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Aims

I Investigate the spatial-temporal modelling of pollutants.

I Assess the contribution of different components of variability;
spatial, temporal and random variability.

I Develop methodology to provide:
I exposures (and measures of uncertainty) for use in mapping of

environmental factors
I studies investigating the health effects of pollution.

I Fit models and perform analyses in WinBUGS.



Overview

I Background
I Data

I Pollutant dependence
I Temporal dependence
I Spatial dependence
I Missing values
I Measurement error

I Models
I Single pollutant, single monitoring site
I Single pollutant, multiple monitoring sites
I Multiple pollutants, single monitoring site
I Multiple pollutants, multiple monitoring sites

I Summary

I Examples of implementation



Background

I Daily measurements often available for different pollutants
from a number of sites

I May be subject to measurement error
I Contain missing values

I Pollutants not measured at all sites
I Monitor being moved by design, e.g. six-day monitoring

schedule
I Unreliable or faulty monitors



Data

I Eight sites within London, 1997-94

I PM10, SO2, NO and CO.

I All pollutants only measured at only 4 sites.

I Periods of operation between 1 and 4 years.

I Percentage of missing values as great as 37%.



Time series plots of (logged) values of PM10
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Correlations between pollutants and temperature
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Data dependencies
I There are dependencies, both temporally and spatially,

between daily measurements of different pollutants.
I Pollutant dependence - common processes by which they are

formed and the relationship with meteorological conditions.
I Temporal dependence - atmospheric lifetimes and relationship

with meteorological conditions.
I Spatial dependencies - distance between sites and site type.



Locations of monitoring sites and correlations with distance
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Model framework

I Bayesian hierarchical model.

I Pollutants modelled as a function of the true underlying level
with measurement error.

I Incorporate covariate information, e.g. temperature.

I Underlying level is a function of the previous day’s level.

I Missing values treated as unknown parameters within the
Bayesian framework and can be estimated.



Single pollutant, single monitoring site

I Stage One, Observed Data Model:

Yt = XT
t β1 + θt + vt,

vt is referred to as measurement error, and assumed to be are
independent and identically distributed (i.i.d.) as N(0, σ2

v)

I Stage Two, Temporal Model:

Autoregressive first order model

θt = ρθt−1 + wt

wt i.i.d. as N(0, σ2
w).

I Stage Three, Hyperprior:
Normal prior N(c, C) for β1, where c is a q1 × 1 vector and C
a q1 × q1 variance-covariance matrix.
σ−2
v ∼ Ga(av, bv) and σ−2

w ∼ Ga(aw, bw).



Posterior distribution
The posterior distribution is given by

p(θ, β1, σ
2
v , σ

2
w|y) = p(y)−1

{
T∏
t=1

p(yt|θt, β1, σ
2
v)

}
×{

T∏
t=2

p(θt|θt−1, σ
2
w)

}
×

p(θ1)p(β1)p(σ2
v)p(σ

2
w)

I Samples may be generated in a straightforward fashion using
Markov chain Monte Carlo (using the WinBUGS software)

I Dealing with the cyclical graph that arises at stage two,
requires some of the conditional distributions to be explicitly
specified



I Missing values are treated as parameters and the posterior
obtained over these values and the model parameters.
Samples can be generated from the distribution of missing
values

p(ym|yo) =
∫
p(ym|λ)p(λ|yo)dλ

where λ = (θ, β1, σ
2
v , σ

2
w)′



Implementing the models in WinBUGS



The dataset we will use contains the following information:

Table: Summary of pollutants measured, and periods of operation, at
eight sites in London, 1994–97. The total number of days of operation
are given for each pollutant at each site together with the percentage of
missing observations. The units are µgm−3 for PM10, parts per billion for
SO2 and NO and parts per million for CO.

Period Total Missing % Mean Min. 25% Med. 75% Max.
Bexley

PM10 1994-97 1461 211 14.4 24.0 4.0 15.0 20.0 29.0 92.0
SO2 1994, 1996-97 1095 178 16.3 6.9 1.0 3.0 4.0 8.0 76.0
NO - - - - - - - - - -
CO 1994-97 1461 192 13.1 0.5 0.1 0.3 0.4 0.5 4.4

Bloomsbury
PM10 1994-97 1461 61 4.2 28.0 7.0 19.0 24.0 34.0 103.0
SO2 1994-97 1461 115 7.9 8.3 1.0 4.0 6.0 11.0 48.0
NO 1994-97 1461 44 3.0 42.4 4.0 19.0 30.0 50.0 467.0
CO 1994-97 1461 68 4.7 0.7 0.1 0.4 0.6 0.8 4.3

Brent
PM10 1996-97 731 120 16.4 20.8 6.0 14.0 18.0 25.0 82.0
SO2 1996-97 731 33 4.5 4.4 1.0 2.0 3.0 5.2 20.0
NO 1996-97 731 57 7.8 23.8 1.0 5.0 8.0 22.5 414.0
CO 1996-97 366 15 4.1 0.5 0.1 0.2 0.3 0.7 5.0

Eltham
PM10 1996-97 731 166 22.7 21.2 8.0 15.0 18.0 25.0 81.0
SO2 1996-97 731 91 12.4 4.6 1.0 2.0 3.0 5.0 40.0
NO 1996-97 731 95 13.0 21.7 1.0 5.0 9.0 20.0 339.0
CO - - - - - - - - - -



Period Total Missing % Mean Min. 25% Med. 75% Max.
Harringey

PM10 1996-97 731 161 22.0 26.2 8.0 18.0 22.0 32.0 89.0
SO2 - - - - - - - - - -
NO 1996-97 731 139 19.0 63.3 5.0 28.0 43.0 68.6 562.0
CO - - - - - - - - - -

Hillingdon
PM10 1996-97 731 225 30.8 24.5 6.0 16.0 21.0 31.0 88.0
SO2 1996-97 731 230 31.5 5.1 1.0 3.0 4.0 6.0 28.0
NO 1996-97 731 252 34.5 81.9 2.0 31.0 67.0 105.0 506.0
CO 1996-97 731 268 36.7 0.8 0.2 0.5 0.6 0.9 4.3

N. Kensington
PM10 1996-97 731 99 13.5 23.6 9.0 16.0 20.0 27.2 89.0
SO2 1996-97 731 91 12.4 4.6 1.0 2.0 3.0 6.0 32.0
NO 1996-97 731 106 14.5 27.6 1.0 6.0 11.0 25.0 442.0
CO 1996-97 731 93 12.7 1.2 0.1 0.4 0.7 1.3 16.6

Sutton
PM10 1996-97 731 92 12.6 25.1 9.0 17.0 22.0 29.0 250.0
SO2 1996-97 731 96 13.1 4.9 1.0 2.7 4.0 6.0 28.4
NO 1996-97 731 106 14.5 51.1 3.0 26.3 39.0 57.0 404.0
CO 1996-97 731 104 14.2 1.1 0.2 0.8 1.0 1.3 6.7



Single pollutant, single monitoring site

I Stage One, Observed Data Model:

Yt = XT
t β1 + θt + vt,

vt is referred to as measurement error, and assumed to be are
independent and identically distributed (i.i.d.) as N(0, σ2

v)
I In WinBUGS (ignoring the covariates for simplicity)

model {
for (t in 2:(n-1)) {

# observation model
y[t] ~ dnorm(theta[t],tau.v)

.
} # t loop
y[1]~dnorm(theta[1],tau.v)
y[n]~dnorm(theta[n],tau.v)
.

tau.v ~ dgamma(1,0.01)
} # end of model



I Stage Two, Temporal Model:

θt = ρθt−1 + wt

wt i.i.d. as N(0, σ2
w).

