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Sampling from the full conditional of the overall mean parameter, 3,

The regression coefficient f,, is assumed to have a normal hyper-prior distri-

bution
p(Bp) ~ N(mg,sp)
The full conditional distribution of 3, can be written as

S T
p(ﬁp\9..,m..,n..,2u,y...) o< HHp(ystp|th7mspynspvﬂp7 G;ip) X p(ﬁp)

s=1t=1
where p(yspr|6ips Msp, nsp, Bp, “w) ~ N(Glp+m5p+lspnsp+ﬁp763xp) for
s=1,..5¢tr=1,.,Pand p=1,...,P.

As aresult the full conditionals distribution of f8,, is

Bp ~ N(up,,sp,)
where
1 a Zf:l(yst — 6, —myp —I(ny))
S[;p ey and ,u[; = Z P 5)_2 L L S[;p

s=1 cuz_yp t=1 Usp

0.0.1 Sampling from the full conditional of the measurement error variance
Usp

The hyper-prior for the precision of the measurement error, O'L;I? is a Gamma
distribution, parameterisations can found in equation 3.2.

p(Gu_Sj) ~ Gam(ay,b,)

therefore the full conditional can be written as

( usp|9 m._,n. ﬁ y.. 0<I_II_IP ystp‘etp7msp>nsp7ﬁp7 uyp)xp( us,,)
s=1t=1

_ T, 1 I
Guj ~ Gam (au + = 5 Z stp — — Mgy — Is,,(ns))2>

0.0.2  Sampling from the full conditional of the covariance matrix of
temporal effects, ¥,,
p(Z,]6.,a) o< {[T/ZaMVNp(a.0,;—1),54) } X IW,(Qy,d)
< IW (O + X1, (6, — a_e,(,_w)(el —a 6,1, T—1+d)

Thus an Inverse Wishart distribution is used to sample the temporal covariance
matrix.



0.0.3 Sampling from the full conditional of the temporal effects, 0.

The prior distribution of 6, is a multivariate normal distribution as described
in Section 4.1. The full conditional distributions for the temporal effects can
be written as

p(6-~|y...aB.7Zu72Wa a_,m._,n“) o<
o< {TIS_ | TTZ; MVNp(B. + 6 + my. + Ir.ns. . Zu) } x {TT_y MVNp(a.0,_1),5) }
o< exp {—% Zle Y (vss — (B0, +myg. 4+ Lng ) (vss — (B + 6, +my. —I—Is.ns.))’}

X exp {—% Zszz(e.t - 049.(171))2;1 (6, — 049.(14))/}
o< MV Np(Ug,,Se, ), wWhere

N —1
SQ,:<Z;'+OC,E;]0¢') forr =1,

A -1
(2;1 +x! +a_2;1a_) fort=2,..,T—1,

(Z,;l —|—Z;1)71f0rt =T,
Ho, = S, (Zf:1 (vsr — (B. 46, +my. + L.ng. ), + 9.(z+1>2v$106.) fort =
1,
SGf (Zf:l()’s.t - (ﬁ + 6. +m;. +Is-”5~))zt71 + (9.(#1) + 9.(t+l))2v;la.) forr=
ey T —1,
S, (Zle (ys:— (B.+ 6 +my. —|—Is.ns.))Zl,;1 + 9.(:—1)2»;105.) fort =T,
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0.0.4  Sampling from the full conditional of the o parameter

The ay, parameters, p = 1,2, ..., P, have Uniform distributions as their priors
and will not have a full conditional of closed form. In such cases, a Metropolis—
with-Gibbs algorithm can be used with proposed value of ¢, accepted with
probability
|, (6], Ey)
c=min |1, e vy
p(6[1|apazw)

where O‘1/7 is the proposed value and o, the current value of «, for p =
1,...,P. As proposed value, a;,, a random value from the prior distribution,
Unif(—1,1), is used.

0.0.5 Sampling from the full conditional distribution of the spatial
parameters for the background process, G, [37 Omp

There are two parameters that controls the spatial process of the data, c,%lp is
the between site spatial variance and the parameter ¢, controls the strength
of the correlation between the sites.



