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Aims

I Investigate the spatial-temporal modelling of pollutants.

I Assess the contribution of different components of variability;
spatial, temporal and random variability.

I Develop methodology to provide:
I exposures (and measures of uncertainty) for use in mapping of

environmental factors
I studies investigating the health effects of pollution.

I Fit models and perform analyses in WinBUGS.



Overview

I Background
I Data

I Pollutant dependence
I Temporal dependence
I Spatial dependence
I Missing values
I Measurement error

I Models
I Single pollutant, single monitoring site
I Single pollutant, multiple monitoring sites
I Multiple pollutants, single monitoring site
I Multiple pollutants, multiple monitoring sites

I Summary

I Examples of implementation



Background

I Daily measurements often available for different pollutants
from a number of sites

I May be subject to measurement error
I Contain missing values

I Pollutants not measured at all sites
I Monitor being moved by design, e.g. six-day monitoring

schedule
I Unreliable or faulty monitors



Data

I Eight sites within London, 1997-94

I PM10, SO2, NO and CO.

I All pollutants only measured at only 4 sites.

I Periods of operation between 1 and 4 years.

I Percentage of missing values as great as 37%.



Time series plots of (logged) values of PM10
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Correlations between pollutants and temperature
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Data dependencies
I There are dependencies, both temporally and spatially,

between daily measurements of different pollutants.
I Pollutant dependence - common processes by which they are

formed and the relationship with meteorological conditions.
I Temporal dependence - atmospheric lifetimes and relationship

with meteorological conditions.
I Spatial dependencies - distance between sites and site type.



Locations of monitoring sites and correlations with distance
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Model framework

I Bayesian hierarchical model.

I Pollutants modelled as a function of the true underlying level
with measurement error.

I Incorporate covariate information, e.g. temperature.

I Underlying level is a function of the previous day’s level.

I Missing values treated as unknown parameters within the
Bayesian framework and can be estimated.



Single pollutant, single monitoring site

I Stage One, Observed Data Model:

Yt = XT
t β1 + θt + vt,

vt is referred to as measurement error, and assumed to be are
independent and identically distributed (i.i.d.) as N(0, σ2

v)

I Stage Two, Temporal Model:

Autoregressive first order model

θt = ρθt−1 + wt

wt i.i.d. as N(0, σ2
w).

I Stage Three, Hyperprior:
Normal prior N(c, C) for β1, where c is a q1 × 1 vector and C
a q1 × q1 variance-covariance matrix.
σ−2
v ∼ Ga(av, bv) and σ−2

w ∼ Ga(aw, bw).



Prior distribution
for θ′ = (θ1, ..., θT )

p(θ|σ2
w) ∝

T∏
t=2

p(θt|θt−1, σ
2
w)

∝ (σ−2)T−1 exp

{
− 1

2σ2
w

T∑
t=2

(θt − θt−1)2
}

∝ (σ−2)T exp

{
− 1

2σ2
w

T∑
t=1

ntθt(θt − θ̄t)

}
where nt indicates the number of, and θ̄ the mean of, the
neighbours of θt, i.e. θt−1 and θt+1.



The prior distribution for θ, p(θ|σ2
w), can therefore be expressed as

p(θt|θ−t, σ2
w) ∼


N(θt+1, σ

2
w) for t = 1,

N
(
θt−1+θt+1

2 , σ
2
w
2

)
for t = 2, ..., T − 1,

N(θt−1, σ
2
w) for t = T.

where θ−t represents the vector of θ’s with θt removed.



Posterior distribution
The posterior distribution is given by

p(θ, β1, σ
2
v , σ

2
w|y) = p(y)−1

{
T∏
t=1

p(yt|θt, β1, σ
2
v)

}
×{

T∏
t=2

p(θt|θt−1, σ
2
w)

}
×

p(θ1)p(β1)p(σ2
v)p(σ

2
w)

I Samples may be generated in a straightforward fashion using
Markov chain Monte Carlo (using the WinBUGS software)

I Dealing with the cyclical graph that arises at stage two,
requires some of the conditional distributions to be explicitly
specified



I Missing values are treated as parameters and the posterior
obtained over these values and the model parameters.
Samples can be generated from the distribution of missing
values

p(ym|yo) =
∫
p(ym|λ)p(λ|yo)dλ

where λ = (θ, β1, σ
2
v , σ

2
w)′



Time series of 250 days of observed and estimated levels (together with their differences) of PM10 at

Bloomsbury
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Single pollutant, multiple monitoring site

I S monitoring sites measuring a single pollutant.