I From here, we use ρ = 1, i.e. a first order random walk, for
clarity of explanation.

I Recall that from a Bayesian perspective, the second
(temporal) stage may be viewed as a prior distribution for
θ′ = (θ1, ..., θT ), and that p(θ|σ2

w), can be expressed as

p(θt|θ−t, σ2
w) ∼


N(θt+1, σ

2
w) for t = 1,

N
(
θt−1+θt+1

2 , σ
2
w
2

)
for t = 2, ..., T − 1,

N(θt−1, σ
2
w) for t = T.

where θ−t represents the vector of θ’s with θt removed. It is
noted that σ2

w is a conditional variance and so it is not
comparable to σ2

v .
I This is the reason for

for (t in 2:(n-1))

and defining the end points separately.



I In WinBUGS

model {
for (t in 2:(T-1)) {

.
# system model

tmp.theta[t] <- (theta[t-1]+theta[t+1])/2
theta[t] ~ dnorm(tmp.theta[t],tau.w2)

.
} # t loop
.
theta[1]~dnorm(theta[2],tau.w)
theta[T]~dnorm(theta[n-1],tau.w)
.
tau.w ~ dgamma(r.w,d.w)
sigma.w <- 1 / sqrt(tau.w)
} # end of model



I Note that because we are dealing with dealing with the
cyclical graph at this stage, unless we make specific allowance
there will be double counting of the likelihood terms (where
for example θ will appear as both a parent of θt−1 and as a
child of θt+1 and so we have to either

I explicitly specify some of the full conditional distributions
(using the RW structure). It is possible to do this in
WinBUGS, although not widely documented. On the previous
slide we need to explicitly find the contribution of the likelihood
(the data) to the posterior for σ2

w, i.e. r.w and d.w in

tau.w ~ dgamma(r.w,d.w)
I use an in-built WinBUGS function which allows for this, using

the equivalence with a intrinsic CAR (conditionally
autoregressive) model.



I Note that Gamma prior and with Normal likelihood combine
to give a Gamma posterior.

p(θ|τw) ∼ N(θt−1, τw). Note use of τw = 1/σ2
w.

p(τw) ∼ Ga(r, d)

p(τw|θ) ∝ drτ (r−1)
w exp(−dτw)

× τ (n/2)
w exp{τ/2

N∑
t=2

(θt − θt−1)2}

∝ drτ (r+n/2−1)
w exp(τw{d+

N∑
t=2

(θt − θt−1)2)}

I So the posterior
p(τw|θ) ∼ Ga(r + n/2, d+

∑N
t=2(θt − θt−1)2/2)



Specifying the full conditionals

I We need to calculate the contribution of the likelihood
ourselves and then combine this with the prior to give the
posterior.

I In WinBUGS

model {
for (t in 2:(T-1)) {

.
# calculate the contribution to the likelihood for
# full conditionals
tau.w.like[t] <-pow((theta[t]-tmp.theta[t]),2)
.
} # t loop
.
tau.w.like[1] <- 0
tau.w.like[T] <- pow((theta[T]-theta[T-1]),2)
.
} # model



I In WinBUGS

.
tau.w2 <- tau.w*2
d <-1
r <- 0.01

d.w <- d+sum(tau.w.like[])/2
r.w <- r + n/2
tau.w ~ dgamma(r.w,d.w)
.

I Note this uses a prior of Ga(1, 0.01) for τw which is
‘hard-wired’ into the code at this point, the values of r and d
could also be an input to the model in the form of data.



I The whole model in WinBUGS, model1.odc
# Single site, one pollutant (note likelihood calculations because of the cyclical model)

model {

for (t in 2:(T-1)) {

# observation model

y[t] ~ dnorm(theta[t],tau.v)

# system model

tmp.theta[t] <- (theta[t-1]+theta[t+1])/2

theta[t] ~ dnorm(tmp.theta[t],tau.w2)

# calculate the contribution to the likelihood for full conditionals

tau.w.like[t] <-pow((theta[t]-tmp.theta[t]),2)

} # t loop

# need to define the end points separately

theta[1]~dnorm(theta[2],tau.w)

theta[T]~dnorm(theta[T-1],tau.w)

y[1]~dnorm(theta[1],tau.v)

y[T]~dnorm(theta[T],tau.v)

# calculate the contributions to likelihood & full conditionals

tau.w.like[1] <- 0

tau.w.like[T] <- pow((theta[T]-theta[T-1]),2)

tau.w2 <- tau.w*2

d <-1

r <- 0.01

d.w <- d+sum(tau.w.like[])/2

r.w <- r + T/2

tau.v ~ dgamma(1,0.01)

tau.w ~ dgamma(r.w,d.w)

sigma2.v<-1/tau.v

sigma.v<-sqrt(sigma2.v)

sigma2.w <- 1 / tau.w

sigma.w<-sqrt(sigma2.w)

} # end model



I Data for single site: PM10 at Bloomsbury site,
model1-data.odc.
list(T = 1461, y = c(66, 49, 35, 40, NA, NA, 22, 32, 17, 14, 17, 18, 20, 21, 26,

24, 24, 29, 23, 25, 23, 28, 28, 38,

49, 51, 48, 46, 55, 41, 37, 24, 33,

75, 76, 70, 46, 55, 61, 29, 24, 24,

...,

NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA))



I Initial values (for chain 1), model1-init1.odc
list(tau.v = 1, tau.w = 1, theta = c(3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,

3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,

3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,

...,

3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3),

y = c(NA, NA, NA, NA, 3, 3, NA, NA, NA, NA,

NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,

NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,

...,

NA, NA, NA, NA, NA, NA, NA, 3, 3, 3, 3, 3, 3, 3,

3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3))

I Note requirement to provide initial values for the missing
values of y. Where there is data, i.e. not a random variable,
need to put NA.



Need to set the parameters which you want to keep

I theta - if you are interested in keeping all of them (there are
1461 of them, one for each day)

I theta[i] - if you want to keep a single one of them

I theta[i:j] or theta[c(3,56,987)] - if you want to keep a
selection

I sigma.v - the variance of the random error from the first
level of the model

I sigma.w - the variance of the random walk process from the
second level of the model

Note that convergence is likely to take much longer than in simple
examples!





