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Alexandre Bouchard-Côté∗ Michael I. Jordan∗,†
∗Computer Science Division †Department of Statistics

University of California at Berkeley

A Extended derivations and proofs

A.1 Markov random field reformulation

We prove in this section that under the Rich Sufficient Statistics condition (RSS)1, the log-partition
function is the same in the original exponential family and in the bipartite MRF described in Sec-
tion 2.2. Let us denote the latter log-partition function by Ã(θ).

We first prove the following identity, introduced in the main paper as Equation (3):

Lemma 1

∑
s1∈{0,1}

∑
s2∈{0,1}

· · ·
∑

sJ∈{0,1}

I∏
i=1

J∏
j=1

1[φj(xi) = sj ] =
{

1 if x1 = x2 = · · · = xI

0 otherwise.

Proof: Suppose first that there are indices i′, i′′ such that xi′ 6= xi′′ . By the RSS condi-
tion, this means that there is at least one j0 such that φj0(xi′) 6= φj0(xi′′). Since the product∏I

i=1

∏J
j=1 1[φj(xi) = sj ] contains both the factor 1[φj0(xi′) = sj0 ] and 1[φj0(xi′′) = sj0 ], for

any fixed term in the iterated sum, at least one of the two factors will be equal to zero.

Conversely, if x = x1 = x2 = · · · = xI , then only the multi-index (s1, s2, . . . , sJ) =
(φ1(x), φ2(x), . . . , φJ(x)) in the iterated sum induces a non-zero term.

A slight extension of this argument yields:

Lemma 2 For all x = (x1, . . . , xI), where xi ∈ X , we have:

Ψ(x) =
∑

s1∈{0,1}

∑
s2∈{0,1}

· · ·
∑

sJ∈{0,1}


I∏

i=1

J∏
j=1

Ψi,j(xi, sj)




J∏
j=1

Ψj(sj)


{

I∏
i=1

Ψi(xi)

}

=
{

exp {〈φ(x1),θ〉} ν(x1) if x1 = x2 = · · · = xI

0 otherwise.

Using this lemma, we can prove the main proposition:

Proposition 3 Under RSS, Ã(θ) = A(θ).

1We make the observation in passing that the RSS condition can also be described tersely as the requirement
that the σ-algebra generated by the sufficient statistics be equal to the base σ-algebra: σ(φ1, . . . , φJ) = F .
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MFMF(θ, A1, . . . , AI )

1: ζ
(1)
i,j = 0

2: for t = 1, 2, . . . , T do
3: ξ(t) = θ +

∑
i ζ

(t−1)
i

4: ζ
(t)
i = logit

(
∇Ai

(
ξ(t)
))

5: end for
6: return µ̂ = logistic(ξ)

TRWMF(θ, A1, . . . , AI ,ρ)

1: ζ
(1)
i,j = 0

2: for t = 1, 2, . . . , T do
3: λ

(t)
i,j = θj +

∑
i′:i′ 6=i ρi′→jζ

(t−1)
i′,j − ρi→jζ

(t−1)
i,j

4: ξ̄
(t)
i,j = ρj→iλ

(t)
i,j

5: δ
(t)
i,j = (1− 2ρj→i)λ

(t)
i,j

6: ζ
(t)
i = logit

(
∇Ai

(
ξ̄

(t)
i

))
− δ

(t)
i

7: end for
8: return µ̂ = logistic

(
θ +

∑
i ζ

(T )
i

)
Figure 4: Pseudocode for Mean Field Measure Factorization and Tree-Reweighted Measure Factor-
ization. The vector ρ is the collection of marginals of a distribution of spanning trees over KI,J .
Note that these marginals can also be updated, see [20] for details.

Proof: We have:

exp Ã(θ) =
∑

x1∈X 1

∑
x2∈X 2

· · ·
∑

xI∈X I

Ψ(x)

=
∑

x1∈X 1

∑
x2∈X 2

· · ·
∑

xI∈X I

{
exp {〈φ(x1),θ〉} ν(x1) if x1 = x2 = · · · = xI

0 otherwise

=
∑
x∈X

exp {〈φ(x),θ〉} ν(x)

= expA(θ).

