finite cover.

Lemma A2. Let π1, π2 be finite measures, and f a measurable function on the product

σ-algebra F1⊗F2. Then for all ε > 0, there is a measurable set B such that π1⊗π2(B) < ε,

and outside of which f is uniformly approximated by simple functions on rectangles:

lim
M→∞

sup
x/∈B

∣∣∣∣∣f(x)−
M∑
m=1

cMm1RM
m

(x)

∣∣∣∣∣ = 0,

for some RM
m = FM

m ×GM
m , FM

m ∈ F1, G
M
m ∈ F2.

Proof. Assuming f ≥ 0 (if not, apply this argument to the positive and negative parts of f),

we obtain that there exists simple functions fM that converge almost everywhere to f :

lim
M→∞

fM = f (a.s.)

fM =
M∑
m=1

cMm1EM
m
,

EM
m ∈ F1 ⊗F2

Next, we apply Lemma A1 to each EM
m , with µ = π1⊗π2. We set an exponentially decreasing
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tolerance εMm = εM−12−M−1 so that:

µ(AMm ) ≤ µ(EM
m ) + εM−12−M−1,

AMm =

nM
m⋃

j=1

RM
m,j ⊃ EM

m .

Note that outside of some bad set B1, we now have pointwise convergence of simple functions

on rectangles (since each AMm is a disjoint union of rectangles):

lim
M→∞

M∑
m=1

cMm1AM
m

∣∣∣
B1

c
= f

∣∣∣
B1

c
(a.s.) (2)

B1 =
∞⋃

M=1

M⋃
m=1

(AMm \EM
m ).

Note that:

π1 ⊗ π2(B1) ≤
∞∑

M=1

M∑
m=1

εM−12−M−1

= ε
∞∑

M=1

2−M−1 =
ε

2
.

Finally, pointwise convergence almost everywhere in Equation (2) implies by Egorov’s theo-

rem the existence of a set B2 with π1 ⊗ π2(B2) < ε/2 and such that convergence is uniform

outside of B = B1 ∪B2.

Lemma A3. If x < y + β2, then P(|X − x| > β1) < α implies P(X > β1 + β2 + y) < α.

Proof. We prove that P(X > β1 + β2 + y) < P(|X − x| > β1) via the contrapositive on the

events: |X − x| ≤ β1 =⇒ X − x ≤ β1 =⇒ X ≤ β1 + β2 + y.

Proof of Proposition A1. Let us label the nodes of the tree using a height function h defined

to be equal to zero at the leaves, and to h(t) = 1 + max{h(tt1), h(tt2)} for the internal nodes.

We proceed by induction on h = 0, 1, 2, . . . , showing that for all t such that h(t) ≤
h, the normalized weighted particles (xit,N ,W

i
t,N) obtained from dc smc(t) are consistent

with respect to (π,Ct). The base case it trivially true. Suppose t is one of the subtrees

such that h(t) = h. Note that its two children tt1 and tt2 are such that h(tc) < h(t),

so the induction hypothesis implies these two children populations of weighted particles

(xit1,N ,W
i
t1,N

), (xit2,N ,W
i
t2,N

) are consistent. We now show that we can adapt Theorem 1 of

DM08 to establish that the weighted particles (xit,N ,W
i
t,N) are consistent as well.
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Note that for each simple fM defined as in the proof of Lemma A2, we have:

N∑
i=1

N∑
j=1

W i
t1,N

W j
t2,N

fM(xit1,N ,x
i
t2,N

)

=
M∑
m=1

(
N∑
i=1

wi
t1,N

1AM
m

(xit1,N)

)(
N∑
j=1

wj
t2,N

1BM
m

(xjt2,N)

)

P−→
M∑
m=1

(∫
1AM

m
(xt1)πt1(dxt1)

)(∫
1BM

m
(xt2)πt2(dxt2)

)
=

∫∫
fM(xt1 ,xt2)(πt1 ⊗ πt2)(dxt1 × dxt2). (3)

Next, we show that this convergence in probability can be lifted from simple fM to

general bounded Ft1 ⊗Ft2-measurable functions. To shorten the notation, let:

µA(f) = πt1 ⊗ πt2(1Af)

µNA (f) =
N∑
i=1

N∑
j=1

W i
t1,N

W j
t2,N

1Af(xit1,N ,x
i
t2,N

),

(and µ(f), µN(f) are defined similarly but without the indicator restriction).

Let ε, δ > 0 be given. Using the result of Equation (3), first pick N > 0 such that for all

N ≥ N , P(|µNBc(fM) − µBc(fM)| > ε) < δ/2. Second, using Lemma A2 pick B ∈ Ft1 ⊗ Ft2
and M > 0 such that supx/∈B |fM(x)−f(x)| < ε/C and µ(B) < ε/C. This implies that both

|µBc(fM)−µBc(f)| and |µNBc(fM)−µNBc(f)| are bounded above by ε. Third, using Lemma A1,

pick a cover A of B, composed of a union of rectangles and such that µ(A) < µ(B) + ε/C.