Time series of 250 days of observed and estimated levels (together with their differences) of PM10 at

Bloomsbury
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Exercises
Without WinBUGS

1. Show that a random walk process of order 1 can be expressed
in terms of an intrinsic CAR model, i.e. if
p(θt|θt−1) ∼ N(θt−1, σ

2
w) then

p(θt|θ−t, σ2
w) ∼


N(θt+1, σ

2
w) for t = 1,

N
(
θt−1+θt+1

2 , σ
2
w
2

)
for t = 2, ..., T − 1,

N(θt−1, σ
2
w) for t = T.

where θ−t represents the vector of θ’s with θt removed.
Pay particular attention to any assumptions that need to be
made when t = 1 and t = T .

2. Show that a Gamma prior, τw Ga(a, b) combines with normal
likelihood, [θt|θt−1, τ2] ∼ N(θt−1, τw), to give a Gamma
posterior, paying particular attention to the form of the
updated parameters.



Exercises
Using WinBUGS

1. Open model1.odc and load the data (model1-data.odc)
and compile the model with two chains. Initial values can be
found for two chains in model1-inits1.odc and
model2-inits2.odc.

2. Run the model for a suitable number of iterations and
calculate summary statistics for the posterior distributions of
theta, sigma.v and sigma.w.

3. In R (or other package) plot the estimated values theta
against the observed data, y. What do you conclude? Note
that you may have to deal with the different lengths of the
two series, remember that theta has no missing values in it.

4. Plot a suitable summary of the posterior values of theta
(including their uncertainty) against time. What do you
conclude about the uncertainty in the values of theta when
the original data is missing?



Conditional (Spatial) Models
I Remember (or look up in the notes) the Scottish lip cancer

model in which we proposed a simple Poisson-Gamma
regression model.

I Before we considered an empirical Bayes approach, which has
the advantage of being easy to fit but cannot be expanded to
do spatial smoothing and is not quite ’right’ statistically.

I Now we consider a fully Bayesian approach, which requires a
prior distribution on regression parameters and variance
parameters of random effects distribution.

Yi|θi, β0 ∼ Poisson(Eieβ0θi)
θi ∼ Ga(α, α)

We require priors for β0 and α. For example:

β0 ∼ N(m, v)
α ∼ Ga(a, b)

with m, v, a, b picked to reflect beliefs about β0 and α.
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Figure 32: SMRs for Scottish counties. 115
Figure: SMRs for Scottish counties.



Empirical Bayes for Scotland
We recap on the previous analyses – this involved maximum
likelihood estimation for β0 and α in a negative binomial model
and produced:

> emp0 <- eBayes(z$Y,z$E)

> emp0$beta

0.3521065

> emp0$alpha

[1] 1.87949

> emp0$RR

[1] 3.9973624 4.0791107 2.9802133 2.8467916 3.0025773 2.6545872 2.9590825

[8] 2.4517687 2.3721492 2.7619805 2.6005515 2.2037872 2.0149301 2.1376464

...

[43] 0.6900960 0.4948910 0.4013614 0.5124617 0.5604849 0.4593902 0.3319144

[50] 0.3766186 0.6098460 0.5850639 0.4100864 0.3460232 0.3403845 0.6020789

> emp0$RRmed

[1] 3.8755781 4.0458981 2.9034476 2.7600608 2.9434956 2.5655788 2.9237792

[8] 2.3603697 2.2725880 2.7200177 2.5425312 2.0979757 1.8790820 2.0659710

...

[43] 0.6317935 0.4741200 0.3949723 0.4779112 0.5131326 0.4284178 0.3282190

[50] 0.3608116 0.5408883 0.5189084 0.3637163 0.3068970 0.2822885 0.4993176



WinBUGS analysis of the Poisson-Gamma model
In the example that follows we specify a flat prior for β0, and a
Ga(1,1) prior for α.
The iterative algorithm is run for 10,000 iterations, with the first
4,000 discarded as “burn-in”.
We summarize the posteriors for the relative risks:

RRi = exp(β0)θi

and for β0 and α. The posterior mean for β0 is 0.36, compared to
0.35 under empirical Bayes, and the posterior mean for α is 1.79,
compared to 1.88 under empirical Bayes.
Similarly the posterior means and posterior medians agree very
closely.



model

{

for (i in 1 : N) {

Y[i] ~ dpois(mu[i])

mu[i] <- E[i]*exp(beta0)*theta[i]

RR[i] <- exp(beta0)*theta[i]

theta[i] ~ dgamma(alpha,alpha)

}

# Priors

alpha ~ dgamma(1,1)

beta0 ~ dflat()

# Functions of interest:

sigma.theta <- sqrt(1/alpha) # standard deviation of non-spatial

base <- exp(beta0)

}



DATA

list(N = 56,

Y = c( 9, 39, 11, 9, 15, 8, 26, 7, 6, 20, 13, 5, 3, 8, 17, 9, 2, 7,

9, 7, 16, 31, 11, 7, 19, 15, 7, 10, 16, 11, 5, 3, 7, 8, 11, 9, 11,

8, 6, 4, 10, 8, 2, 6, 19, 3, 2, 3, 28, 6, 1, 1, 1, 1, 0, 0), E = c(

1.4, 8.7, 3.0, 2.5, 4.3, 2.4, 8.1, 2.3, 2.0, 6.6, 4.4, 1.8, 1.1,

3.3, 7.8, 4.6, 1.1, 4.2, 5.5, 4.4, 10.5,22.7, 8.8, 5.6,15.5,12.5,

6.0, 9.0,14.4,10.2, 4.8, 2.9, 7.0, 8.5,12.3,10.1,12.7, 9.4, 7.2,

5.3, 18.8,15.8, 4.3,14.6,50.7, 8.2, 5.6, 9.3,88.7,19.6, 3.4, 3.6,

5.7, 7.0, 4.2, 1.8))

INTIAL ESTIMATES

list(alpha = 1, beta0 = 0,

theta=c(1,1,1,1,1,1,1,1,1,1,1,1,1,

1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,

1,1,1,1,1,1,1,1,1,1,1,1,1))



node mean sd MC error 2.5% median 97.5% start sample

RR[1] 4.07 1.297 0.01877 1.959 3.92 7.001 4000 6001

RR[2] 4.105 0.6469 0.00864 2.938 4.068 5.48 4000 6001

RR[3] 3.006 0.858 0.01159 1.607 2.915 4.937 4000 6001

RR[4] 2.875 0.8995 0.01019 1.391 2.773 4.886 4000 6001

RR[5] 3.016 0.7406 0.01114 1.754 2.955 4.668 4000 6001

RR[6] 2.68 0.8865 0.01325 1.227 2.568 4.696 4000 6001

RR[7] 2.975 0.5666 0.00830 1.994 2.929 4.236 4000 6001

RR[8] 2.476 0.8492 0.01224 1.082 2.379 4.412 4000 6001

....