I The underlying autoregressive structure remains constant
across sites with a constant adjustment in the mean level for
site s by an amount ms, s = 1, ..., S.

I Stage One, Observed Data Model:

Yst = X ′stβ1 +X ′sβ2 +ms + θt + vst

with vst i.i.d. as N(0, σ2
vs) and β1, β2, q1 × 1 and q2 × 1

vectors of site/day and site only regression coefficients.

I Stage Two (a), Temporal Model:

θt = θt−1 + wt

with wt i.i.d. as N(0, σ2
w).



I Stage Two (b), Spatial Model:
The random effects m = (m1, ...,mS)′ arise from the
multivariate normal distribution

m ∼MVN(0S , σ2
mΣm),

where 0S is an S × 1 vector of zeros,
σ2
m the between-site variance and

Σm is the S × S correlation matrix, in which element (s, s′)
represents the correlation between sites s and s′.

I This model is stationary and assumes an isotropic covariance
model in which the correlation between sites s and s′ is
assumed to be a function of the distance between them

f(dss′ , φ) = exp (−φdss′)

where φ > 0 describes the strength of the correlation
I A simpler model assumes that the site-specific levels are

(conditionally) independent

ms ∼ i.i.d N(0, σ2
m),



I Stage Three, Hyperpriors:
I Unless there is specific information to the contrary, i.e. that a

monitor with different characteristics is used at a particular
site, we will assume σ−2

vs ∼ Ga(av, bv).
I The between site precision has prior σ−2

m ∼ Ga(am, bm).
I A uniform prior is used for φ, with the limits being based on

beliefs about the relationship between correlation and distance.
I The distance, d, at which the correlation, ρ, between two sites

might be expected to fall to a particular level would be
d = − log(ρ)/φ.



Estimating levels at unmeasured locations

I Based on the posterior estimates of the site effects, ms and
the variance-covariance matrix σ2

mΣm, it is possible to
estimate the site effects, and thus pollution levels, at locations
where there is no monitoring site.

I For a site at a new location, mS+1, (m1, ...,mS ,mS+1)
follows a multivariate normal distribution with zero mean and
(S + 1)× (S + 1) variance-covariance matrix.

I Letting m = (m1, ..,mS)′, the conditional distribution of
mS+1|m is, normal with mean and variance given by

E[mS+1|m] = σ−2
m Ω′Σ−1

m m,

var(mS+1|m) = σ2
m(1− Ω′Σ−1

m Ω),

I For exploratory purposes, the posterior medians may be
substituted into these expressions (although this will ignore
the inherent uncertainty in the estimates).



Site effects
Median 2.5% 97.5%

Bexley -0.0696 -0.0785 -0.0607
Bloomsbury 0.1341 0.1257 0.1426
Brent -0.1210 -0.1294 -0.1125
Eltham -0.1105 -0.1205 -0.1005
Harringey 0.1098 0.0999 0.1195
Hillingdon 0.0132 -0.0032 0.0300
North Kensington 0.0030 -0.0031 0.0090
Sutton 0.0410 0.0250 0.0572

σm 0.1019 0.0668 0.1794
φ 0.05675 0.02158 0.09778



Contour plot of site effects based on a 20x20 grid of locations without a pollution monitor with corresponding

standard deviations
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Multiple pollutants, single monitoring site

I Stage One, Observed Data Model:

Ypt = X ′tβ1 + θpt + vpt

with vpt i.i.d. as N(0, σ2
vp) and β1 a q1 × 1 vector of

regression coefficients.

I Stage Two, Temporal and Pollutant Model:

θpt = θp,t−1 + wpt

wt = (w1t, ..., wPt)′ are i.i.d. multivariate normal random
variables with zero mean and variance-covariance matrix ΣP .

I Stage Three, Hyperpriors:
σ−2
vp ∼ Ga(av, bv), p = 1, ..., P .

Σ−1
P ∼WP (D, d), a P−dimensional Wishart distribution with

mean D and precision parameter d.



I Model was applied to data from four pollutants (PM10, S02,
NO and CO) from the Bloomsbury site.

I Priors σ−2
vp ∼ Ga(1, 0.01), p = 1, .., P, and β1 ∼ N(0, 1000).

