
Statistics in Environmental Research (BUC Workshop Series) II
Problem sheet - WinBUGS - SOLUTIONS

1. (a) The posterior mean estimate of α is 14.27, and the posterior mean for the standard deviation
of the random effects distribution 1/

√
α is 0.27. When compared with the empirical Bayes

estimates of 51.7 and 0.14 we see large differences, which is surprising given we have 88 areas.
The explanation lies in the Ga(1,1) prior that was assumed. The 2.5%, 50% and 97.5% points
of this distribution are 0.025, 0.69, 3.7, so that large values of α are strongly discouraged
in the prior (the 2.5%, 50% and 97.5% points for the standard deviation are 0.52, 1.2, 6.3).
Hence this prior will force between-area variability even when it is not present in the data –
very dangerous!

As an alternative we specify a lognormal prior for α. To decide on the cut-off points of this
prior we assumed that residual relative risk standard deviations of 0.1 and 1 were in the left
and right tails. Specifically we assumed that the 5% and 95% points of the prior for α were 1
and 100, giving a LogNormal(2.30,1.40) specification. The code for this model is given below
(note the use of the step function).

This gave a posterior mean for α of 41.2, and for 1/
√
α of 0.16.

model

{

for (i in 1 : N) {

Obs[i] ~ dpois(mu[i])

mu[i] <- Exp[i]*exp(beta0)*theta[i]

RR[i] <- exp(beta0)*theta[i]

theta[i] ~ dgamma(alpha,alpha)

thresh[i] <- step(RR[i]-1.2)

}

lalpha ~ dnorm(2.30,1.40)

alpha <- exp(lalpha)

beta0 ~ dflat()

# Functions of interest:

sigma.theta <- sqrt(1/alpha) # standard deviation of non-spatial

base <- exp(beta0)

}

(b) I copied all of the WinBUGS results into a single file whose first two lines are:

RR[1] 0.9229 0.1769 0.001729 0.6128 0.911 1.304 10000 10001

RR[2] 0.9027 0.108 0.001094 0.7035 0.8987 1.123 10000 10001

The R commands below then produced the figures that follow.

out <- read.table("ex3q1out1.dat",sep="",header=F)

gamRRp1 <- out[1:88,2]

gamthreshp1 <- out[89:176,2]

gamRRp2 <- out[177:264,2]

gamthreshp2 <- out[265:352,2]
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lnormRR <- out[353:440,2]

lnormthresh <- out[441:528,2]

OhioMap(gamRRp1,ncol=8,type="e",figmain="Ohio lung cancer Poisson gamma"

,lower=0,upper=max(SMR))

The empirical Bayes, Poisson-Gamma with a lognormal prior, and Poisson-Lognormal model
give very similar estimates. The Poisson-Gamma model with the Ga(1,1) prior gives estimates
that are much more variable, since the prior has discouraged a lack of global smoothing.

If we plot the posterior probabilities that the relative risk exceeds 1.2 we see that there is
strong agreement between the maps, apart from the Ga(1,1) specification which shows higher
probabilities in some areas.

(c) Under the Poisson-Lognormal model the standard deviation is estimated as 0.14, in agreement
with the Poisson-Gamma model under the appropriate model.

A plot of the relative risk estimates under the Poisson-Gamma model (with the sensible
prior), and the Poisson-Lognormal model shows the good agreement between the estimates.
Under the lognormal model there is a narrower range, which is consistent with the standard
deviation having a slightly smaller estimate.

We also defined the endpoints of a 95% interval for the relative risk using the code below in
the WinBUGS model specification. The posterior means of these points were 0.76 and 1.32,
again emphasizing that for these data there is little residual variability.

RRRlo <- exp(-1.96*sigma.V)

RRRhi <- exp(1.96*sigma.V)

2. (a) > OhioMap(Obs/Exp,ncol=8,type="e",figmain="Ohio lung cancer SMRs")

> map.scale(x=-84.5,y=38.6,ratio=F)

> lnprior(50,200,.05,.95)

$mu

[1] 4.60517

$sigma

[1] 0.4214036

(b) Adjacency map was given on website.

(c) Posterior summaries under the two spatial models are given below, the proportion of the
total variability on the log residual relative risk scale is estimated to be 0.56 and 0.41 under
the joint and ICAR models respectively.

