
Statistics in Environmental Research (BUC Workshop Series) I
Problem sheet - SOLUTIONS

1. We fit two models with and without latitude and longitude:

> source("scotdat.txt")

> summary(glm(Y~X+offset(log(E)),data=z,family=quasipoisson()))

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -0.5423 0.1542 -3.517 0.000893 ***

X 7.3732 1.3208 5.583 7.89e-07 ***

(Dispersion parameter for quasipoisson family taken to be 4.917963)

> summary(glm(Y~X+lat+long+offset(log(E)),data=z,family=quasipoisson()))

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -25.03815 4.75530 -5.265 2.70e-06 ***

X 5.49561 1.21123 4.537 3.40e-05 ***

lat 0.43537 0.08298 5.247 2.89e-06 ***

long 0.02316 0.07894 0.293 0.77

(Dispersion parameter for quasipoisson family taken to be 3.109075)

Including latitude leads to a reduction in the size of the coefficient associated with AFF, since there
is a south-north increasing, gradient in risk, and in exposure. Note how the level of overdispersion
drops in the model including latitude and longitude.

2. There are 1126 children in the original dataset, and if we remove children who have missing values
on any of the variables we reduce the dataset by 232 to 894 (a 21% loss, which is something to
worry about).

> x <- read.csv("jan31.csv")

> gender <- x[,8]; age <- x[,9]; smoke <- x[,28]; income <- x[,54]

> school <- x[,55]; parental <- x[,22]; exposure <- x[,60]; illness <- x[,21]

> x2 <- cbind(gender,age,illness,smoke,income,school,exposure,parental)

> x2[x2== -999] <- NA

> x2 <- na.omit(x2)

> gender <- factor(x2[,1]); age <- x2[,2]; illness <- x2[,3]

> illness2 <- rep(0,length(illness))

> illness2[illness==1] <- 0; illness2[illness==2] <- 0

> illness2[illness==3] <- 1; illness2[illness==4] <- 1

> smoke <- factor(x2[,4]); income <- factor(x2[,5])

> school <- factor(x2[,6]); exposure <- 10*x2[,7]/max(x2[,7])

> parental <- factor(x2[,8])

> mod2un <- glm(cbind(illness2,1-illness2)~exposure,

family=binomial(link=logit))

> mod2 <- glm(cbind(illness2,1-illness2)

~exposure+school+gender+age+income+parental+smoke,family="binomial")

> summary(mod2un)
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Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -2.41161 0.16631 -14.500 <2e-16 ***

exposure 0.07494 0.05399 1.388 0.165

Of these 894 children, 85 had 5 or more respiratory illnesses. An unadjusted analysis (ie no
confounders) gives the relative risk associated with a 1-unit increase in exposure (recall exposure
is scaled between 0 and 10) as exp(0.0794) = 1.078 but the result is not statistically significance.

Including the potential counfounders school, gender, age, income, parental smoking, and smoking,
gives an estimate of exp(0.116) = 1.123 (a 12% increase in the odds of 5 or more illnesses between
two children whose exposure differs by 10 units) with an associated p-value of 0.064.

3. (a) We begin by calculating the reference probabilities (via internal standardization), in order
to calculate expected numbers. The data here are quite extensive and so we can reliably
estimate the 16 probabilities (for the 2 genders, 2 races and 4 age groups). The code is
shown below:

nstrata <- 16; ncounty <- 88; q <- Yagg <- Nagg <- rep(0,nstrata);

for (j in 1:nstrata){

indj <- j+seq(0,ncounty-1)*16

Yagg[j] <- sum(ohio$deaths[indj]); Nagg[j] <- sum(ohio$popn[indj])

q[j] <- Yagg[j]/Nagg[j]

}

If we plot these probabilities we see that for men the non-white mortality risks are greater at
every age group, while for the women the pattern is less clear (the numbers here are small,
and so the standard errors are larger).

The above can also be obtained by fitting a saturated model – the natural model here is
Poisson:

Yj ∼ Poisson(Nj × pj)

where Yj and Nj are the number of cases and the population in strata j, and pj is the risk
that we are estimating. This gives MLEs: p̂j = Yj/Nj , j = 1, ..., 16.