Using Equation (3) again, pick N ′ > 0 such that for all N ≥ N ′, P(|µN(A) − µ(A)| >
ε/C) < δ/2. Applying Lemma A3 with X = µN(A), β1 = β2 = ε/C, x = µ(A), α = δ/2 and

y = µ(B), we get P(µN(A) > 3ε/C) < δ/2.

From these choices, we obtain that for all N > max{N,N ′}:

P(|µN(f)− µ(f)| > 4ε) ≤ P
(
µNB (f) > 4ε

)
+ P (D1 +D2 +D3 + µB(f) > 4ε) ,

where:

D1 = |µNBc(f)− µNBc(fM)|
D2 = |µNBc(fM)− µBc(fM)|
D3 = |µBc(fM)− µBc(f)|.
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Therefore:

P(|µN(f)− µ(f)| > 4ε) ≤ P(µN(B) > 4ε/C) + P(D2 > ε)

≤ P(µN(A) > 3ε/C) + δ/2

≤ δ.

Next, we use the fact that resampling is performed at every iteration. First consider the

case of simple multinomial resampling. Condition 4, and Theorem 3 from DM08, allow us

to view resampling as reducing the N2 particles into N unweighted particles. We plug in

the following quantities in their notation:

MN = N2

M̃N = N

ξN,(i,j) = (xit1,N ,x
j
t2,N

)

ωN,(i,j) = W i
t1,N

W j
t2,N

.

This yields that the N particles obtained from resampling N times from the particle ap-

proximation of πt1 × πt2 creates a consistent approximation. Theorem 1 from DM08 closes

the induction argument. The use of mixture resampling is addressed with an additional

application of Theorem 1 of DM08 with a trivial Markov kernel and the Radon-Nikodym

derivative obtained from the properly normalised mixture-sampling weights prior to such the

use of Theorem 3 (together, of course, with the use of the appropriate weight expressions

throughout the argument).

B D&C-SMC algorithm

In Algorithms B1 and B2 we provide pseudo-code for D&C-SMC using mixture sampling and

annealing, and D&C-SMC using lightweight mixture sampling and annealing, respectively

(see Sections 4.1 and 4.2 of the main paper).

C Supplement on the square-lattice MRF models

C.1 Additional numerical results for the Ising model

In this section we provide some additional numerical results for the Ising model presented

in Section 5.1 of the main paper. The Matlab code used to run the various samplers for

the Ising model is available at https://github.com/freli005/divide-and-conquer-smc.
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Algorithm B1 dc smc(t) – D&C-SMC (ann+mix), using mixture sampling and annealing

1. (a) For c ∈ C(t), ({xic,wi
c}Ni=1, Ẑ

N
c )← dc smc(c).

(b) For i = 1 to N , draw (x̌ic1 , . . . , x̌
i
cC

) from

Qt(dxc1 , . . . , dxcC ) =
N∑
i1=1

. . .

N∑
iC=1

vt(i1, . . . , iC)δ
(x

i1
c1
,...,x

iC
cC

)
(dxc1 , . . . , dxcC )∑N

j1=1 . . .
∑N

jC=1 vt(j1, . . . , jC)
,

where

vt(i1, . . . , iC) =

 ∏
c∈C(t)

wic
c

 π̌t(x
i1
c1
, . . . ,xiCcC )

/ ∏
c∈C(t)

πc(x
ic
c ),

and where π̌t is chosen by the user (e.g., according to Equation (8) of the main
paper).

(c) Compute

ẐN
t =

 ∏
c∈C(t)

ẐN
c

{
1

N

N∑
i=1

wi
c

}−1
{ 1

NC

N∑
i1=1

. . .
N∑

iC=1

vt(i1, . . . , iC)

}
.

2. (a) For i = 1 to N , if X̃t 6= ∅, simulate x̃it ∼ qt(· | x̌ic1 , . . . , x̌
i
cC

) where (c1, c2, . . . , cC) =
C(t); else x̃it ← ∅.

(b) For i = 1 to N , set xit,0 = (x̌ic1 , . . . , x̌
i
cC
, x̃it) and wi

t,0 = 1.

(c) For SMC sampler iteration j = 1 to nt: (N.B. γt,0 = π̌tqt.)

i. For i = 1 to N , compute wi
t,j = wi

t,j−1γt,j(x
i
t,j−1)/γt,j−1(xit,j−1).

ii. Optionally, resample {xit,j−1,w
i
t,j}Ni=1:

- Update ẐN
t ← ẐN

t × { 1
N

∑N
i=1 w

i
t,j}.

- Override the notation {xit,j−1,w
i
t,j}Ni=1 to refer to the resampled particle

system.

iii. For i = 1 to N , draw xit,j ∼ Kt,j(x
i
t,j−1, ·) using a πt,j-reversible Markov kernel

Kt,j.

(d) For i = 1 to N , set xit = xit,nt
and wi

t = wi
t,nt

.