A.2 Algorithms

In this appendix, we provide more information regarding the derivation of the variational algorithms
discussed in the paper.

BPMF

The BPMF algorithm maintains at each iteration the quantities ζi, ξ̄i, and super-partition functions
Ai(ξ̄i). Starting with ζ

(0)
i,j = 0, we use the following updates at each iteration t = 1, 2, . . . , T :

ξ̄
(t)
i = θ +

∑
i′:i′ 6=i

ζ
(t−1)
i′

ζ
(t)
i = logit

(
∇Ai

(
ξ̄

(t)
i

))
− ξ̄

(t)
i ,

where the logit function of a vector logitv is the vector of the logit function applied to each entry
of the vector v, and we use the convention (±∞)− (±∞) = ±∞.

The approximation of the moments µj = ∇jA(θ) is proportional to the product of all the incoming
messages at the last iteration T , times the local potential,

∏
j mi→j(s)Ψj(s):

µ̂j

1− µ̂j
=

∏
j m

(T )
i→j(1)eθj∏

j m
(T )
i→j(0)e0

.

Using the notation logistic(v)j = (1 + exp(−vj))−1, this is equivalent to:

µ̂ = logistic

(
θ +

∑
i

ζ
(T )
i

)
.
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TRWMF

We now derive Equation (7) in the paper. We start from the explicit TRW updates, and show how to
make the large messages implicit:

mi→j(s) ∝
∑
x∈X

1[φj(x) = s]νi(x)

∏
j′:j′ 6=j (Mj′→i(x))ρj′→i

(Mj→i(x))1−ρi→j
,

where ρi→j are marginals of a spanning tree distribution over KI,J .

Again, the idea is to find a parameter vector ξi,j ∈ RJ such that∏
j′:j′ 6=j (Mj′→i(x))ρj′→i

(Mj→i(x))1−ρi→j
∝ exp〈φ(x), ξi,j〉. (8)

To do this, we start by rewriting the numerator of the left hand side of Equation (8):

∏
j′:j′ 6=j

(Mj′→i(x))ρj′→i =
∏

j′:j′ 6=j

(
eθj′φj′ (x)

∏
i′:i 6=i (mi′→j′(φj′(x)))ρi′→j′

(mi→j′(φj′(x)))ρi→j′

)ρj′→i

= exp

{ ∑
j′:j′ 6=j

ρj′→i

(
θj′φj′(x) +

∑
i′:i′ 6=i

ρi′→j′ log mi′→j′(φj′(x))

− ρi→j′ log mi→j′(φj′(x))
)}

∝ exp

{ ∑
j′:j′ 6=j

ρj′→iφj′(x)
(

θj′ +
∑

i′:i′ 6=i

ρi′→j′ζi′,j′ − ρi→j′ζi,j′

)}
,

where we have used in the last step the assumption that φj has domain {0, 1}, which implies that
mi→j(φj(x)) = exp{φj(x) log mi→j(1) + (1− φj(x)) log mi→j(0)} ∝ exp{φj(x)ζi,j}.

A similar argument on the denominator of the left hand side of Equation (8) yields:

(Mj→i(x))1−ρi→j ∝ exp

{
(1− ρi→jφj(x)

(
θj +

∑
i′:i′ 6=i

ρi′→jζi′,j − ρi→jζi,j

)}
.

Combining these gives the update:

(
ξi,j

)
j′

=

θj′ +
∑

i′:i′ 6=i

ρi′→j′ζi′,j′ − ρi→j′ζi,j′

 ·
{

ρj′→i if j′ 6= j
(1− ρi→j) otherwise.

Finally, applying the argument introduced in Section 2.4 yields the reparameterized updates shown
in Figure 4.