We first check that the rare disease assumption of the Poisson model is valid, by fitting an
alternative binomial model:

Yj ∼ Binomial(Nj , pj).

age <- factor(ohio$age[1:16]); gender <- factor(ohio$sex[1:16])

race <- factor(ohio$race[1:16])

inter <- glm(Yagg~offset(log(Nagg))+age*race*gender,family=poisson())

qmod <- inter$fitted/Nagg

interb <- glm(cbind(Yagg,Nagg-Yagg)~age*race*gender,family=binomial())

qmodb <- interb$fitted

The parameter estimates and fitted values (and hence reference values) are virtually identical
indicating that the Poisson approximation is fine.
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Yagg

[1] 306 57 1025 172 1477 182 768 100 176 40 507 81 733 62 391

[16] 35

Nagg

[1] 474393 52706 429617 48382 319387 29972 139050 11610 504198 64824

[11] 476170 54662 408229 38767 244965 19366

cbind(inter$coeff,interb$coeff,qmod,qmodb)

qmod qmodb

(Intercept) -7.34620627 -7.34556103 0.0006450348 0.0006450348

age8 1.30800477 1.30974822 0.0010814708 0.0010814708

age9 1.96981574 1.97380571 0.0023858460 0.0023858460

age10 2.14740714 2.15230040 0.0035550411 0.0035550411

race1 0.51677296 0.51720977 0.0046244838 0.0046244838

gender1 -0.61403406 -0.61433018 0.0060723342 0.0060723342

age8:race1 -0.11796010 -0.11722424 0.0055231931 0.0055231931

age9:race1 -0.24439463 -0.24337581 0.0086132644 0.0086132644

age10:race1 -0.07242572 -0.06975046 0.0003490692 0.0003490692

age8:gender1 -0.19278364 -0.19381092 0.0006170554 0.0006170554

age9:gender1 -0.33201328 -0.33455520 0.0010647458 0.0010647458

age10:gender1 -0.62732987 -0.63097484 0.0014818338 0.0014818338

race1:gender1 0.05291565 0.05274695 0.0017955608 0.0017955608

age8:race1:gender1 -0.12118419 -0.12177055 0.0015992984 0.0015992984

age9:race1:gender1 -0.44104637 -0.44252990 0.0015961464 0.0015961464

age10:race1:gender1 -0.37302599 -0.37575786 0.0018072911 0.0018072911

In situations with sparser data or more strata, we may wish to estimate the probabilities
using models. We first demonstrate for the full model that includes all interactions, and so
reproduces the above probabilities.

Aside: there are two uses of likelihood ratio statistics (or deviances). We can check the
overall fit of a model by looking at the residual deviance – if the model (which specifies
the null hypothesis) is appropriate then the residual deviance will not be in the tail of a χ2

distribution (unless we are unlucky!) with degrees of freedom given by the total number of
independent observations minus the number of estimated parameters.

Another use is to check for a simplification of a model, if a simple model is a valid simplifi-
cation then the change in the deviance will be probably be a reasonable observation from a
χ2 distribution with degrees of freedom given by the difference in number of parameters.

There are some conditions under which the use of the χ2 distribution are valid, an important
one is that the sample size is large (relative to the number of estimated parameters). Here
we should be fine.

To illustrate how we might obtain more reliable estimates of reference probabilities we exper-
iment with fitting simpler models, beginning with the main effects model, which the following
code shows is clearly inadequate, the 95% point of a χ2 statistic on 10 degrees of freedom is
18.3, and here the residual deviance is 73.8.

main <- glm(Yagg~offset(log(Nagg))+age+race+gender,family=poisson())
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summary(main)

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -7.19641 0.04266 -168.687 < 2e-16 ***

age8 1.21613 0.04783 25.428 < 2e-16 ***

age9 1.80921 0.04622 39.143 < 2e-16 ***

age10 1.89913 0.05011 37.902 < 2e-16 ***

race1 0.31317 0.03950 7.928 2.22e-15 ***

gender1 -0.96324 0.02727 -35.326 < 2e-16 ***

Null deviance: 3763.131 on 15 degrees of freedom

Residual deviance: 73.826 on 10 degrees of freedom

Further fitting reveals that the model with the age× gender + age× race interactions gives
residual degrees of freedom 9.5 on 4 degrees of freedom, which coincides with the 95% point
of a χ2

4. The reference probabilities are only slightly different under the two model, expected
numbers and SMRs are virtually identical.

The gender× race interaction is of marginal importance – on the log scale the race effect at
each age appears to be approximately constant for men and women.