RR[49] 0.3321 0.06051 7.88E-4 0.2261 0.3286 0.4612 4000 6001

RR[50] 0.3685 0.1334 0.00162 0.1603 0.3522 0.6725 4000 6001

RR[51] 0.6 0.3539 0.00424 0.1112 0.5327 1.45 4000 6001

RR[52] 0.5702 0.3425 0.00519 0.1034 0.5017 1.4 4000 6001

RR[53] 0.4021 0.2446 0.00316 0.07137 0.3546 0.9934 4000 6001

RR[54] 0.3327 0.2042 0.00227 0.05706 0.2924 0.8143 4000 6001

RR[55] 0.3259 0.2533 0.00345 0.02491 0.2646 0.9605 4000 6001

RR[56] 0.5814 0.4538 0.00636 0.04737 0.4723 1.745 4000 6001

alpha 1.79 0.3985 0.00792 1.129 1.753 2.682 4001 6000

beta0 0.3567 0.1188 0.00591 0.1315 0.353 0.5966 4000 6001



Poisson-Lognormal Model
The Poisson-gamma model offers analytic tractability, but does not
easily allow the incorporation of spatial random effects.
A Poisson-lognormal non-spatial random effect model is given by:

Yi|β, Vi ∼ind Poisson(EiµieVi) Vi ∼iid N(0, σ2
v)

where Vi are area-specific random effects that capture the residual
or unexplained (log) relative risk of disease in area i, i = 1, ..., n.
Whereas in the Poisson-Gamma model we have θ ∼ Ga(α, α), here
we have θ = eVi ∼ LogNormal(0, σ2).
This model does not give a marginal distribution of known form,
but does naturally lead to the addition of spatial random effects.
The marginal variance is of the same quadratic form as with the
negative-binomial model.



Non-Spatial Analysis of the Scottish Lip Cancer Data
We now report a fully Bayesian version of the normal model, with
log-linear cubic model.
The covariates are centered here in order to reduce dependence in
the parameter estimates, which reduces the computational burden;
this model was fitted using so-called Markov chain Monte Carlo via
the WinBUGS software.
Flat priors were placed on β0, β1, β2, β3 and a Ga(1, 0.0260), was
assumed for σ−2

v .



WinBUGS code

model {

for (i in 1 : N) {

Y[i] ~ dpois(mu[i])

X1c[i] <- X[i]-mean(X[1:N])

X2c[i] <- X1c[i]*X1c[i]

X3c[i] <- X1c[i]*X1c[i]*X1c[i]

log(mu[i]) <- log(E[i]) + beta0 +

beta1*X1c[i] + beta2*X2c[i] + beta3*X3c[i] + V[i]

RR[i] <- exp(beta0 + beta1*X1c[i] + beta2*X2c[i]+ beta3*X3c[i] + V[i])

V[i] ~ dnorm(0,tau.V)

}

# The gamma prior corresponds to df=2, q=0.95, R=log 2.

tau.V ~ dgamma(1,0.0260)

beta0 ~ dflat()

beta1 ~ dflat()

beta2 ~ dflat()

beta3 ~ dflat()

# Functions of interest:

sigma.V <- sqrt(1/tau.V) # standard deviation of non-spatial

RRRlo <- exp(-1.96*sigma.V)

RRRhi <- exp(1.96*sigma.V) }



Spatial Models

I In general we might expect residual relative risks in areas that
are “close” to be more similar than in areas that are not
“close”.

I We would like to exploit this information in order to provide
more reliable relative risk estimates in each area.

I This is analogous to the use of a covariate x, in that areas
with similar x values are likely to have similar relative risks.

I Unfortunately the modelling of spatial dependence is much
more difficult since spatial location is acting as a surrogate for
unobserved covariates.

I We need to choose an appropriate spatial model, but do not
directly observe the covariates whose effect we are trying to
mimic.



We first consider the model

Yi|β, γ,Ui,Vi ∼ind Poisson(Eiµie
Ui+Vi)

with
logµi = g(Si, γ) + f(xi, β), (1)

where

I Si = (Si1, Si2) denotes spatial location, the centroid of area i,

I f(xi, β) is a regression model,

I g(Si, γ) is an expression that we may include to capture
large-scale spatial trend – the form

f(Si) = γ1Si1 + γ2Si2,

is a simple way of accommodating long-term spatial trend.

I The random effects Vi ∼iid N(0, σ2
v) represent non-spatial

overdispersion,

I Ui are random effects with spatial structure.



I In spatial epidemiology and disease mapping, one approach is
to specify the distribution of the random effect in a particular
area, Ui, as if we knew the values of the spatial random
effects, Uj , in “neighboring areas”

I We therefore need to specify a rule for determining the
“neighbours” of each area.

I Spatial models that start with the n area-specific residual
spatial random effects all suffer from a level of arbitrariness in
their specification – in an epidemiological context the areas
are not regular in shape (as opposed to images for example,
which are on a regular grid).

I To define neighbours, a number of authors have taken the
neighborhood scheme to be such that areas i and j are taken
to be neighbors if they share a common boundary. This is
reasonable if all regions are of similar size and arranged in a
regular pattern (as is the case for pixels in image analysis
where these models originated), but is not particularly
attractive otherwise.



I Various other neighborhood/weighting schemes are possible.

I We could take the neighborhood structure to depend on the
distance between area centroids and determine the extent of
the spatial correlation (i.e. the distance within which regions
are considered neighbors).

I In typical applications it is difficult to assess whether the
spatial model chosen is appropriate, which argues for a simple
form, and to assess the sensitivity of conclusions to different
choices.

I In Figure 2 we show a close-up of a portion of the
Birmingham study. One of the wards in the center of the
Birmingham region is such that it ‘just’ shares a common
boundary with a number of close-by wards. In terms of the
common-boundary prior, it could be considered to have
between four and ten neighbors.
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Figure 37: Close-up of a region of the Birmingham study.
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Figure: Close-up of a region of the Birmingham study.



The ICAR model

I A common model is to assign the spatial random effects an
intrinsic conditional autorgressive (ICAR) prior.

I Under this specification it is assumed that

Ui|Uj , j ∈ ∂i ∼ N
(
U i,

ω2
u

mi

)
,

where ∂i is the set of neighbors of area i, mi is the number of
neighbours, and U i is the mean of the spatial random effects
of these neighbors.

I The parameter ω2
u is a conditional variance and its magnitude

determines the amount of spatial variation.

I The variance parameters σ2
v and ω2

u are on different scales, σv
is on the log odds scale while ωu is on the log odds scale,
conditional on Uj , j ∈ ∂i; hence they are not comparable.



I Notice that if ω2
u is “small” then although the residual is

strongly dependent on the neighboring value the overall
contribution to the residual relative risk is small.

I This is a little counterintuitive but stems from spatial models
having two aspects, strength of dependence and total amount
of spatial dependence, and in the ICAR model there is only a
single parameter which controls both aspects.



WinBUGS representation
The ICAR model can be specified via the function:

U[1:N] ∼ car.normal(adj[],weights[],num[],tau)

where:

I adj[]: A vector listing the ID numbers of the adjacent areas
for each area (this can be generated using the Adjacency Tool
from the Map menu in GeoBUGS).