The hyper-prior for the between site precision, G,;[% is a Gamma distribution

P(pp) ~ Gam(amp, bup)

-2 2 -2
p(cmp |mp) o< p(m.p|6mp’ (l)mp) X p(o-mp)

where p(m |62, ¢n) ~ MVNs(0s,62%,,). As a result the full conditional dis-
tribution is

_ S 1 '
Gm[f ~ Gam (amp + E’bmp + Zm,p):mpm_p>

The parameter ¢,,, does not the have full conditional distribution available in
closed form, so the Metropolis-Hasting algorithm is used with proposed values
from the range (agy,by), since the prior distribution of ¢, is Unif(ay,by). The
proposed values of ¢, is accepted with probability

1 2
¢ =min [1 , Lm""‘p"’l” O-mp)]

p(mﬁ | ¢;§‘1pa 0-7121]7)

where d),’np is the proposed value and ¢y, the current value of @,

0.0.6  Sampling from the full conditional distribution of spatial effects, m j,

The spatial effects have a zero mean multivariate normal distribution as a prior
distribution

p(mp| Gt%lp’ Omp) ~ MV Ns(0s, Gr%zpzmp)

The assumption that the spatial effects has zero mean prior distribution is
valid since we have the B parameter in the model. This prior distribution
is controlled by algorithms initial values that will be chosen for parameters

(Gr%lp’ ¢mz7)~

The full conditional distribution of m_,, can be written as

2 2 2 2
P(m.p|6upan.pa Gmp, ¢mp7 G.pvy..p) o< HHP(YSI1)|6tpamsp7B7nspa Gup) X P(m.p\cmp, (Pmp)

T S
1

=]s=1
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As aresult the full conditional of m_j, can be written in two forms, one for sin-
gle updating and one for block updating. The single updating full conditional
distribution is

msp ~ N(lu'mxp ) Smsp)



where

T

and Mg, = Z (yspt - ﬁp - ISPnSI’)O-upzsms

Smgp =
P -2 )
Touy + Omp =1

The block updating posterior is given by

T
mp ~ MYV Ng (Z(Y.tp - Bp Ispn.p))z;lsmasm>
t=1

where
—1 2 —1 -1
S = (TZM + (GppZmp) )

where ¥, is a diagonal matrix.

0.0.6.1 Sampling from the full conditional distribution of the spatial
parameters for the additional process, G,;,z, Onp

The additional spatial process is independent from the background spatial pro-
cess but the posterior distributions of its two parameters have similar form, G,%p
is the between site spatial variance of the specific group and the parameter ¢,
controls the strength of the correlation between the sites.

p(G,;,z) ~ Gam(anp,bnp)

-2 2 -2
P(an |n17) o< p(”~l’|6np7¢n[7) X p(an )

where p(n. ,,\anm Onp) ~ MV Ns<(Og, anpZ,, »)- As a result the full conditional
distribution is

) s
anz ~ Gam <an,, + ?,bnp + 2n.p2np”,p>

The parameter ¢, does not the have full conditional distribution available in
closed form, so the Metropolis-Hasting algorithm is used with proposed values
from the range (a¢,by ), since the prior distribution of ¢, is Unif(ag,by). The
proposed values of ¢, is accepted with probability

n l 762
c=min |1, pi( -p|¢’2p ’;p)
p(”~p|¢np76np)

where ¢,2p is the proposed value and ¢y, the current value of @y,.
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0.0.7  Sampling from the full conditional distribution of spatial effects, n

The spatial effects have a zero mean multivariate normal distribution as a prior
distribution

p<n~l7|67%p7 Onp) ~ MV Ns+ (Os-, 0-3172”17)

The assumption that the spatial effects has zero mean prior distribution is valid
since we have the 3, parameter in the model which represents the overall mean
of this process. This prior distribution is controlled by algorithm initial values
that will be chosen for parameters (anp, Onp).

The full conditional distribution of n ;, can be written as

T
2 2 2 2
P(n.pmpa OysM.pOpp,s ¢'l177 6.py..p) o< H H P(Ystp|mSp7ﬁpan5pv thv Gu) X p(n~p|6np7 ‘Pnp)

t=1seS*

As a result the posterior distribution of 7, can be written in two forms, one
for single updating and one for block updating. The single updating full con-
ditional distribution is

Ngp ~ N(/Jnspvsnsp)

where

— -2
) and l'Lnxp - (ySPT - BP - msp - Gfp)o-up Snsp

Sngp = 3 _ 3
i To, 24‘C%p

The block updating posterior is given by

T
npn~ MYV Ng+« (Snp Z(yz,p - ﬁp —mp—= 9[]7)214_]717S:Lp>
t=1

where
_ -1\ 1
Snp = (TZMP1 + (6,12[,2,,,,) )

where X, is a diagonal matrix.