The expected numbers are calculated via

Obs <- Exp <- rep(0,ncounty)

for (i in 1:88){

indi <- (i-1)*16+seq(1,16)

Obs[i] <- sum(ohio$deaths[indi])

Exp[i] <- sum(ohio$popn[indi]*q)

}

SMR <- Obs/Exp

OhioMap(SMR,ncol=8,type="e",figmain="Ohio lung cancer SMRs’’)

county <- factor(seq(1,88)) # confirm that SMRs are MLEs

smrmod <- glm(Obs~-1+county+offset(log(Exp)),family=poisson()) # note: -1

smr2 <- exp(smrmod$coeff) # the same as SMR

The above also gives an alternative method of calculating the SMRs (to give smr2) using a
Poisson model.

If mapped, he SMRs illustrate a relatively tight range, between 0.36 and 1.54.

(b) The standard errors of the SMRs show some variability.

(c)

(d) The smoothed estimates display a much narrower range since α̂ = 51.7, giving a standard
deviation of the random effects of 0.14.

After plotting the smoothed estimates versus the SMRs the attenuation towards 1 is apparent.

(e) The posterior standard deviations of the smoothed estimates are much smaller (and more
constant) than the SMR counterparts, due to the large value of α.

(f) If we plot the posterior probabilities that the relative risk exceeds 1.2, the plot confirms that
the relative risks are close to 1 for these data, the maximum probability is 0.47.
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(g) We now turn to examining whether proportionality was appropriate. For illustration we
calculate SMRs for men and women.

ObsM <- ObsF <- ExpM <- ExpF <- rep(0,ncounty); qM <- q[1:8]; qF <- q[9:16]

for (i in 1:88){

indiM <- (i-1)*16+seq(1,8); indiF <- indiM + 8

ObsM[i] <- sum(ohio$deaths[indiM])

ExpM[i] <- sum(ohio$popn[indiM]*qM)

ObsF[i] <- sum(ohio$deaths[indiF])

ExpF[i] <- sum(ohio$popn[indiF]*qF)

}

SMRM <- ObsM/ExpM

SMRF <- ObsF/ExpF

We examine the fit of various models. Here we have 1408 rows and 6112 cases so we might
doubt the asymptotics. Hence we examine the Monte Carlo distribution of the LR statistic.
We test three hypotheses:

H0 : race× age× sex
HA : saturated model

which tests whether the stratum only model provides an adequate fit to the data (if it does
then we don’t need area effects).

H0 : race× age× sex+ county

HA : saturated model

which tests whether the stratum and area model provides an adequate fit to the data (if it
does then we don’t need to worry about looking at area effects in different stratum, i.e. the
proportionality assumption implicit in the SMR calculation is OK). Finally:

H0 : race× age× sex
HA : race× age× sex+ county

assesses whether the area effects are needed.

The LR statistics for these 3 tests have degrees of freedom 1365 (1408-27-16) (27 is the
number of zeros), 1278 (1365-87) and 87 respectively, giving deviances 1205, 1027 and 178
with asymptotic p-values of 1, 1 and 0.

The Monte Carlo p-values are 0.01, 0.064 and 0 (from 1000 simulations) showing that we
have strong evidence that the stratum only model is inadequate (and that the asymptotic
distributions were way off, a well-known fact, see for example Venables and Ripley, Modern
Applied Statistics with S-Plus), the county+race×age×race model is only marginally OK,
and we always reject the former for the latter.

For the Monte Carlo distributions of the deviances:
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Test stats Observed:

1205.152 1365 0.9992502

1027.276 1278 1

177.8759 87 3.32756e-08

Here we conclude that the stratum only model is inadequate, and adding county is definitely
a good idea. The county and stratum model is borderline adequate (fitting a quasiPoisson
model gives an overdispersion parameter of 1.06, showing that there is not a lot of excess-
Poisson variability in these data.

4. The R code is given by

nsims <- 50; nareas <- 50; E <- runif(nareas,.1,50)

msesmr1 <- 0; msesmr2 <- 0; msesmr3 <- 0

mseeb1 <- 0; mseeb2 <- 0; mseeb3 <- 0

for (s in 1:nsims){

theta1 <- rgamma(nareas,5,5)

theta2 <- rlnorm(nareas,0,1)

theta3 <- runif(nareas,.1,10)

y1 <- rpois(nareas,E*theta1)

y2 <- rpois(nareas,E*theta2)

y3 <- rpois(nareas,E*theta3)

smr1 <- y1/E; smr2 <- y2/E; smr3 <- y3/E;

msesmr1 <- msesmr1 + sum((smr1-theta1)^2)

msesmr2 <- msesmr2 + sum((smr2-theta2)^2)

msesmr3 <- msesmr3 + sum((smr3-theta3)^2)