I weights[]: A vector the same length as adj[] giving
unnormalized weights associated with each pair of areas.

I num[]: A vector of length N (the total number of areas)
giving the number of neighbors ni for each area.

I The car.normal distribution is parameterized to include a
sum-to-zero constraint on the random effects. A separate
intercept term must be used in the model and this must be
assigned an improper uniform prior using the dflat()
distribution (see full code below).



The WinBUGS code for the ICAR model

model {

for (i in 1 : N) {

Y[i] ~ dpois(mu[i])

X1c[i] <- X[i]-mean(X[1:N])

X2c[i] <- X1c[i]*X1c[i]

X3c[i] <- X1c[i]*X1c[i]*X1c[i]

log(mu[i]) <- log(E[i]) + beta0 + beta1*X1c[i] +

beta2*X2c[i] + beta3*X3c[i] + V[i] + U[i]

RR[i] <- exp(beta0 + beta1*X1c[i] +

beta2*X2c[i] + beta3*X3c[i] + V[i] + U[i])

V[i] ~ dnorm(0,tau.V)

}

# ICAR prior distribution for spatial random effects:

U[1:N] ~ car.normal(adj[], weights[], num[], tauomega.U)

for(k in 1:sumNumNeigh) {

weights[k] <- 1

}

tau.T ~ dgamma(1,0.0260)

p ~ dbeta(1,1)

sigma.Z <- sqrt(p/tau.T)

omega.U <- sigma.Z/sqrt(1.164)

sigma.V <- sqrt((1-p)/tau.T)

tau.V <- 1/(sigma.V*sigma.V)

tauomega.U <- 1/(omega.U*omega.U)

beta0 ~ dflat()

beta1 ~ dflat()

beta2 ~ dflat()

beta3 ~ dflat()

sd.U <- sd(U[1:N])

vratio <- sd.U*sd.U/(sd.U*sd.U+sigma.V*sigma.V)

}



DATA

list(N = 56, Y = c( 9, 39, 11, 9, 15, 8, 26, 7, 6, 20, 13, 5, 3, 8,

17, 9, 2, 7, 9, 7, 16, 31, 11, 7, 19, 15, 7, 10, 16, 11, 5, 3, 7, 8,

11, 9, 11, 8, 6, 4, 10, 8, 2, 6, 19, 3, 2, 3, 28, 6, 1, 1, 1, 1, 0,

0), E = c( 1.4, 8.7, 3.0, 2.5, 4.3, 2.4, 8.1, 2.3, 2.0, 6.6, 4.4, 1.8,

1.1, 3.3, 7.8, 4.6, 1.1, 4.2, 5.5, 4.4, 10.5,22.7, 8.8, 5.6,15.5,12.5,

6.0, 9.0,14.4,10.2, 4.8, 2.9, 7.0, 8.5,12.3,10.1,12.7, 9.4, 7.2, 5.3,

18.8,15.8, 4.3,14.6,50.7, 8.2, 5.6, 9.3,88.7,19.6, 3.4, 3.6, 5.7, 7.0,

4.2, 1.8), X = c(0.16,0.16,0.10,0.24,0.10,0.24,0.10, 0.07, 0.07,0.16,

0.07,0.16,0.10,0.24, 0.07,0.16,0.10, 0.07, 0.07,0.10, 0.07,0.16,0.10,

0.07, 0.01, 0.01, 0.07, 0.07,0.10,0.10, 0.07,0.24,0.10, 0.07, 0.07,

0,0.10, 0.01,0.16, 0, 0.01,0.16,0.16, 0, 0.01, 0.07, 0.01, 0.01, 0,

0.01, 0.01, 0, 0.01, 0.01,0.16,0.10),

num = c(3, 2, 2, 3, 4, 2, 5, 1, 5, 4, 1, 2, 3, 3, 2, 6, 6, 6, 5, 3,

3, 2, 4, 8, 3, 3, 4, 4, 11, 6, 7, 3, 4, 9, 4, 2, 4, 6, 3, 4,

5, 5, 4, 5, 4, 6, 6, 4, 9, 2, 4, 4, 4, 5, 6, 5),

adj = c(

19, 9, 5,

10, 7,

12, 6,

28, 20, 18,

19, 12, 11, 1,

3,8,

17, 16, 13, 10, 2,

6,

29, 23, 19, 17, 1,

22, 16, 7, 2,

5,

5, 3,

19, 17, 7,

35, 32, 31,

29, 25,

...



53, 49, 48, 46, 31, 24,

49, 47, 44, 24,

54, 53, 52, 48, 47, 44, 41, 40, 38,

29, 21,

54, 42, 38, 34,

54, 49, 40, 34,

49, 47, 46, 41,

52, 51, 49, 38, 34,

56, 45, 33, 30, 24, 18,

55, 27, 24, 20, 18

),

sumNumNeigh = 240))

INITIAL ESTIMATES

list(tau.T = 1, p=0.5, beta0 = 0, beta1 = 0, beta2 = 0, beta3 = 0,

V=c(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0),

U=c(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0))

Figure ?? shows the centroids for each area, allowing us to confirm
the number and labels of the neighbors of each area.
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Figure details: Relative risk estimates for Scottish lip cancer data:

0 denote the SMRs;

1 the empirical Bayes estimates without the use of AFF;

2 the empirical Bayes estimates with log link and a linear model
in AFF;

3 the empirical Bayes estimates with a log-linear cubic model in
AFF;

4 the fully Bayes non-spatial estimates with a log-linear cubic
model in AFF;

5 estimates under the joint model;

6 estimates under the initial ICAR model;

7 estimates under the refined ICAR model. Estimates 5–7 are
based upon a log-linear cubic covariate model.

Plotting symbol is county number.



Back to the temporal pollution model - using the
car.normal distribution to represent the RW(1)
process.

p(θt|θ−t, σ2
w) ∼


N(θt+1, σ

2
w) for t = 1,

N
(
θt−1+θt+1

2 , σ
2
w
2

)
for t = 2, ..., T − 1,

N(θt−1, σ
2
w) for t = T.

where θ−t represents the vector of θ’s with θt removed.

This is equivalent to specifying θt|θ−t ∼ N(
∑

k Ctkθk, σ
2
wMtt)

where Ctk = Wtk/Wt+,Wt+ =
∑

kWtk and Wtk = 1 if
k = (t− 1) or (t+ 1) and 0 otherwise; Mtt = 1/Wt+

Hence the RW(1) prior may be fitted using the car.normal
distribution in WinBUGS, with appropriate specification of the
weight and adjacency matrices, and vector representing the
number of neighbours.

Note that if the observed time points are not equally spaced, it is
necessary to include missing values (NA) for the intermediate time
points.



This prior may be specified in WinBUGS using the car.normal
distribution,

I with adjacency vector adj[] listing neighbouring time points,
i.e. (t− 1) and (t+ 1) are neighbours of time point t,

I corresponding weight vector weight[] set to a sequence of
1’s,

I and a vector giving the number of neighbours, num[], set to 2
for all time points except num[1] and num[T] which are set
to 1.