3. Update ẐN
t ← ẐN

t × { 1
N

∑N
i=1 w

i
t}.

4. Return ({xit,wi
t}Ni=1, Ẑ

N
t ).
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Algorithm B2 dc smc(t) – D&C-SMC (ann+lw), using lightweight mixture sampling and
annealing

1. (a) For c ∈ C(t), ({xic,wi
c}Ni=1, Ẑ

N
c )← dc smc(c).

(b) For c ∈ C(t), sample mN times with replacement from {xic,wi
c}Ni=1. Override the

notation and let {xic}mNi=1 refer to the resampled particles.

(c) Form the mN matchings {(xic1 , . . . ,x
i
cC

)}mNi=1 and compute the weights

vit = π̌t(x
i
c1
, . . . ,xicC )

/ ∏
c∈C(t)

πc(x
i
c), i = 1, . . . , mN

where (c1, c2, . . . , cC) = C(t).
(d) Sample with replacement N particles {(x̌ic1 , . . . , x̌

i
cC

)}Ni=1 from the mN weighted

particles {(xjc1 , . . . ,x
j
cC

), vjt}mNj=1.

(e) Compute

ẐN
t =

 ∏
c∈C(t)

ẐN
c

{ 1

mN

mN∑
i=1

vit

}
.

2. (a) For i = 1 to N , if X̃t 6= ∅, simulate x̃it ∼ qt(· | x̌ic1 , . . . , x̌
i
cC

) where (c1, c2, . . . , cC) =
C(t); else x̃it ← ∅.

(b) For i = 1 to N , set xit,0 = (x̌ic1 , . . . , x̌
i
cC
, x̃it) and wi

t,0 = 1.

(c) For SMC sampler iteration j = 1 to nt: (N.B. γt,0 = π̌tqt.)

i. For i = 1 to N , compute wi
t,j = wi

t,j−1γt,j(x
i
t,j−1)/γt,j−1(xit,j−1).

ii. Optionally, resample {xit,j−1,w
i
t,j}Ni=1:

- Update ẐN
t ← ẐN

t × { 1
N

∑N
i=1 w

i
t,j}.

- Override the notation {xit,j−1,w
i
t,j}Ni=1 to refer to the resampled particle

system.

iii. For i = 1 to N , draw xit,j ∼ Kt,j(x
i
t,j−1, ·) using a πt,j-reversible Markov kernel

Kt,j.

(d) For i = 1 to N , set xit = xit,nt
and wi

t = wi
t,nt

.

3. Update ẐN
t ← ẐN

t × { 1
N

∑N
i=1 w

i
t}.

4. Return ({xit,wi
t}Ni=1, Ẑ

N
t ).
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Please see the README.md file in the repository for details on how to run the simulations.

First, in Figures 1–2 we give results complementing those shown in Figure 6 of the main

paper with the estimates for D&C-SIR , D&C-SMC (mix), and D&C-SMC (mix+ann).

D&C-SMC (mix) and D&C-SMC (mix+ann) use the same numbers of particles as in the

main paper: N ∈ {26, 27, . . . , 211}, whereas D&C-SIR uses N ∈ {210, 211, . . . , 215} to more

closely match its computational cost with the other methods (with more than 215 particles

we ran into memory limitations).

We also show results for a random scan blocked Gibbs sampler with a block size of 3× 3

sites. That is, at each step of the blocked Gibbs sampler we choose a random lattice index

(i, j) uniformly on {1, . . . , M}2 and update the sites with row indices {i, i + 1, i + 2} and

column indices {j, j+ 1, j+ 2} (periodic at the boundaries). We run the sampler for 213 iter-

ations, discarding the first 29 as burn-in—here, one iteration consists of b(64/3)2c individual

block update steps, so that we on average update each lattice site once per iteration. We

also tried block sizes 2× 2 and 4× 4 with inferior results (in particular for the latter which

resulted in a large computational overhead, suggesting that even larger block sizes will be

inefficient as well). Thus, the results for 2 × 2 and 4 × 4 are not shown here. Finally, for

easier comparison with Figure 6 of the main paper we also repeat the results for D&C-SMC

(ann+lw) in Figures 1–2.

Comparing Figure 2 with Figure 6 of the main paper shows that the blocked Gibbs

sampler performs somewhat better than the single-flip MH sampler (but still worse than the

D&C-SMC methods with annealing). It should be noted that all of the annealed D&C-SMC

methods that we have considered still use single-flip MH updates for the MCMC kernels of

their annealing processes. However, it would of course be possible to use, e.g., blocked Gibbs

updates also together with the annealed D&C-SMC methods, which is expected to improve

their performances even further. Indeed, any improvements made on the MCMC sampler

can be directly used together with the annealed D&C-SMC samplers as well.