EBest1 <- eBayes(y1,E)

EBest2 <- eBayes(y2,E)

EBest3 <- eBayes(y3,E)

mseeb1 <- mseeb1 + sum((EBest1$RR-theta1)^2)

mseeb2 <- mseeb2 + sum((EBest2$RR-theta2)^2)

mseeb3 <- mseeb3 + sum((EBest3$RR-theta3)^2)

}

cat("MSE Gamma data SMR EB :",msesmr1/(nsims*nareas),mseeb1/(nsims*nareas),"\n")

cat("MSE lognormal data SMR EB :",msesmr2/(nsims*nareas),mseeb2/(nsims*nareas),"\n")

cat("MSE uniform data SMR EB :",msesmr3/(nsims*nareas),mseeb3/(nsims*nareas),"\n")

Below we see that the empirical Bayes estimates have the smallest MSE in each case; not surpris-
ingly the biggest gains are when the distribution is truly gamma (the squared error of a typical
estimate under the EB model is about a third of that under the SMR in this case).

MSE Gamma data SMR EB : 0.1430656 0.04497075

MSE lognormal data SMR EB : 0.2421748 0.1684692

MSE uniform data SMR EB : 0.7616984 0.444556

The MSE is the variance plus the bias squared and so we see that the varaince of the SMRs is
what is dominating (they are unbiased, while the EB estimates are biased towards 1).

We multiply the expected numbers by 10 and obtain the results:
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MSE Gamma data SMR EB : 0.007316697 0.006517499

MSE lognormal data SMR EB : 0.01173368 0.0115257

MSE uniform data SMR EB : 0.03691264 0.03619011

showing that as we obtain more data the smoothed estimates do not differ greatly from the SMRs.

5. The code to simulate the case-control data is given below – the at risk population was taken to
be the controls from the South Lancashire data.

# Set up distances

dist <- sqrt((southlancs$x[southlancs.cc==0]-old.incinerator[1])^2+

(southlancs$y[southlancs.cc==0]-old.incinerator[2])^2)

pointmap(southlancs.pts[southlancs.cc==0,])

u <- runif(length(southlancs$x[southlancs.cc==0]))

beta0 <- 0; beta1 <- -log(300)/max(dist); simcc <- rep(0,length(u))

prob <- exp(beta0+beta1*(dist-mean(dist)))/(1+exp(beta0+beta1*(dist-mean(dist))))

# Let’s plot the probability surface

xplot <- seq(min(southlancs$x[southlancs.cc==0]),max(southlancs$x[southlancs.cc==0]),1000)

yplot <- seq(min(southlancs$y[southlancs.cc==0]),max(southlancs$y[southlancs.cc==0]),1000)

distplot <- sqrt(outer((xplot-old.incinerator[1])^2,(yplot-old.incinerator[2])^2,"+"))

probplot <- exp(beta0+beta1*(distplot-mean(distplot)))/

(1+exp(beta0+beta1*(distplot-mean(distplot))))

postscript("ex4q2_hv1000.ps",horiz=F)

par(mfrow=c(3,2))

# Plot 1

image(xplot,yplot,probplot)

# the next line assigns cases and controls to the population at risk

simcc <- ifelse (u<prob,1,0)

sim0 <- as.points(southlancs$x[simcc==0],southlancs$y[simcc==0])

sim1 <- as.points(southlancs$x[simcc==1],southlancs$y[simcc==1])

npts(sim0); npts(sim1); sim.bdy <- southlancs.bdy

# Plot 2

plot(sim0[,1],sim0[,2],xlab="Eastings (m)",ylab="Northings (m)",pch=3,cex=.5)

title("Control locations")

points(old.incinerator[1],old.incinerator[2],cex=2,pch=2)

# Plot 3

plot(sim1[,1],sim1[,2],xlab="Eastings (m)",ylab="Northings (m)",pch=3,cex=.5)

title("Case locations")

points(old.incinerator[1],old.incinerator[2],cex=2,pch=2)

hv <- 1000; ngrid <- 40

# Plot 4

polymap(sim.bdy,border="grey",xlab="Eastings (m)",ylab="Northings (m)")

points(sim0,pch=3,cex=.5)

contour(kernel2d(sim0,sim.bdy, h=hv, nx=ngrid, ny=ngrid), nlevels=10,add=T,drawlabels=F)