Model 1 using car.normal, in file model1CARNORMAL.odc.

model {

# likelihood

for(t in 1:T) {

y[t] ~ dnorm(mu[t], tau.v)

mu[t] <- beta + theta[t]

}

# prior for temporal effects

# RW prior for theta[t] - specified using car.normal with neighbours (t-1) and (t+1)

# for theta[2],....,theta[T-1], and neighbours (t+1) for theta[1] and (t-1) for theta[T]

theta[1:T] ~ car.normal(adj[], weights[], num[], tau)

beta~dflat()

.



.

# Specify weight matrix and adjacency matrix corresponding to RW(1) prior

# (Note - this could be given in the data file instead)

for(t in 1:1) {

weights[t] <- 1; adj[t] <- t+1; num[t] <- 1

}

for(t in 2:(T-1)) {

weights[2+(t-2)*2] <- 1; adj[2+(t-2)*2] <- t-1

weights[3+(t-2)*2] <- 1; adj[3+(t-2)*2] <- t+1; num[t] <- 2

}

for(t in T:T) {

weights[(T-2)*2 + 2] <- 1; adj[(T-2)*2 + 2] <- t-1; num[t] <- 1

}

# other priors

tau.err ~ dgamma(0.01, 0.01) # measurement error precision

sigma.v <- 1 / sqrt(tau.v)

sigma2.v <- 1/tau.v

tau.w ~ dgamma(0.01, 0.01) # random walk precision

sigma.w <- 1 / sqrt(tau.w)

sigma2.w <- 1/tau.w

} # model



I The following is a plot of posterior median (red line) and
posterior 95% intervals (dashed blue lines) for mu[t] (the
underlying mean daily pollutant concentration), with observed
concentrations shown as black dots.

I This plot was produced by selecting the model fit option from
the Compare menu (available from the Inference menu), with
mu specified as the node, day as the axis and y as other).

I Note that the dashed blue line shows the posterior 95%
interval for the estimated mean daily concentration, and is not
a predictive interval - hence we would not necessarily expect
all of the observed data points to lie within the interval.



Using RW(1) model



Equivalent plot assuming an RW(2) prior. Note the greater
amount of smoothing imposed by this prior



Exercises

1. Run the changed version of model1 using the car.normal
distribution using the same PM10 data from the Bloomsbury
site (model1-data.odc).

2. Show that a random walk of order two
θt ∼ N(θt−1 + θt−2, σ

2
w) can be expressed as an intrinsic CAR

model and defined the contents of the matrices adj[] and
weights[] and the vector num[] required to fit this within
WinBUGS.

3. Change the model you fitted in the first question to fit a
second order random walk, compile the model and comment
on the differences in the results from those observed when
fitting a first order random walk.



Recall the model

Yi|β, γ,Ui,Vi ∼ind Poisson(Eiµie
Ui+Vi)

with
logµi = g(Si, γ) + f(xi, β), (2)

where

I Si = (Si1, Si2) denotes spatial location, the centroid of area i,

I f(xi, β) is a regression model,

I g(Si, γ) is an expression that we may include to capture
large-scale spatial trend – the form

f(Si) = γ1Si1 + γ2Si2,

is a simple way of accommodating long-term spatial trend.

I The random effects Vi ∼iid N(0, σ2
v) represent non-spatial

overdispersion,

I Ui are random effects with spatial structure which we now
consider ‘jointly’ rather than considering neighbours.



A Joint Model

I Assume that U = (U1, ..., Un) arise from a zero mean
multivariate normal distribution with variances var(Ui) = σ2

u

and correlations corr(Ui, Uj) = exp(−φdij) = ρdij where dij is
the distance between the centroids of areas i and j, and ρ > 0
is a parameter that determines the extent of the correlation.

I This model is isotropic since it assumes that the correlation is
the same in all spatial directions. We refer to this as the joint
model, since we have specified the joint distribution for U.

I More generally the correlations can be modeled as
corr(Ui, Uj) = exp(−(φdij)κ).



WinBUGS representation

The above model with

cov(Ui, Uj) = τ−1
u exp(−(φd)κ)

and φ > 0, 0 < κ < 2 can be specified via the function:

U[1:N] ∼ spatial.exp(mu[],x[],y[],tau,phi,kappa)

where:

I mu[]: A vector giving the mean for each area.

I x[] and y[]: Vectors of length n (the number of areas)
giving the x and y coordinates of the centroid of each area.

I phi = φ.

I kappa = κ.

I This model can be very slow for even moderate sized datasets
(because a matrix inversion is required at each iteration).



Single pollutant, multiple monitoring site

I S monitoring sites measuring a single pollutant.

I The underlying autoregressive structure remains constant
across sites with a constant adjustment in the mean level for
site s by an amount ms, s = 1, ..., S.

I Stage One, Observed Data Model:

Yst = X ′stβ1 +X ′sβ2 +ms + θt + vst

with vst i.i.d. as N(0, σ2
vs) and β1, β2, q1 × 1 and q2 × 1

vectors of site/day and site only regression coefficients.

I Stage Two (a), Temporal Model:

θt = ρθt−1 + wt

with wt i.i.d. as N(0, σ2
w).



I Stage Two (b), Spatial Model:
The random effects m = (m1, ...,mS)′ arise from the
multivariate normal distribution

m ∼MVN(0S , σ2
mΣm),

where 0S is an S × 1 vector of zeros,
σ2
m the between-site variance and

Σm is the S × S correlation matrix, in which element (s, s′)
represents the correlation between sites s and s′.

I This model is stationary and assumes an isotropic covariance
model in which the correlation between sites s and s′ is
assumed to be a function of the distance between them

f(dss′ , φ) = exp (−φdss′)

where φ > 0 describes the strength of the correlation
I A simpler model assumes that the site-specific levels are

(conditionally) independent

ms ∼ i.i.d N(0, σ2
m),



I Stage Three, Hyperpriors:
I Unless there is specific information to the contrary, i.e. that a

monitor with different characteristics is used at a particular
site, we will assume σ−2

vs ∼ Ga(av, bv).
I The between site precision has prior σ−2

m ∼ Ga(am, bm).
I A uniform prior is used for φ, with the limits being based on

beliefs about the relationship between correlation and distance.
I The distance, d, at which the correlation, ρ, between two sites

might be expected to fall to a particular level would be
d = − log(ρ)/φ.



Single pollutant, multiple monitoring site

I Stage One, Observed Data Model:

Yst = ms + θt + vst

I Dropping the covariate terms for clarity of explanation.