0.0.8 Implementation using WinBUGS

model {
# beginning of t loop
for (t in 2:(n-1)) {

for (poll in 1:4) {
for (site im 1:8) {



# 4x8 ys
arise
from the
4
underlying

thetas,

& 8 site
effects &

measurement
error
y.mat [t,poll,site] ~ dnorm(
mean.poll.sitel[t,poll,
site],tau.v[poll,site])
mean.poll.
sitelt,
poll,site
1 <-
thetalt,
polll +m
.adj[poll
,site]
+ temp
.effect[t
,poll]
# end of site
loop

# all of the

underlying
thetas

are

averages
of the

two

neighbours

tmp . thetalt,
polll<-
(thetalt
-1,poll
J+thetal
t+1,poll
1/2
for (
poll2

in
1:4)

{



temp.effect [
t,polll]
<- (beta
.temp [



polllx
temp.adj
[t

+(beta.

temp2 [

poll]x

temp2.

adj[t])
# end of poll loop

thetal[t,1:4] ~ dmnorm(tmp.
theta[t,1:4],Sigma.p2
[1:4,1:4])
# temp effects
temp.adj[t]<-temp[t]-temp.bar
temp2.adj[t]l<- temp2[t]-temp2.bar

# end of t loop

# Set up the priors for ’edges’ of the underlying AR process
for theta
theta[1,1:4] "dmnorm(theta[2,1:4],Sigma.p[1:4,1:4])
thetal[n,1:4] “dmnorm(thetaln-1,1:4],Sigma.p[1:4,1:4]1)

# Set up the priors for the ’edges’ of the y’s
for (poll in 1:4) {
for (site in 1:8) {
y.mat [1,poll,site] ~ dnorm(thetall,
poll],tau.v[poll,site])
y.mat [n,poll,site] ~ dnorm(thetaln,
poll],tau.v[poll,sitel])

# Likelihoods for the ’edges’

for (polll in 1:4) {
for (poll2 in 1:4) {
Sigma.p.like[1,polll,poll2]<-
0
Sigma.p.like[n,polll,poll2]<-
(theta[n,polli]-thetaln
-1,poll1]) * (thetaln,
poll2]-thetal[n-1,poll2])

}

For the parameters of the Wishart distribution, d was chosen to be equal to
four, the dimension of Xp;
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D was then chosen so that the diagonals of the expected value (D/d) represent

a 10% coefficient of variation. The off-diagonals were taken to be zero.
# Likelihoods for the Wishart parameter
# initial values of the priors
R[1,1] <- 0.2
R[1,2] <- 0.01
R[1,3] <- 0.01
0

R[1,4] <- 0.01
R[2,2] <- 0.2
R[2,1] <- 0.01
R[2,3] <- 0.01
R[2,4] <- 0.01
R[3,3] <- 0.2
R[3,1] <- 0.01
R[3,2] <- 0.01
R[3,4] <- 0.01
R[4,4] <- 0.2
R[4,1] <- 0.01
R[4,2] <- 0.01
R[4,3] <- 0.01

for (polll in 1:4) {
for (poll2 in 1:4) {
Rn[polll,poll2] < - R[polll,poll2] + sum(
Sigma.p.like[1:n,polll,poll2])
}

K <-2
Kn <- K+ n
Sigma.p[1:4,1:4] ~ dwish(Rn[1:4,1:4] ,Kn)

# mutiply the precision by 2, as wvariance needs to be
divided by 2 (average of 2 thetas)

for (i in 1:4){
for (j in 1:4){
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.

N ¥ Gl

}

# put in the inverse stuff here, for the sd matriz /
correlation

for (i in 1:4){
for (j in 1:4){
var.p
[

inverse

(

Sigma

=0 -
O

~ .

for (poll in 1:4) {
sigma.theta[poll] <- sqrt(var.p[poll,poll])
for (poll2 in 1:4) {
corr.thetal[poll,poll2] <- var.plpoll
,poll2] / (sigma.thetalpoll]=*
sigma.theta[poll2])
}
}

# Set up the pollutant/site specific observation precisions
for (poll in 1:4) {
for (site in 1:8) {
tau.v[poll,site]l] ~ dgamma(1,0.01)
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sigma.v[poll,site] <-1/sqrt(tau.v[poll,

site])
}
}
# Set up the priors for the site specific parameters
# set them up as spatial.exzp prior, different for each

site

for (poll in 1:4) {

m[poll ,1:8] ~ spatial.exp(xcoords[],ycoords[],tau.m[poll],
phil[poll]l,phi2)

}

for (poll in 1:4) {
sigma.m[poll] <- 1/sqrt(tau.m[polll)
}

# and to constrain the sums to be zero - CHECK for quicker
approach

for (poll in 1:4) {

for (site in 1:8) {

m.adj[poll,site] <- m[poll,site]-mean(m[poll,1:8])

}

}

phi2 <- 1

for (poll in 1:4) {
phil[poll]~ dunif (0.0026,0.115)
tau.m[poll] ~ dgamma(1,0.01)

}

# priors for temp
temp.bar<-mean (temp [])

temp2.bar <- mean(temp2[])

for (poll in 1:4) {
beta.temp[poll]l] ~ dnorm(0,0.001)
beta.temp2[poll] ~ dnorm(0,0.001)
}

# Calculate the mean and sd of the thetas
for (poll in 1:4) {
mean.theta[poll] <- mean(theta[l:n,poll])
sd.thetal[poll] <-sd(theta[l:n,poll])
}

# end of model
}
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