A.3 Matching factorizations

In this section, we show how to compute efficiently the super-partition functions described in the
matching examples of Section 2.1 and 3.1.

Proposition 4 For perfect bipartite matchings in SBM, computing one super-partition function
Ai(θ) takes time O(N2).

Proof: For this type of super-partition function, we claim that computation simply involves renor-
malizing rows or columns of a matrix. We first introduce some notation: let the sufficient statistic
coordinate j corresponds to the indicator xm,n, and Xi denote a random variable distributed ac-
cording to the member indexed by θ in the exponential family with base measure νi and sufficient

III



statistics φ. Note that in the case of SBM, this corresponds to a distribution over functions of the
form f : {1, 2, . . . , N} → {1, 2, . . . , N}.

With this notation, we can write:

∇jA1(θ) = E[φj(X1)] (9)
= P(X1(m,n) = 1) (10)

=
exp θm,n∑N

n′=1 exp θm,n′
, (11)

and similarly:

∇jA2(θ) =
exp θm,n∑N

m′=1 exp θm′,n

. (12)

Therefore by caching the normalizations, it is possible to compute all the gradient in time O(N2).

Proposition 5 For perfect bipartite matchings in HBM, computing one super-partition functions
Ai(θ) takes time O(N3).

Proof: As described in the paper, at a high level, the technique we use to compute∇jAi(θ) involves
constructing an auxiliary exponential family with associated graphical model given by a chain of
length N , and where the state space of each node in this graph is {1, 2, . . . , N}. The basic sufficient
statistic coordinates are encoded as node potentials, and the augmented ones, as edge potentials in
the chain.

To make this precise, let us introduce some notation. Let τ , B(τ ) and ϕ(y) denote the pa-
rameters, log-partition function and sufficient statistics of the auxiliary exponential family, y =
(y1, . . . , yN ), yn ∈ {1, . . . , N}. We construct the sufficient statistic vectors such that that they
have the same dimensionality as φ. The coordinates of ϕ correspond naturally to those of φ: if
φj(x) = xn,m, then ϕj(y) = 1[yn = m], and if φj(x) = xn,mxn+1,m+1, then ϕj(y) = 1[yn =
m]1[yn+1 = m + 1]. With this construction and by setting τ = θ, we have ∇jAi(θ) = ∇jB(τ ).
This computation can be done with forward-backward on chain of length N and state space of size
N , hence a total running time of O(N3).

A.4 Multiple sequence alignment factorization

We start by defining formally the state space, sufficient statistic and the measure factors involved.
The state space is the collection of all pairwise alignment indicators, and we use the notation xk,k′

m,n
to denote the indicator function on the alignment between character m of sequence k and character
n of sequence k′. In this section, we will assume for simplicity that the sufficient statistic coordi-
nates have the form φj(x) = xk,k′

m,n, but higher order statistics were added for the experiments of
Section 4.2. Handling those is no more complicated than what was demonstrated for matchings in
Section 3.1.

There are two types of factors in the measure decomposition:

Monotonicity: each pair of components k, k′ forms a pairwise alignment:

νi(x) =
Nk∏

m=1

Nk′∏
m′=1

1
[
xk,k′

m,n = 1, xk,k′

m′,n′ = 1 =⇒ (m > m′, n > n′) or (m < m′, n < n′)
]
.

Transitivity: for each triplet of sequences k, k′, k′′ and positions m,n, p, transitivity holds:

νi(x) = 1
[
xk,k′

m,n = 1, xk′,k′′

n,p = 1 =⇒ xk,k′′

m,p = 1
]
.

Proposition 6 Each monotonicity factor can be computed in time O(NkNk′), where Nk, Nk′ are
the lengths of the sequences involved.

IV



statistic vectors in the same way as in the proof of Proposition 5. The base measure µ of the auxiliary
family enforces the portions of ≤p that are in Ei. Formally, it is defined as:

µ(y) =
∏

(n→n′)∈Ei

1[yn < yn′ ].