I Stage Two (a), Temporal Model:

θt = θt−1 + wt

I Considering a RW(1) process for clarity of explanation, i.e.
ρ = 1 in the AR(1) process.



model {

for (t in 2:(n-1)) {

for (site in 1:8) {

# y arises from the underlying theta, plus site parameter& measurement error

y.mat[t,site] ~ dnorm(mean.site[t,site],tau.v[site])

mean.site[t,site] <- theta[t] +m.adj[site]

} # site loop

# the underlying theta is an average of the two neighbours

tmp.theta[t] <- (theta[t-1]+theta[t+1])/2

theta[t] ~ dnorm(tmp.theta[t],tau.w2)

tau.w.like[t] <-pow((theta[t]-theta[t-1]),2)

# the underlying theta is an average of the two neighbours

tmp.theta[t] <- (theta[t-1]+theta[t+1])/2

theta[t] ~ dnorm(tmp.theta[t],tau.w2)

tau.w.like[t] <-pow((theta[t]-theta[t-1]),2)

} # t loop

.



I Stage Two (b), Spatial Model:
The random effects m = (m1, ...,mS)′ arise from the
multivariate normal distribution

m ∼MVN(0S , σ2
mΣm),

where 0S is an S × 1 vector of zeros,
σ2
m the between-site variance and

Σm is the S × S correlation matrix, in which element (s, s′)
represents the correlation between sites s and s′.

I We use the spatial.exp distribution in WinBUGS. In the
code, φ and κ in corr(Ui, Uj) = exp(−(φdij)κ) are labelled
φ = φ1 and κ = φ2.
m[1:8] ~ spatial.exp(mu[], xcoords[],ycoords[],tau.m,phi1,phi2)

I Note: the site effects are constrained to sum to zero.
for (site in 1:8) {

mu[site]<-0

m.adj[site] <- m[site]-mean(m[1:8])

}



# set the spatial effects up as spatial.exp prior

m[1:8] ~ spatial.exp(mu[], xcoords[],ycoords[],tau.m,phi1,phi2)

# and to constrain the sums to be zero

for (site in 1:8) {

mu[site]<-0

m.adj[site] <- m[site]-mean(m[1:8])

}

phi2 <- 1

phi1 ~ dunif(0.005,0.115)

tau.m ~ dgamma(1,0.01)

sigma.m <- 1/sqrt(tau.m)

sigma.m.adj <- sqrt(pow(sigma.m,2.0)*8.0/7.0)

} # model



# Set up the priors for ’edges’ of the underlying process for theta

theta[1]~dnorm(theta[2],tau.w)

theta[n]~dnorm(theta[n-1],tau.w)

# Set up the priors for the ’edges’ of the y’s

for (site in 1:8) {

y.mat[1,site] ~ dnorm(theta[1],tau.v[site])

y.mat[n,site] ~ dnorm(theta[n],tau.v[site])

}

# Set up the priors for the ’edges’ of the precisions

tau.w.like[1] <- pow(theta[2]-theta[1],2)

tau.w.like[n] <- pow(theta[n]-theta[n-1],2)

# Set up the likelihood calculations (because of cyclical graph) and priors

tau.w2 <- tau.w*2

d.w <- 1+sum(tau.w.like[])/2

r.w <- 1 + n/2

tau.w ~ dgamma(r.w,d.w)

sigma.w <- 1 / sqrt(tau.w)

# Set up the site specific observation precisions

for (site in 1:8) {

tau.v[site] ~ dgamma(1,0.001)

sigma.v[site] <-1/sqrt(tau.v[site])

}

.



I Data
list(n = 1461,

xcoords = c(551.8, 530.2, 520, 544, 530, 506.9, 524, 525.6),

ycoords = c(176.3, 182, 184, 174.7, 189.2, 178.6, 181.7, 164.6),

y.mat = structure(.Data = c(NA, 2.83321334405622, NA, NA, NA,

NA, NA, NA, NA, 2.89037175789616, NA, NA, NA, NA, NA, NA, NA,

2.77258872223978, NA, NA, NA, NA, NA, NA, NA, 2.77258872223978,

...

2.83321334405622, 2.77258872223978, 2.56494935746154, 2.63905732961526,

2.19722457733622, 2.484906649788, 2.30258509299405,

2.30258509299405, 2.63905732961526, 2.484906649788, 2.30258509299405,

2.56494935746154), .Dim = c(1461,8)))

I Note: WinBUGS reads data into an array by filling the
right-most index first, whereas the R fills the left-most index
first. Therefore in R, before the data is exported the transpose
function was used, y.mat = t(y.mat) before using
dput(y.mat, filename). You then need to the change the
order of the dimensions in the WinBUGS data file.

I If the data was in a three dimensional array aperm can be
used, e.g. y.array = aperm(y.array,c(1,3,2) to achieve
the same result. Again, you need to re-order the dimensions in
the WinBUGS datafile.



I Initial values
list(tau.w = 1, tau.v = c(1, 1, 1, 1, 1, 1, 1, 1),

tau.m = 1, m = c(0, 0, 0, 0, 0, 0, 0, 0),

phi1 = 0.07,

y.mat = structure(.Data = c(3, NA, 3, 3, 3, 3, 3,

3, 3, NA, 3, 3, 3, 3, 3, 3, 3, NA, 3, 3, 3, 3, 3, 3, 3,

...

NA, NA, NA, NA, NA, NA, NA), .Dim = c( 1461,8)),

theta = c(2.5, 2.5, 2.5, 2.5, 2.5, 2.5, 2.5, 2.5, 2.5, 2.5,

...

2.5, 2.5, 2.5, 2.5, 2.5, 2.5, 2.5,

2.5, 2.5, 2.5, 2.5, 2.5, 2.5, 2.5, 2.5,

2.5, 2.5, 2.5, 2.5, 2.5, 2.5, 2.5))



Estimating levels at unmeasured locations

I Based on the posterior estimates of the site effects, ms and
the variance-covariance matrix σ2

mΣm, it is possible to
estimate the site effects, and thus pollution levels, at locations
where there is no monitoring site.

I For a site at a new location, mS+1, (m1, ...,mS ,mS+1)
follows a multivariate normal distribution with zero mean and
(S + 1)× (S + 1) variance-covariance matrix.

I Letting m = (m1, ..,mS)′, the conditional distribution of
mS+1|m is, normal with mean and variance given by

E[mS+1|m] = σ−2
m Ω′Σ−1

m m,

var(mS+1|m) = σ2
m(1− Ω′Σ−1

m Ω),

I For exploratory purposes, the posterior medians may be
substituted into these expressions (although this will ignore
the inherent uncertainty in the estimates).



Site effects
Median 2.5% 97.5%

Bexley -0.0696 -0.0785 -0.0607
Bloomsbury 0.1341 0.1257 0.1426
Brent -0.1210 -0.1294 -0.1125
Eltham -0.1105 -0.1205 -0.1005
Harringey 0.1098 0.0999 0.1195
Hillingdon 0.0132 -0.0032 0.0300
North Kensington 0.0030 -0.0031 0.0090
Sutton 0.0410 0.0250 0.0572

σm 0.1019 0.0668 0.1794
φ 0.05675 0.02158 0.09778



spatial.pred and spatial.unipred

I Spatial interpolation or prediction at arbitrary locations can be
carried out using the spatial.pred or spatial.unipred
functions, in conjunction with fitting the spatial.exp model
to a set of observed data.