Next, we repeated the numerical evaluation described in Section 5.1 of the main paper

for different inverse temperatures of the Ising model: β = 0.40 (90% of critical inverse

temperature) and β = 0.48 (110% of critical inverse temperature). The results are given in

Figures 3–6 and Figures 7–10, respectively. (To avoid overly cluttered figures, we keep the

separation of the different methods under comparison into two groups as before, with the

first group consisting of SMC, D&C-SMC (ann), D&C-SMC (ann+lw) and single-flip MH,

and the second group consisting of D&C-SIR , D&C-SMC (mix), D&C-SMC (ann+mix)

and blocked Gibbs (3× 3). The results for D&C-SMC (ann+lw) are plotted in both figures

for easier comparison.)
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Figure 1: Box-plots (min, max, and inter-quartile) of estimates of logZ for the Ising model with β = 0.44
over 50 runs of each sampler (excluding the blocked Gibbs sampler which does not readily provide an estimate
of logZ). The boxes, as plotted from left to right, correspond to increasing number of particles N . This
figure is best viewed in color.
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Figure 2: Box-plots (min, max, and inter-quartile) of estimates of E[E(x)] for the Ising model with β = 0.44
over 50 runs of each sampler. The boxes, as plotted from left to right, correspond to increasing number of
particles N (or number of MCMC iterations for the blocked Gibbs sampler). This figure is best viewed in
color.
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Figure 3: Box-plots (min, max, and inter-quartile) of estimates of logZ for the Ising model with β = 0.40
over 50 runs of each sampler in “group 1” (excluding the single-flip MH sampler which does not readily
provide an estimate of logZ). The boxes, as plotted from left to right, correspond to increasing number of
particles N . This figure is best viewed in color.
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Figure 4: Box-plots (min, max, and inter-quartile) of estimates of logZ for the Ising model with β = 0.40
over 50 runs of each sampler in “group 2” (excluding the blocked Gibbs sampler which does not readily
provide an estimate of logZ). The boxes, as plotted from left to right, correspond to increasing number of
particles N . This figure is best viewed in color.
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Figure 5: Box-plots (min, max, and inter-quartile) of estimates of E[E(x)] for the Ising model with β = 0.40
over 50 runs of each sampler in “group 1”. The boxes, as plotted from left to right, correspond to increasing
number of particles N (or number of MCMC iterations for the single-flip MH sampler). This figure is best
viewed in color.
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Figure 6: Box-plots (min, max, and inter-quartile) of estimates of E[E(x)] for the Ising model with β = 0.40
over 50 runs of each sampler in “group 2”. The boxes, as plotted from left to right, correspond to increasing
number of particles N (or number of MCMC iterations for the blocked Gibbs sampler). This figure is best
viewed in color.
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Figure 7: Box-plots (min, max, and inter-quartile) of estimates of logZ for the Ising model with β = 0.48
over 50 runs of each sampler in “group 1” (excluding the single-flip MH sampler which does not readily
provide an estimate of logZ). The boxes, as plotted from left to right, correspond to increasing number of
particles N . This figure is best viewed in color.
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Figure 8: Box-plots (min, max, and inter-quartile) of estimates of logZ for the Ising model with β = 0.48
over 50 runs of each sampler in “group 2” (excluding the blocked Gibbs sampler which does not readily
provide an estimate of logZ). The boxes, as plotted from left to right, correspond to increasing number of
particles N . This figure is best viewed in color.
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Figure 9: Box-plots (min, max, and inter-quartile) of estimates of E[E(x)] for the Ising model with β = 0.48
over 50 runs of each sampler in “group 1”. The boxes, as plotted from left to right, correspond to increasing
number of particles N (or number of MCMC iterations for the single-flip MH sampler). This figure is best
viewed in color.
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Figure 10: Box-plots (min, max, and inter-quartile) of estimates of E[E(x)] for the Ising model with β = 0.48
over 50 runs of each sampler in “group 2”. The boxes, as plotted from left to right, correspond to increasing
number of particles N (or number of MCMC iterations for the blocked Gibbs sampler). This figure is best
viewed in color.
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C.2 Square-lattice MRF with continuous latent variables

In this section we evaluate the proposed D&C-SMC method on a second square-lattice

MRF example. We consider a toy-model consisting of a latent Gaussian field x ∈ RM×M

(M = 32), with nearest-neighbour interactions and periodic boundary conditions:

p(x) ∝ exp

−1

2

 ∑
(k,`)∈E

λ1(x̃k − x̃`)
2 + λ2

∑
k∈V

x̃2
k


 , (4)

with E and V being the edge set and vertex set of the MRF, respectively. We set λ1 = 10

and λ2 = 0.01 for the interaction strength and node potential, respectively. To each node

of the MRF we also attach an observed variable yk, conditionally distributed according to

p(yk | x̃k) = N (yk | x̃2
k, 0.052), k ∈ V . The target distribution for the samplers is then given

by the Bayesian posterior distribution p(x |y), where y = {yk}k∈V .

We simulate a batch of data from the model and apply the following inference methods to

sample from the posterior distribution (see Section 5.1 of the main paper for explanations):

SMC, D&C-SIR , D&C-SMC (ann), D&C-SMC (mix), D&C-SMC (ann+mix), as well

as a single-site Metropolis-within-Gibbs sampler with a random walk proposal. We did not

try D&C-SMC (ann+lw) for this example, but note that this method is essentially an

intermediate between D&C-SMC (ann) and D&C-SMC (ann+mix).