This computation can be done with the sum product algorithm on a forest of size N and state space
of size N , hence a total running time of O(N3).

A.6 MFMF does not provide a lower bound

In our experiments, we have seen instances where the log partition function estimate provided by
MFMF does not lower bound the true log partition function. In this section, we show why the
argument used in [5] to prove the bound in the case of standard mean field does not apply to MFMF.
As one would expect, the difference comes from the structured base measure.

We first review the argument of [5], Section 5.4, specializing it to our situation, where the graphical
model it described in Section 2.2 and the tractable subgraph is the fully disconnected graphical
model on S1, S2, . . . , SJ , B1, B2, . . . , BI (the naive mean field). We let M = ∇A(Rd) denote the
set of realizable moments. We will also use the following definition:

Definition 9 For an extended real-valued function f , the Legendre-Fenchel transformation is de-
fined as:

f∗(x) = sup{〈x, y〉 − f(y) : y ∈ dom(f)}.

When f is convex and lower semi-continuous, f = f∗∗, we can use convexity of A to obtain:

A(θ) = sup{〈θ,µ〉 −A∗(µ) : µ ∈ M }. (10)

Formulation (10) is no more tractable than the definition of A, but gives a constrained optimization
problem that can be relaxed. Mean field methods can be seen as a particular type of relaxation where
the sup is taken over M , the set of realizable moment induced by a simpler exponential family. In
the case of naive mean field on our graphical model, the simpler family is defined as

NMF =




pγ(s1, . . . , sJ , b1, . . . , bI) = exp




∑

i

∑

x∈X

1[bi = x]γi,x +
∑

j

sjγj



 : γi,x, γj ∈ R




 ,

from which we define

MMF =
{
µ ∈ Rd : ∃p ∈ NMF with µ = E[φ(X)],X ∼ p

}
.

With this notation, the mean field objective function is:

A(θ) = sup{〈θ,µ〉 −A∗(µ) : µ ∈ MMF}.

Without a structured base measure (meaning, when the base measure is the uniform counting mea-
sure over the full state space), we have MMF ⊆ M , and it follows that the mean field estimate is a
lower bound. On the other hand, since the edge potentials are deterministic, this inclusion does not
hold.

We show a simple example: consider a pair of random variables,

P(X = 0, Y = 1)
P(X = 1, Y = 0)
P(X = 0, Y = 0)
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Figure 5: Left: the mean field realizable moments surface MMF, center, the realizable moments
volume M without a structured base measure, right, the realizable moment line M with a structured
base measure (in green, parallel to the z-axis).

Proof: The idea is to use a non-homogeneous pair HMM, or weighted transducer [27]. In the pair
HMM terminology, weights of matching two symbols in this transducer are given by exp θk,k′

m,n,
while the weights of deletions and insertions are set to one.2

Once the weighted transducer is constructed, there are standard polynomial-time algorithms for
finding its partition function and natural parameter gradient [27].

Proposition 7 Each transitivity factor can be computed in constant time, and the super-partition
functions take the form:

Ai(θ) = 1 + exp
(
θk,k′

m,n + θk′,k′′

n,p + θk,k′′

m,p

)
+ exp

(
θk,k′

m,n

)
+ exp

(
θk′,k′′

n,p

)
+ exp

(
θk,k′′

m,p

)
Proof: The eight possible cases to consider are shown in Figure 6, and the ones in the support of the
factor are boxed. They each correspond to a term in the sum above by inspection.

A.5 Linearization of partial orders factorization

Proposition 8 The partition function and gradient of the factors proposed in Section 3.3 can be
computed in time O(N3).

