
Statistics in Environmental Research (BUC Workshop Series) I
Problem sheet

Website: http://www.stat.ubc.ca/~gavin/STEPIBookNewStyle/

1. Consider the Scottish lip cancer data. Fit the Poisson log-linear regression model, that is Yi ∼
Poisson(Ei exp[α0 + α1xi]) where Yi, Ei and xi are the number of disease counts, the expected
numbers, and the proportion in agriculture, fishing and farming (AFF) in area i, i = 1, ..., 56.
Now fit an alternative model that includes latitude and longitude in the log-linear model, in order
to investigate “confounding by location”. Discuss your findings.

2. Gordian, Haneuse and Wakefield (2006, Journal of Exposure Science and Environmental Epi-
demiology, 16, 49–5) report a study which investigated whether proximity to traffic at residential
location is associated with being diagnosed with asthma as a young child. Here we will look at
the association between traffic count and another response variable, the number of respiratory
illnesses per year, in particular let Y = 0 if a child had 4 or less illnesses, and Y = 1 if greater
than 4.

On the website you will find the data on the response and exposure variables, along with a number
of confounders (you may wish to control for some or all of gender, age, a smoker in the house,
income, school attended, parental smoker), a script to read these data into R, and a description
of each of the variables. The exposure variable has been scaled to lie between 0 and 10.

Analyze these data using logistic regression models, and report your findings, including any draw-
backs of the study/analysis.

3. In this question we will carry out disease mapping for Ohio lung cancer mortality data from 1988
that is on the website along with various R functions for producing maps for counties within Ohio.

(a) Provide a map of the SMRs, with expected numbers adjusted for gender, race and age.

(b) Provide a map of the estimated standard errors of the SMRs,

ŝ.e.(SMRi) =
θ̂
1/2
i

E
1/2
i

.

(c) Provide histograms of θi|y, µ̂, α̂, for i = 1, 2, 3, 4.

(d) Provide a map of the posterior mean smoothed EB estimates R̂Ri, and compare with the
SMR map.

(e) Provide a map of the posterior standard deviations of the smoothed estimates R̂Ri, which
are given by

sd(R̂Ri) =
µ(α̂+ yi)

1/2

α̂+ Eiµ̂
,

and compare with the standard error of the SMR map.
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(f) Calculate the posterior probabilities that RRi exceeds the threshold 1.2, and map these
quantities.

(g) Examine the proportionality assumption pij = θi × qj using a suitable method. For example
you might look at SMR maps by gender, race, age.

4. In this question we will investigate the properties of the empirical Bayes estimates. Specifically
consider the mean squared error of the collection of estimates θ̂i, compared to the true values of
θi, i = 1, ..., n:

MSE(θ̂i) =
1

n

n∑
i=1

(θ̂i − θi)2.

We will investigate via simulation the size of the mean squared error for different choices of the
distribution from which we simulate the random effects.

For n = 50, and Ei ∼ Unif(0.1, 50) simulate Yi|θi ∼ Poisson(Eiθi) with θi ∼ pθ() and calculate

the SMRs Yi/Ei and EB estimates µ̂
(
α̂+Yi
α̂+µ̂Ei

)
for the choices of pθ:

(a) Ga(5,5)

(b) Lognormal(0,1)

(c) Unif(0.1,10)

and comment on what you find.

5. In this question we will simulate health data to examine the construction of relative risk estimates
for point data.

Consider the locations of the larynx cancer controls in South Lancashire, and suppose that these
represent the population at risk. There is an incinerator in the study region, whose location is
contained in the southlancs dataset.

Suppose that population at risk individual i can become a case with probability exp(β0 + β1di),
where di is the distance between the incinerator and s i, the residential location of individual i; if
the incinerator is harmful then β1 will be negative, so that the risk increases as di decreases.

Simulate cases from the population at risk, experimenting with different values of β0 and β1;
exp(β0) is the risk at the incinerator, and exp(β1) is the relative risk (< 1) corresponding to a
decrease in distance of one unit.

6. In the geoR library there are data ca20 which you should explore/analyze using geostatistical
techniques. For example, you may:

(a) Look at empirical semi-variograms (clouds and binned).

(b) Examine Monte Carlo intervals of no spatial dependence.

(c) Fit variogram models to the data.

(d) Carry out kriging and examine the resultant surfaces.
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7. Simulate and plot a discrete time t = 0, 1, . . . , 50 AR(1) process for several different lag one
autocorrelation function values, say α1 = 0.1, 0.5, 0.9. What misleading conclusions might a
casual observer make about this process?

8. The next problem concerns the ozone dataset for NY State, specifically the hourly ozone time
series for Site 9. The readme file for the lab describes the data for the complete set of 9 sites.
Develop a time series model for the temporal process associated with that site along with a 24
hour ahead forecaster.

9. In this question we will fit several theoretical variogram to a variable of your choice in the meuse
data set from gstat package. We will find the best fitted model based on the SSE criteria and by
using cross validation.

(a) Use the fit.variogram() function from gstat package. Set the option print.SSE of this function
to TRUE. Read the help page for this function carefully. Concentrate on one of the metal
variables in the meuse data set and fit at least four different families of variogram models to
the empirical variogram computed by the variog() function. You may do the analysis on the
original or make a transformation if you like.

library(gstat) data(meuse)

vgm1 <- variogram(log(zinc)~1, ~x+y, meuse,

print.SSE=TRUE) plot(vgm1)

meuse.vfit <- fit.variogram(vgm1, vgm(1,"Sph",300,1))

plot(vgm1,model=meuse.fit)

Based on the SSE criteria choose the best fitted model.

(b) Now we will use cross validation to choose between a set of models. We will use the krige.cv()
function from the gstat package. Read the help page carefully. When doing cross validation
choose to use the method of one-leave-out by specifying nfold=1. For example you can do
like this,

data(meuse)

m <- vgm(.59, "Sph", 874, .04)

x <- krige.cv(log(zinc)~1, ~x+y,

model = m, data = meuse, nmax = 40, nfold=1)

Use the following functions to calculate the mean error (ME), the mean squared error (MSE),
and the mean squared deviation ratio (MSDR) diagnostics.

ME <- function(xv.obj){ tmp <- xv.obj$error

return(sum(tmp)/length(tmp))

}

MSE <- function(xv.obj){ tmp <- xv.obj$error

return(sum(tmp^2)/length(tmp))

}

MSDR <- function(xv.obj){ e2 <- xv.obj$error^2
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s2 <- xv.obj$krige.var

msdr <- sum(e2/s2)/length(e2) return(msdr)

}

To get the diagnostics do the following on the cross-validation object x computed above
ME(x), MSE(x), MSDR(x)
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