We initialise all methods by sampling independently for each k ∈ V from a distribution

given by,

µk(x̃k) ∝ N (yk | x̃2
k, 0.052) exp

(
−λ2

2
x̃2
k

)
, (5)

which we compute to high precision by (one-dimensional) adaptive quadrature. This allows

us to focus the evaluation on the difficulties arising from the interactions between neighbour-

ing sites, since (5) is exactly the posterior distribution of x̃k if we neglect all interactions.

Note that we observe the square of the latent variables x̃k (plus noise). Consequently, the

distributions (5), as well as the marginal posteriors p(x̃k |y), tend to be bimodal whenever

|x̃k| is large (relative to the observation variance). This poses significant difficulties for the

single site MH sampler and the standard SMC sampler, as we shall see below.

All algorithmic settings are the same as in Section 5.1 of the main paper, with the

exception that the MCMC kernel used for the annealed methods (and for the single site MH

sampler) uses a Gaussian random walk proposal with standard deviation 0.132 (chosen by

manual tuning; we obtained an average acceptance rate of 0.6–0.7 for all methods). It is

interesting to note that we only needed to make small modification to the code used for the

Ising model, changing only the initialisation procedure, the energy function, and the MCMC
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kernel.

Figures 11 and 12 show results on the estimates of the log-normalising-constant and the

expected energy for the posterior distribution, obtained from 50 runs of each algorithm on a

single data set. The results for the single site random-walk MH sampler are not shown since

the method fails completely to converge to samples from the correct posterior distribution

(inter-quartile range in the estimates of the expected energy over the 50 independent runs

of the MCMC sampler is more than 7 000; cf., Figure 12).

We also note a superior performance of all D&C-SMC samplers compared to SMC,

which is attributed to the fact that the D&C-SMC samplers are better able to handle the

multimodality of the initial distributions than the “standard” SMC approach considered:

in standard SMC we initialise a single particle population by simulating N times from the

product measure ⊗k∈Vµk(dx̃k), where µk is given by (5). Since many of the µk-s are expected

to be multimodal, this will likely result in particles that have very low posterior probability

under the “correct model” (i.e., with the interactions taken into account). Indeed, any

neighbouring pair (x̃k, x̃`) where x̃k is drawn from the “positive mode” and x̃` is drawn from

the “negative mode” will have low probability under the prior (4). Furthermore, since we use

local MCMC moves to update the particle positions, the method is not able to correct for

this in a sufficiently efficient manner during the annealing process. The D&C-SMC samplers

are much better suited to handling this difficulty, since they make use of multiple particle

populations at initialisation, one for each site. The interactions are thereafter gradually

taken into account in the merge steps of the algorithm. This improvement comes without

any application-specific implementation effort.

To further illustrate the ability of D&C-SMC to capture the multimodality of the

marginal posteriors, we show in Figure 13 the empirical cumulative distribution functions for

the samplers for four sites with increasing |x̃k|. The results are for N = 2 048 (N = 32 768

for D&C-SIR ) and each line correspond to one of the 50 independent runs. It is clear that

the D&C-SMC samplers maintains the multimodality of the posterior much better than

standard SMC.

D Supplement on the hierarchical Bayesian model

This section contains additional details and results for the hierarchical Bayesian logistic

regression considered in Section 5.2 of the main paper.
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Figure 11: Box-plots of estimates of logZ over 50 runs of each sampler. The boxes, as plotted from left to
right, correspond to increasing number of particles N = 26 to 211 (N = 210 to 215 for D&C-SIR ). This
figure is best viewed in color.
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Figure 12: Box-plots of estimates of E[E(x)] over 50 runs of each sampler. The boxes, as plotted from left
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figure is best viewed in color.
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D.1 Data pre-processing

The data was downloaded from https://data.cityofnewyork.us/Education/NYS-Math-

Test-Results-By-Grade-2006-2011-School-Le/jufi-gzgp on May 26, 2014. It contains

New York City Results on the New York State Mathematics Tests, Grades 3-8. We used

data from grade 3 only.

Data is available for the years 2006–2011. We removed years 2010 and 2011, since the doc-

umentation attached to the above URL indicates that: “Starting in 2010, NYSED changed

the scale score required to meet each of the proficiency levels, increasing the number of

questions students needed to answer correctly to meet proficiency.”

Each row in the dataset contains a school code, a year, a grade, the number of students

tested, and summary statistics on their grades. We use the last column of these summary

statistics, which corresponds to the number of students that obtained a score higher than a

fixed threshold.

Moreover, for each school code, we were able to extract its school district. We removed

the data from the schools in School District 75. This is motivated by the specialized character

of School District 75: “District 75 provides citywide educational, vocational, and behavior

support programs for students who are on the autism spectrum, have significant cognitive

delays, are severely emotionally challenged, sensory impaired and/or multiply disabled.”