Note the large uncertainty about d1/2 (95% interval is 3.3 to 1128). The joint model ran
very slowly (due to inversion of 88 × 88 matrix at every iteration), and there is very high
dependence in the Markov chain (reflected in large Monte Carlo error for d1/2).

JOINT MODEL

beta0 0.02179 0.1631 0.01444 -0.2179 -0.0243 0.3951 5000 15001

dhalf 172.5 450.4 28.02 3.26 53.53 1128.0 5000 15001

p 0.5613 0.241 0.017 0.09528 0.5902 0.935 5000 15001

phi 0.03436 0.0728 0.00460 6.14E-4 0.01295 0.2126 5000 15001
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sigma.U 0.155 0.08047 0.00585 0.04501 0.1388 0.3547 5000 15001

sigma.V 0.1209 0.03095 0.00157 0.05566 0.1214 0.1807 5000 15001

ICAR MODEL

beta0 -0.0368 0.02401 6.08E-4 -0.0849 -0.0363 0.00892 10000 10001

sd.U 0.09954 0.02655 0.00146 0.05214 0.09791 0.1542 10000 10001

sigma.V 0.1204 0.0254 9.76E-4 0.07658 0.1183 0.1746 10000 10001

vratio 0.4108 0.1628 0.00877 .1219 0.4042 0.7318 10000 10001

3. A small random amount has to be added to each location, to avoid having points at the same
location, which leads to a variance-covariance matrix that is not invertible.

This analysis is for illustration only – we would really like to analyze the complete data (though
the computation would be very, very slow). We would like to sample more controls (in a 3 to 1
ratio, say) to get more power.

The output from a logistic regression analysis is given below – not surprisingly, given the reduced
sample size, the exposure effect is not significant.

mod <- glm(cc~exposure,family="binomial")

summary(mod)

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -0.18753 0.19278 -0.973 0.331

exposure 0.09428 0.06602 1.428 0.153

A Bayesian version of this model with flat priors (and no random effects) gave the summaries
below. Not surprisingly these are very similar to asymptotic likelihood inference.

We give results from various random effects models to illustrate the sensitivity of inference to the
prior – not surprising given binary data.

Flat priors and no random effects

node mean sd MC error 2.5% median 97.5% start sample

RRx 1.104 0.07326 0.001662 0.968 1.101 1.254 5000 5001

beta0 -0.1923 0.1933 0.004245 -0.573 -0.191 0.184 5000 5001

beta1 0.09631 0.06629 0.001506 -0.032 0.09599 0.226 5000 5001

When we add random effects we fit a much tighter prior to the random effects precision, τv ∼
Ga(10, 1.10) – this prior corresponds to believing that the residual odds fall between 0.5 and 2
with probability 0.95 and follow a log Student t distribution with 20 degrees of freedom.

NON-SPATIAL RANDOM EFFECTS with flat priors and random effects and flat

priors on beta

node mean sd MC error 2.5% median 97.5% start sample

RRx 1.106 0.07612 0.001869 0.9692 1.103 1.271 5000 5001

beta0 -0.1953 0.1999 0.004562 -0.5935 -0.1955 0.1971 5000 5001

beta1 0.09845 0.0685 0.001685 -0.0313 0.09777 0.2395 5000 5001

sdV 0.3431 0.05795 0.003585 0.2509 0.3369 0.4768 5000 5001
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We see little change in the estimate and standard error for β1. There should be a slight movement
away from 0 when we move to a random effects model, due to the interpretation as a conditional
rather than a marginal parameter.

We now experiment with putting a proper prior on β0, β1. If we assume that the 5% and 95%
points of the prior for β0 are 0.8 and 1.2 (perhaps more sensible if we center the exposure) then
we obtain a prior mean of -0.02 and prior sd of 0.123 (giving a precision of 65.8). For β1 50% and
95% points of 1 and 10 give a prior mean and sd of 0 and 1.40 (to give precision 0.51). The results
were found to be very sensitive to the choice of standard deviation for β1, as we see below.