I For the parameters of the Wishart distribution, d was chosen
to be equal to four, the dimension of ΣP ;
D was then chosen so that the diagonals of the expected
value (D/d) represent a 10% coefficient of variation. The
off-diagonals were taken to be zero.

I Posterior correlations

PM10 SO2 NO CO

PM10 1.0000 0.8806 0.8192 0.8134
SO2 0.8806 1.0000 0.8472 0.9202
NO 0.8192 0.8472 1.0000 0.9146
CO 0.8134 0.9202 0.9146 1.0000

I Strong correlations mean that inference on missing values can
be made on the values of pollutants



Multiple pollutants, multiple monitoring sites

I Stage One, Observed Data Model:

Yspt = X ′ptβ1 +X ′stβ2 + θpt +ms + vspt,

where vspt are i.i.d. N(0, σ2
sp), β1 a q1 × 1 vector of pollutant

regression coefficients, and β2 a q2 × 1 vector of spatial
regression coefficients.

I Stage Two, Spatial, Temporal and Pollutant Model:
The (p× 1) vector of daily pollution measurements,
(θ1, ..., θP )′, as a function of the previous days values with
possible correlation between the values of the different
pollutants.
An alternative approach would be to allow the spatial effects
to be pollutant specific

I Stage Three, Hyperprior:
In the absence of additional information, we assume that
σ−2
vsp ∼ Ga(av, bv).



Components of variability
I Model 1 (Single pollutant, single site)

I Temporal 70%
I Measurement error 30%

I Model 2 (Single pollutant, multiple sites)
I Temporal 80%
I Spatial 10%
I Measurement error 10%

I Model 3 (Multiple pollutants, single site)
I Temporal 77%
I Measurement error 23%

I Model 4 (Multiple pollutants, multiple sites)
I Temporal 75%
I Spatial 15%
I Measurement error 10%



Summary

I Examine the contribution of spatial, temporal and random
variability.

I Measures of uncertainty, with implications on the precision of
the resulting relative risks.

I Allows levels to be estimated at non-measured locations.

I Calculate underlying levels of pollution for use in health
studies.

I Estimates of missing values.



The assumptions of the model include the following:

I The measurement error variance σ2
sp does not depend on time.

The model is easily extendable to situations in which the
measurement error may change as a function of t, for
example, when a monitor is replaced.

I The relationship between the pollutants is constant over time.

I The relationship between the pollutants is spatially constant.

I The temporal and spatial components are independent.



Examples of implementation of the model framework

I Spatial-temporal model - using modelled levels of PM10 in a
health study.

I Spatial model - mapping concentrations of SO2 over entire
EU.



Health analysis

I PM10 and respiratory mortality (ICD 460-519) in London,
1994-97.

I Assess the effects of using modelled levels of pollutant on
relative risks.

I Base model contains terms for trend, trend2, year, month,
year × month interaction, day of week, 12, 6, 4 and 2
monthly cycles and temperature (same day, lag 1, lag2).



Distributions of observed and modelled values of PM10

(normal and logged values)
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Relative risks (and 95% CIs) associated with increase of
10µgm−3 in PM10 (lag 1)

I Observed PM10 with missing values excluded
I RR = 1.0116 (1.0046 - 1.0186)

I Modelled PM10 with missing values excluded
I RR = 1.0166 (1.0064 - 1.0269)

I Modelled PM10 with estimated missing values
I RR = 1.0182 (1.0084 - 1.0280)

using spatial model
I Modelled PM10 with missing values excluded

I RR = 1.0134 (1.0066 - 1.0203)

I Modelled PM10 with estimated missing values
I RR = 1.0128 (1.0062 - 1.0195)



Large scale mapping of SO2 over the entire EU.

I This used data from the APMoSPHERE project
(www.apmosphere.org).

I Concentrations of SO2 were obtained from 253 monitoring
stations located non-uniformly over the EU.

I High resolution (at the 1km × 1km level) climatic and
geographical information was also obtained, including seasonal
value rainfall and temperature, wind speed, altitude and
distance to sea.

I Due to the high levels of collinearity observed in the climate
variables, principal component analysis (PCA) was used to
reduce the original nine variables to five factors, which
accounted for 97% of the total variation.



Predicted concentrations of SO2 using Bayesian Hierarchical model.



Length prediction of 95% credible intervals.



Implementing the temporal model in WinBUGS