(http://schools.nyc.gov/Academics/SpecialEducation/D75/AboutD75/default.htm)

For each school district we can also extract its county, one of Manhattan, Bronx, Kings,

Queens, Richmond (some of these correspond to NYC boroughs with the same name, while

Kings corresponds to Brooklyn; Richmond, to Staten Island; and Bronx, to The Bronx).

The pre-processing steps can be reproduced using the script scripts/prepare-data.sh in

the repository.

D.2 Additional information on the experimental setup

We checked correctness of the implementations by verifying on small examples that the

posterior distributions obtained from all four methods (the three baselines and ours) become

arbitrarily close when increasing the number of particles or MCMC iterations. We also

subjected our Gibbs implementation to the Prior/Prior-Posterior correctness test of Geweke

(2004).

The precise command line arguments used in the experiments as well as the scripts used

for creating the plots can be found at https://github.com/alexandrebouchard/divide-

and-conquer-smc-experiments. To describe in more detail the methods we compared to,

we introduce the following notation: given a permutation t1, t2, . . . of the index set T , we

set Ξj to θtj if tj is a leaf, or to σ2
tj

otherwise. The three baseline methods are:
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Gibbs: A Metropolis-within-Gibbs algorithm, proposing a change on a single variable, using

a normal proposal of unit variance. As with D&C-SIR , we marginalize the internal

θt parameters. More precisely, we first sample a permutation t1, t2, . . . uniformly at

random, then using the Metropolis-within-Gibbs kernel, we sample Ξ1, followed by

Ξ2, and so, until we sample Ξ|T |, at which point we sample an indendent permutation

uniformly at random and restart the process. The Java implementation is available at

https://github.com/alexandrebouchard/divide-and-conquer-smc, in the pack-

age “prototype.mcmc”. We use a burn-in of 10% and collect sample each time we

resample a permutation of the nodes.

Stan: An open-source implementation of the Hamiltonian Monte Carlo algorithm (Neal,

2011), more precisely of the No U-Turn Sampler (Hoffman and Gelman, 2012), which

adaptively selects the number of “leap frog” steps. Stan generates efficient C++ code.

In contrast to the other methods, we did not implement marginalization of the internal

θt parameters. Stan includes a Kalman inference engine, however it is limited to chain-

shaped graphical models as of version 2.6.0. We use the default setting for the burn-in

and adaptation period (50%) and a thinning of 10. In other words, we store one

sample every 10 accept-reject rounds. Since a large number of Hamilton Monte Carlo

iterations was needed, this was need to make storage manageable. We verified using

an ACF plot that this did not significantly penalize this method.

STD: A standard (single population) bootstrap filter with the intermediate distributions

being sub-forests incrementally built in post-order. More precisely, let t1, t2, . . . denote

a fixed post-order traversal of the nodes in the set T . Note that a prefix of this

traversal, t1, t2, . . . , tk, corresponds to a forest, with a corresponding parameter vector

Ξ1:k = (Ξ1,Ξ2, . . . ,Ξk). We use a standard SIR algorithm to sample Ξ1:1,Ξ1:2,Ξ1:3, . . . ,

using the canonical sequence of intermediate distributions. Again, as with D&C-SIR

, we marginalize the internal θt parameters. To propose an additional parameter Ξi

given its children, we use the same proposal distributions as those we used for D&C-SIR

(described in Section 5.2 of the main paper). The Java implementation is available at

https://github.com/alexandrebouchard/divide-and-conquer-smc.

D.3 Additional results (serial computation)

D.3.1 Posterior densities

We show in Figure 15 the posterior densities of the parameters σ2
t , for t ranging in the nodes

in the two top levels of the tree, and for the four methods with different numbers of particles

or MCMC iterations. The plots support that 1 000 particles are sufficient for D&C-SMC
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Figure 14: Posterior densities for the parameters θt with D&C-SIR ran with 10 000 particles. The values
of the internal θt are marginalized during inference, but can be easily reinstantiated from the samples as a
post-processing step.

to output a reasonable approximation (see rows DC-N), while a larger number of MCMC

iterations seem required for Gibbs (GIBBS-N) or Stan (STAN-N). Note however that DC-N

and STD-N performed similarly in this first set of results.

Next, we show in Figure 16 a comparison of the wall clock times for the different al-

gorithm configurations. These experiments were performed on Intel Xeon E5430 quad-core

processors, running at 2.66 GHz. While the detailed rankings of the methods are imple-

mentation and architecture dependent, the results show that the DC-1 000 was computed

in approximately one minute, while all the reasonably mixed MCMC methods required at

least one order of magnitude more time. For example, running 2 000 Stan iterations (1 000

burn-in + 1 000 samples) took around 6 hours. All Stan running times exclude the one-time

model compilation.

The results for both SMC and MCMC are all performed on a single thread. We attribute

the high computational efficiency of the SMC methods to the favorable memory locality of

the particle arrays. This is supported by the non-linearity of the running time going from

1000 to 10 000 particles (the theoretical running time is linear in the number of particles).