Proof:

Let Gi = (V,Ei) be the current forest in the factorization. We now introduce a new auxiliary
family: let τ , B(τ ) and ϕ(y) denote its parameters, log-partition function and sufficient statistics
of the auxiliary exponential family, y = (y1, . . . , yN ), yn ∈ {1, . . . , N}. We construct the sufficient
statistic vectors in the same way as in the proof of Proposition 5. The base measure µ of the auxiliary
family enforces the portions of ≤p that are in Ei. Formally, it is defined as:

µ(y) =
∏

(n→n′)∈Ei

1[yn < yn′ ].

This computation can be done with the sum product algorithm on a forest of size N and state space
of size N , hence a total running time of O(N3).

A.6 MFMF does not guarantee a log partition lower bound

In contrast to what one would expect with a mean field algorithm, MFMF is not guaranteed to lower
bound the log partition function. In this section, we show why the argument used in [5] to prove the

2Special costs for deletion and insertion are encoded in the matching costs as a ratio, and long
gap/hydrophobic core modeling are encoded by augmenting the state of the transducers.
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bound in the case of standard mean field does not apply to MFMF, and then show a simple counter
example. As one would expect, the difference comes from the structured base measure.

We first review the argument of [5], Section 5.4, specializing it to our situation, where the graphical
model it described in Section 2.2, and the tractable subgraph is the fully disconnected graphical
model on S1, S2, . . . , SJ , B1, B2, . . . , BI (the naive mean field). We let M = ∇A(RJ ×X ×· · ·×
X ) denote the set of realizable moments. We will also use the following definition:

Definition 9 For an extended real-valued function f , the Legendre-Fenchel transformation is de-
fined as:

f∗(x) = sup{〈x, y〉 − f(y) : y ∈ dom(f)}.

When f is convex and lower semi-continuous, f = f∗∗, we can use convexity of A to obtain:

A(θ) = sup{〈θ,µ〉 −A∗(µ) : µ ∈ M }. (13)

Formulation (13) is no more tractable than the definition of A, but gives a constrained optimization
problem that can be relaxed. Mean field methods can be seen as a particular type of relaxation where
the sup is taken over the set of realizable moment induced by a simpler exponential family. In the
case of naive mean field on our graphical model, the simpler family is defined as

NMF =

pγ(s1, . . . , sJ , b1, . . . , bI) = exp

∑
i

∑
x∈X

1[bi = x]γi,x +
∑

j

sjγj

 : γi,x, γj ∈ R

 ,

from which we define

MMF =
{
µ ∈ RJ : ∃p ∈ NMF with µ = E[φ(X)],X ∼ p

}
.

With this notation, the mean field objective function is:

AMF(θ) = sup{〈θ,µ〉 −A∗(µ) : µ ∈ MMF}.

Without a structured base measure (meaning, when the base measure is the uniform counting mea-
sure over the full state space), we have MMF ⊆ M , and it follows that the mean field estimate is a
lower bound. On the other hand, since the edge potentials are deterministic, this inclusion does not
hold in our case.

To see why, we show a simple counter-example in Figure 5: a graphical model on a pair of binary
random variables, X, Y . One can check easily that if an indicator edge potential 1[X = Y ] is added,
then M is neither included nor enclosing MMF.

B More examples of factorizations

B.1 Plane partitions

Counting plane partitions is a classical problem in statistical physics, combinatorics and probability
theory [3]. A plane partition is an array of non-negative integers, pn,m, 0 ≤ n, m ≤ N such that
pn+1,m ≥ pn,m, pn,m+1 ≥ pn,m. There is a well-known connection between these arrays and a
certain type of routing, exemplified in Figure 6. We will describe the factorization in the routing
formulation, which represents plane partitions as a collection of N non-crossing integer paths, each
of length 2N + 1. Path n starts and ends at position n, and its transitions are either the identity,
an increase by one (only allowed in the first N transitions), or a decrease by one (in the last N
transitions).