NON-SPATIAL RANDOM EFFECTS with informative priors on beta

node mean sd MC error 2.5% median 97.5% start sample

RRx 1.069 0.06011 5.964E-4 0.956 1.067 1.192 5000 15001

beta0 -0.0547 0.1051 0.00104 -0.260 -0.0544 0.1515 5000 15001

beta1 0.06556 0.05613 5.567E-4 -0.044 0.06517 0.1754 5000 15001

sdV 0.3473 0.05828 0.00228 0.2552 0.3398 0.4794 5000 15001

SPATIAL AND NON-SPATIAL with flat priors.

node mean sd MC error 2.5% median 97.5% start sample

RRx 1.109 0.07632 8.538E-4 0.9674 1.105 1.268 5000 25001

beta0 -0.2025 0.2777 0.01489 -0.737 -0.2022 0.348 5000 25001

beta1 0.1007 0.06861 7.654E-4 -0.033 0.1001 0.2374 5000 25001

dhalf 11.84 5.174 0.2259 4.635 10.92 24.35 5000 25001

phi 0.07028 0.03217 0.00141 0.02847 0.0635 0.1495 5000 25001

sdU 0.3288 0.04991 0.00191 0.247 0.3231 0.4415 5000 25001

sdV 0.3493 0.05906 0.00178 0.2578 0.3415 0.4897 5000 25001

vratio 0.4725 0.1056 0.00375 0.2664 0.4726 0.6747 5000 25001

SPATIAL AND NON-SPATIAL with informative priors.

node mean sd MC error 2.5% median 97.5% start sample

RRx 1.092 0.06832 0.002265 0.9661 1.089 1.233 5000 25001

beta0 -0.0233 0.1124 0.00324 -0.2416 -0.0233 0.1974 5000 25001

beta1 0.08625 0.06233 0.00206 -0.0345 0.08529 0.2096 5000 25001

dhalf 11.63 5.36 0.23 4.481 10.6 25.04 5000 25001

phi 0.07196 0.03262 0.00134 0.02768 0.06541 0.1547 5000 25001

sdU 0.3273 0.05101 0.00187 0.2448 0.3212 0.4447 5000 25001

sdV 0.3489 0.06001 0.00183 0.2531 0.3411 0.4849 5000 25001

vratio 0.4708 0.1077 0.00355 0.2661 0.4686 0.6841 5000 25001

SPATIAL AND NON-SPATIAL with flat priors and random effects and

informative priors and tau.T prior

node mean sd MC error 2.5% median 97.5% start sample

RRx 1.106 0.07554 0.001611 0.9693 1.103 1.264 1000 7001

beta0 -0.1854 0.2143 0.009454 -0.611 -0.1796 0.2245 1000 7001

beta1 0.09836 0.06813 0.001458 -0.031 0.09799 0.2341 1000 7001

dhalf 11.59 5.553 0.3881 4.323 10.48 25.46 1000 7001

phi 0.07348 0.03461 0.00252 0.02722 0.06615 0.1603 1000 7001
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sdU 0.19 0.09709 0.01007 0.03716 0.1941 0.3608 1000 7001

sdV 0.2432 0.1061 0.01063 0.03126 0.2651 0.4173 1000 7001

vratio 0.4112 0.3363 0.03542 0.01362 0.3177 0.9882 1000 7001

spatial

model

{

for (i in 1:nind){

Y[i] ~ dbern(p[i])

logit(p[i]) <- beta0 + beta1*exposure[i] + V[i] + U[i]

V[i] ~ dnorm(0,tau.V)

mean[i] <- 0

}

U[1:nind] ~ spatial.exp(mean[],x[],y[],tau.U,phi,1)

dhalf ~ dlnorm(2.30,5.63) # 50% chance that corr falls to half in less than

# 10km, 95% chance in less than 20km. Note 1/var!

phi <- 0.6931/dhalf

vratio <- sdU*sdU/(sdU*sdU+sdV*sdV)

tau.T ~ dgamma(10,1.10)

pn ~ dbeta(1,1)

sdU <- sqrt(pn/tau.T)

sdV <- sqrt((1-pn)/tau.T)

tau.U <- 1/(sdU*sdU)

tau.V <- 1/(sdV*sdV)

# tau.V ~ dgamma(10,1.10)

# tau.U ~ dgamma(10,1.10)

# beta0 ~ dnorm(0,65.8)

# beta1 ~ dnorm(0,0.51)

beta0 ~ dflat()

beta1 ~ dflat()

RRx <- exp(beta1)

# sdU <- 1/sqrt(tau.U)

# sdV <- 1/sqrt(tau.V)

}
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