Note that for any given particle budget, our implementation of D&C-SMC was slightly

faster than STD. This could be caused by implementation details related to the fact that the

particle datastructure for D&C-SMC are simpler than those required by STD (the particles

being forests in STD, instead of trees for D&C-SMC ).

These results further demonstrate that the model and data used in this section yield a

challenging posterior inference problem.

D.3.2 Additional results on the normalization constant

In this section, we use an example where the true value of the normalization constant Z

can be computed to validate our implementation of D&C-SMC . The model we use for

this purpose consists in a tree shaped graphical model with a finite set of state at each
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Figure 15: Posterior densities for the parameters σ2
t . The rows index different methods and numbers of

particles/iterations. The columns index different parameters t (only the first two levels shown).
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Figure 16: Comparison of the wall clock times for the different algorithm configurations. Note that the
time axis is in log scale, and that iterations/particles were incremented exponentially. All experiments
were replicated 10 times (varying only the Monte Carlo random seed), with the exception of the largest
experiments taking more than 6 hours, which we ran only once (GIBBS-3M and STAN-200000).

node. We use a perfect binary tree of depth five and two states at each nodes. Only the

leaves are observed. The details of this model are described in the file README.md of the

code repository. While the state space has cardinality exponential in the depth of the tree,

dynamic programming can be used to efficiently compute the value of Z (which corresponds

in this case to the probability of the observations). For actual data analysis, D&C-SMC

would not be advantegeous in this particular model, but again our goal here is to validate

our implementation of the D&C-SMC recursions and normalization computation.

We fix the data, and vary the number of particles used, from 10 to 81 920 by doubling.

Each configuration is repeated 100 times with different random seeds. The results are shown

in Figure 17. They support that the means of the estimates converge to the true value,

and that the variances of the estimates converge to zero. Moreover, the theory (specifically,

combining Jensen’s inequality with Proposition 1) predicts that the convergence is from

below, i.e. that the means are no greater than the true value. This is again what we observe

in Figure 17.

D.4 Additional results (distributed computation)

In this section, we provide a proof-of-concept demonstrating the suitability of D&C-SMC

to distributed computing environments (supplementing the discussion in Section 5.3 of the

main paper).

In this discussion, it is useful to emphasize the usual distinction between parallel archi-

tectures, where a single computer is composed of several cores sharing fast access to memory,
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Figure 17: Estimates of the log normalization constant on a discrete model where the true value can be
computed (horizontal line). These results are used as a validation of our computer implementation.

and distributed architectures, where several computers (nodes) are connected by a relatively

slower network.

Parallelizing SMC is typically done in the proposal step, at the granularity of particles:

when sampling from q or reweighting is expensive, or both, it becomes advantageous to

parallelize these operations. However, the resampling step requires frequent communication,

making this strategy less attractive in a distributed setting (but see for example Bolic et al.

(2005); Jun et al. (2012); Vergé et al. (2015); Lee and Whiteley (2014); Whiteley et al. (2015)

for alternatives).

In contrast, distributed computation in D&C-SMC can be scheduled to incur low com-

munication costs. The main idea is to split the work at the granularity of populations,

instead of the more standard particle granularity. In the following, we describe a simple

strategy to decrease communication costs when the D&C-SMC recursion is computed in

parallel at several locations of the tree t ∈ T . To simplify the exposition, we assume that

the tree is binary.

To describe our distribution strategy, we introduce the notion of the depth of a vertex in

the tree t ∈ T . We set the depth to be zero at the root r, depth(r) = 0, and recursively, for

each vertex v with parent v′, depth(v) = depth(v′)+1. We consider the largest depth d such

that the number of vertices at that depth is greater or equal to the number c of compute

nodes available. For each vertex v such that depth(v) = d, we assign the computation of all

the D&C-SMC recursions for the vertices under v to the same computer.

With this architecture, communication is only required at edges of the tree T connecting
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Figure 18: (a) Wall-clock times for the distributed D&C-SMC algorithm. (b) Speedup for the distributed
D&C-SMC algorithm (log scale).

nodes above depth d. This implies that the number of particles transmitted over the network

will be O(cN). In contrast, naively distributing using a particle granularity would require

O(c|T |N) particle transmissions. Moreover, the population granularity strategy can be done

in a completely decentralized fashion.

Based on this method, we have implemented an open source library for performing dis-

tributed, decentralized D&C-SMC computation. Thanks to its decentralized nature, the

package is simple to use: nodes discover each other automatically and only require a rough

estimate on the number of nodes available, to specify the value d discussed above. However,

the algorithm can be made fault tolerant, in the sense that if some of the compute nodes

fail, the computation will still be completed.

We applied this algorithm to the New York Mathematics Test dataset. We varied the

number of active nodes in the cluster in {1, 2, 4, 8, 16, 32}, using 100 000 particles in all cases.