I spatial.pred carries out joint or simultaneous prediction at
a set of target locations

I spatial.unipred carries out single site prediction.

I The difference is that the single site prediction yields marginal
prediction intervals (i.e. ignoring correlation between
prediction locations) whereas joint prediction yields
simultaneous prediction intervals for the set of target locations
(which will tend to be narrower than the marginal prediction
intervals).

I The predicted means should be the same under joint or single
site prediction.

I The disadvantage of joint prediction is that it is very slow
I computational time is of order P3, where P is the number of

prediction sites



I The syntax for these predictive distributions is:

I Joint prediction:

T[1:P] ~ spatial.pred(mu.T[], x.T[], y.T[], S[])

I Single site prediction:

for(j in 1:P) {
T[j] ~ spatial.unipred(mu.T[j], x.T[j], y.T[j], S[])

}

where:

I P : Scalar giving the number of prediction locations

I mu.T[] : vector of length P (or scalar for single site version)
specifying the mean for each prediction location (this should
be specified in the same way as the mean for the observed
data S).

I x.T[] and y.T[] : Vectors of length P (or scalars for single
site version) giving the x and y coordinates of the location of
each prediction point

I S : The vector of observations to which the spatial.exp
model has been fitted.



Contour plot of site effects based on a 20x20 grid of locations without a pollution monitor with corresponding

standard deviations
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Exercises
Using WinBUGS

1. Compare the results from the model using the joint spatial
model (using spatial.exp) with one that assumes that the
site effects are conditionally independent.

2. Compare the results using spatial.pred and
spatial.unipred (for a given set of locations).

3. Replace the specifying the full conditional approach to
implementing the temporal (random walk) part of the model
with the car.normal approach developed in the single site
model. It might be interesting to compare the computation
times.



Multiple pollutants, single monitoring site

I Stage One, Observed Data Model:

Ypt = X ′tβ1 + θpt + vpt

with vpt i.i.d. as N(0, σ2
vp) and β1 a q1 × 1 vector of

regression coefficients.

I Stage Two, Temporal and Pollutant Model:

θpt = θp,t−1 + wpt

wt = (w1t, ..., wPt)′ are i.i.d. multivariate normal random
variables with zero mean and variance-covariance matrix ΣP .

I Stage Three, Hyperpriors:
σ−2
vp ∼ Ga(av, bv), p = 1, ..., P .

Σ−1
P ∼WP (D, d), a P−dimensional Wishart distribution with

mean D and precision parameter d.



I Model was applied to data from four pollutants (PM10, S02,
NO and CO) from the Bloomsbury site.

I Priors σ−2
vp ∼ Ga(1, 0.01), p = 1, .., P, and β1 ∼ N(0, 1000).

I For the parameters of the Wishart distribution, d was chosen
to be equal to four, the dimension of ΣP ;
D was then chosen so that the diagonals of the expected
value (D/d) represent a 10% coefficient of variation. The
off-diagonals were taken to be zero.

I Posterior correlations

PM10 SO2 NO CO

PM10 1.0000 0.8806 0.8192 0.8134
SO2 0.8806 1.0000 0.8472 0.9202
NO 0.8192 0.8472 1.0000 0.9146
CO 0.8134 0.9202 0.9146 1.0000

I Strong correlations mean that inference on missing values can
be made on the values of pollutants



Multiple pollutants, multiple monitoring sites

I Stage One, Observed Data Model:

Yspt = X ′ptβ1 +X ′stβ2 + θpt +ms + vspt,

where vspt are i.i.d. N(0, σ2
sp), β1 a q1 × 1 vector of pollutant

regression coefficients, and β2 a q2 × 1 vector of spatial
regression coefficients.

I Stage Two, Spatial, Temporal and Pollutant Model:
The (p× 1) vector of daily pollution measurements,
(θ1, ..., θP )′, as a function of the previous days values with
possible correlation between the values of the different
pollutants.
An alternative approach would be to allow the spatial effects
to be pollutant specific

I Stage Three, Hyperprior:
In the absence of additional information, we assume that
σ−2
vsp ∼ Ga(av, bv).



Components of variability
I Model 1 (Single pollutant, single site)

I Temporal 70%
I Measurement error 30%

I Model 2 (Single pollutant, multiple sites)
I Temporal 80%
I Spatial 10%
I Measurement error 10%

I Model 3 (Multiple pollutants, single site)
I Temporal 77%
I Measurement error 23%

I Model 4 (Multiple pollutants, multiple sites)
I Temporal 75%
I Spatial 15%
I Measurement error 10%



Summary

I Examine the contribution of spatial, temporal and random
variability.

I Allows levels to be estimated at non-measured locations.

I Calculate underlying levels of pollution for use in health
studies.

I Estimates of missing values.



The assumptions of the model include the following:

I The measurement error variance σ2
sp does not depend on time.

The model is easily extendable to situations in which the
measurement error may change as a function of t, for
example, when a monitor is replaced.

I The relationship between the pollutants is constant over time.

I The relationship between the pollutants is spatially constant.

I The temporal and spatial components are independent.



Examples of implementation of the model framework

I Spatial-temporal model - using modelled levels of PM10 in a
health study.

I Spatial model - mapping concentrations of SO2 over entire
EU.



Health analysis

I PM10 and respiratory mortality (ICD 460-519) in London,
1994-97.

I Assess the effects of using modelled levels of pollutant on
relative risks.

I Base model contains terms for trend, trend2, year, month,
year × month interaction, day of week, 12, 6, 4 and 2
monthly cycles and temperature (same day, lag 1, lag2).



Distributions of observed and modelled values of PM10

(normal and logged values)
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Relative risks (and 95% CIs) associated with increase of
10µgm−3 in PM10 (lag 1)

I Observed PM10 with missing values excluded
I RR = 1.0116 (1.0046 - 1.0186)

I Modelled PM10 with missing values excluded
I RR = 1.0166 (1.0064 - 1.0269)

I Modelled PM10 with estimated missing values
I RR = 1.0182 (1.0084 - 1.0280)

using spatial model
I Modelled PM10 with missing values excluded

I RR = 1.0134 (1.0066 - 1.0203)

I Modelled PM10 with estimated missing values
I RR = 1.0128 (1.0062 - 1.0195)



Large scale mapping of SO2 over the entire EU.

I This used data from the APMoSPHERE project
(www.apmosphere.org).

I Concentrations of SO2 were obtained from 253 monitoring
stations located non-uniformly over the EU.

I High resolution (at the 1km × 1km level) climatic and
geographical information was also obtained, including seasonal
value rainfall and temperature, wind speed, altitude and
distance to sea.

I Due to the high levels of collinearity observed in the climate
variables, principal component analysis (PCA) was used to
reduce the original nine variables to five factors, which
accounted for 97% of the total variation.



Predicted concentrations of SO2 using Bayesian Hierarchical model.



Length prediction of 95% credible intervals.



THANK YOU!