We propose an approximation based on N − 1 factors. Each factor relaxes the problem to enforcing
non-crossing only for two consecutive paths. With this relaxation, the partition function can be
computed in O(N3) by using forward-backward on a chain of length 2N + 1 with state space
O(N2) that keeps track of the position of the two consecutive paths.
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Figure 6: (a) Pictorial representation of the terms involved in the transitivity super-partition compu-
tation. The boxed alignment triplets correspond to the transitive cases. (b) The 3D representation
of a plane partition with N = 3. The value pn,m is the height of the pile at (n, m), for example
p3,3 = 3. The equivalent routing representation is shown as a dashed line. For example, path 1 is
(1, 1, 1, 2, 2, 1, 1).

B.2 Traveling salesman problem

The method is not limited to #P problems derived from decision problems in P: we show in this
section for example that the counting version of the traveling salesman problem, which is NP in its
decision version [28], can be attacked with the same tools.

We consider a set of N cities {c1, . . . , cN}, where each pair of cities has an associated parameter
θ(cn, cm) ∈ R. A tour t is a list of cities, t = t1, t2, . . . , tN : tn ∈ {c1, . . . , cN} where each city
is visited exactly once, i.e. {t1, . . . , tN} = {c1, . . . , cN}. The weight of a tour is the product of the
weights of the pairs of consecutive cities in the tour (modulo N ): w(t) = exp{

∑N−1
n=1 θ(tn, tn+1)+

θ(t1, tN )}. By normalization, this yields a probability model:

P(T = t) = exp

{
N−1∑
n=1

θ(tn, tn+1) + θ(t1, tN )−A(θ)

}
A(θ) = log

∑
tour t

w(t),

and also an exponential family indexed by θ.

Fix without loss of generality an arbitrary city c1 as the starting and ending point, and take X to be
the set of all paths of length N that starts and ends at c1, but without the coverage restriction. One
factorization for this problem can be constructed by looping over the N − 1 other cities, cn 6= c1,
and building for each one a factor that enforces that cn be visited exactly once. Computation over
a single factor can be computed using dynamic programming (by maintaining the number of steps
left and whether cn was visited or not). Moreover, a state that satisfies all factors is a valid tour.

C More information on the experiments

C.1 Handling extended real parameters

Note that in order to handle the cases where a canonical parameter coordinate is +∞, we need to
slightly redefine the super-partition functions as follows:

Ai(θ) =
∑
x∈C

exp


J∑

j=1

1[θj < +∞]θjφj(x)

 νi(x)
J∏

j=1

1[θj = +∞⇒ φj(x) = 1].

We also use the convention (±∞)− (±∞) = ±∞.
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C.2 Matching experiments

The generative model used in the third experiment works as follows: first, generate a bipartite perfect
matching according to the exponential family HBM M ∼ HBM(θ), next, generate a noisy obser-
vation for each edge, Ym,n|M ∼ N(1(em,n ∈ M), σ2). The observations Ym,n and parameters
θ, σ2 are given to the algorithm, but not the value of M , which is reconstructed using the minimum
Bayes risk estimator minm E[l(m,M)|Y ] over the 0-1 loss l. The coefficients of this objective are
approximated using BPMF. One can check that forming the objective function involves comput-
ing moments over HBM with parameters θj for the higher order sufficient statistic coordinates j,
and with parameters θj + 1/σ2 for the basic sufficient statistic coordinates j. We then optimized
the objective using the Hungarian algorithm [29]. The zero-one loss is computed against the true
(generating) matching, and averaged over 100 random noisy generated datasets.

C.3 Multiple sequence alignment

We used the following experimental protocol: first, we trained parameters for HMMs using EM ran
on all pairs of sequences in the test1/ref1 directory, without using the gold alignment information.
Second, we ran BPMF with the factorization described in Section 3.2, with an annealing expo-
nent of 1/10 on the consistency messages to avoid convergence problems. Third, we decoded (i.e.
transformed the marginals into a single multiple sequence alignment) using the minimum Bayes risk
approximation of [30]. Finally, we computed the standard SP (Sum of Pairs) metric on the annotated
core blocks (SP is an edge recall score, see [25] for instance for the details).
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