The output of the distributed algorithm is identical in all cases, so it suffices to compare

wall-clock times. The compute nodes consist in Xeon X5650 2.66GHz processors connected

by a non-blocking Infiniband 4X QDR network. We show the results in Figure 18.

Each node used a single thread for simplicity, but note that combining parallelism and

distribution can be done by parallelizing either at the level of particles, or populations with

depths greater than d.

E Using and extending our code base

We provide here an overview of the implementation used in Sections 5.2 and 5.3 of the main

paper. The goal is to help replicate experiments, and to show how our code base can be

used to approach other models. The code is available at

https://github.com/alexandrebouchard/divide-and-conquer-smc. Note that the file
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README.md in this repository might be more up to date at the time of reading. It also

contains more detailed instructions on installing and building the software.

The code base actually contains two implementations of the basic D&C-SIR method:

1. One implementation has a specific model hard coded in it, namely the hierarchical

model with a binomial emission model used in Section 5.2 of the main paper.

2. A second implementation offers convenient interfaces to apply the algorithm to other

models. This second implementation also offers distributed and parallel computing

functionalities. This second implementation is used in Section 5.3 of the main paper.

E.1 Running D&C-SMC on the binary emission hierarchical model

(implementation 1)

• Checked out the repository and build the code using gradle installApp.

• Download and prepare the data by typing scripts/prepare-data.sh from the root

of the repository (this requires the command wget). This writes the preprocessed data

in data/preprocessedNYSData.csv.

• Run the software using

scripts/run-simple.sh -inputData data/preprocessedNYSData.csv -nParticles

1000.

• Note: for the plots to work, you need to have R in your PATH variable (more precisely,

Rscript).

• Various output files are written in results/latest/

The main interest of this implementation is for replicating the results in Section 5.2 of

the main paper. To do so, see the following separate public repository,

https://github.com/alexandrebouchard/divide-and-conquer-smc-experiments which

contains the exact sets of options used to run the experiments as well as the plotting scripts.

To extend D&C-SMC to other models, use the second implementation instead, described

next.

E.2 Running parallel and distributed D&C-SMC on the binary

emission hierarchical model (implementation 2)

• Checked out the repository and build the code using gradle installApp.
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• Download and prepare the data by typing scripts/prepare-data.sh from the root

of the repository (this requires the command wget). This writes the preprocessed data

in data/preprocessedNYSData.csv.

• Run the software using

scripts/run-distributed.sh -dataFile data/preprocessedNYSData.csv

E.2.1 Distributed and parallel computing options

To run in a distributed fashion, simply issue the same command line on different machines.

The machines will discover each other (via multicast) and distribute the work dynamically.

You can see in the output a variable nWorkers=[integer] showing the number of nodes

cooperating. For testing purpose, you can do this on one machine by opening two terminals

(however, there is a better way to get multi-threading, see below).

The machines will only cooperate if all the command line options match exactly. You

can check for example that running

scripts/run-distributed.sh -dataFile data/preprocessedNYSData.csv -nParticles

2000 will not cooperate with

scripts/run-distributed.sh -dataFile data/preprocessedNYSData.csv -nParticles

1000. You can also force groups of machines to avoid cooperation by using the -clusterSubGroup

[integer]

To use multiple threads within one machine, use -nThreadsPerNode [integer]. This

can be used in conjunction with a distributed computation, or without.

E.2.2 Additional options

If you want the machines to wait each other, use -minimumNumberOfClusterMembersToStart

[integer]. This will cause machines to wait to start until this number of machines is gath-

ered or until maximumTimeToWaitInMinutes minutes has elapsed. Whether these options

are used or not, machines can always join at any point in the execution of the algorithm.

The waiting options were used for wall-clock running time analysis purpose. In most cases,

these options can be ignored.

When the number of nodes in the D&C-SMC tree is much larger than the number of

threads times the number of nodes, it is useful to coarsen the granularity of the subtasks. To

do so, you can use -maximumDistributionDepth [integer], which alters the way subtasks

are created as follows: instead of the basic initial tasks being the leaves of the tree, they are

the subtrees rooted at a depth from the root given by maximumDistributionDepth. The

subtrees under are computed serially within each node/thread.
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E.3 Using parallel and distributed D&C-SMC with your model

First, build a class to encode each individual particle. The only requirement is that it should

implement Serializable.

Second, build a class to encode nodes in the tree. The only requirement is that you

should override hashcode and equals to ensure that each node in the tree be unique (i.e. not

equals(...) with any other node, as they will be inserted in a hashtable), and repro-

ducible (i.e. the default implementation of hashcode will depend on the memory location

and will be different from machine to machine). A reasonable default implementation is in

prototype.Node.

Finally, the main step consists in providing code that proposes, i.e. merges sub-populations.

This is done by creating a class implementing dc.DCProposal. This class will be responsible

for both proposing, and providing a log weight update for the proposal (i.e. taking care of

computing the ratio in step 2(c) of Algorithm 2).

See README.md in the repository for a step by step example on a simple model.
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