# Plot 5

polymap(sim.bdy,border="grey",xlab="Eastings (m)",ylab="Northings (m)")

points(sim1,pch=3,cex=.5)

contour(kernel2d(sim1,sim.bdy, h=hv, nx=ngrid, ny=ngrid), nlevels=10,add=T,drawlabels=F)
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# Plot 6

polymap(sim.bdy,border="grey",xlab="Eastings (m)",ylab="Northings (m)")

contour(kernrat(sim1,sim0,sim.bdy,h1=hv,h2=hv), nlevels=20,add=T,drawlabels=T)

dev.off()

We assume that the risk at location s i for individual i is

risk =
exp(β0 + β1[di − d])

1 + exp(β0 + β1[di − d])

so that at distances from the source (the incinerator), d, the risk is:

d = 0, risk =
eβ0−β1d

1 + eβ0−β1d

d = d, risk =
eβ0

1 + eβ0

d = dmax, risk =
eβ0+β1[dmax−d]

1 + eβ0+β1[dmax−d]

which for the choices β0 = 0, β1 = log 300/dmax give risks 0.96, 0.5 and 0.07. The choice of β0 = 0
gives (on average) equal numbers of cases and controls.

The reconstruction clearly shows the risk close to the incinerato – but I had to choose a very large
band width.

6. The data set ca20 contains the calcium content measured in soil samples taken from the 0-20cm
layer at 178 locations within a certain study area divided in three sub-areas. The elevation at
each location was also recorded.

The first region is tipically flooded during the rain season and not used as an experimental area.
The calcium levels would represent the natural content in the region. The second region has
received fertilizers a while ago and is typically occupied by rice fields. The third region has
recieved fertilizers recently and is frequently used as an experimental area.

On the basis of some exploratory plots of the data, and some preliminary least squares fits, we
decide to include area and Y coord as regressors.

library(geoR)

data(ca20)

postscript("ex5q1_fig1.ps",horiz=F)

points(ca20)

mod1 <- lm(ca20$data~ca20$coords[,2]+ca20$cov$area)

summary(mod1)

Coefficients:

Estimate Std. Error t value Pr(>|t|)
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(Intercept) 152.400781 36.200188 4.210 4.09e-05 ***

ca20$coords[, 2] -0.020921 0.006491 -3.223 0.00151 **

ca20$cov$area2 6.989041 3.026845 2.309 0.02212 *

ca20$cov$area3 8.781387 3.969072 2.212 0.02824 *

Residual standard error: 9.392 on 174 degrees of freedom

Multiple R-Squared: 0.2937, Adjusted R-squared: 0.2815

F-statistic: 24.12 on 3 and 174 DF, p-value: 4.220e-13

The exponential correlation model is written as exp(−d/φ) in geoR. (Note the difference with
GeoBUGSS). Hence the distance at which the correlations fall to a half is

d0.5 = log 2φ ≈ 0.7× φ

and the correlations fall to 0.05 at

d0.05 = log 20φ ≈ 3× φ

The correlations fall to 0.36 (=1/e) at φ.

The nugget effect is σ2v .

par(mfrow=c(2,3))

plot(bin1)

lines.variomodel(cov.model="exp",cov.pars=c(50,200),nugget=0,max.dist=1000)

abline(v=log(2)*200); abline(h=50); abline(h=0)

plot(bin1)

lines.variomodel(cov.model="exp",cov.pars=c(50,600),nugget=0,max.dist=1000)

abline(v=log(2)*600); abline(h=50); abline(h=0)

plot(bin1)

lines.variomodel(cov.model="exp",cov.pars=c(100,200),nugget=0,max.dist=1000)

abline(v=log(2)*200); abline(h=100); abline(h=0)

plot(bin1)

lines.variomodel(cov.model="exp",cov.pars=c(100,600),nugget=0,max.dist=1000)

abline(v=log(2)*600); abline(h=100); abline(h=0)

plot(bin1)

lines.variomodel(cov.model="exp",cov.pars=c(100,200),nugget=50,max.dist=1000)

abline(v=log(2)*200); abline(h=150); abline(h=50)

plot(bin1,ylim=c(0,250))

lines.variomodel(cov.model="exp",cov.pars=c(200,500),nugget=50,max.dist=1000)

dev.off()

plot(bin1)

olsfit <- variofit(bin1,ini=c(150,500),weights="equal")

wlsfit <- variofit(bin1,ini=c(150,500))

lfit <- likfit(ca20,ini=c(150,280))

lfit2 <- likfit(ca20,ini=c(150,280),method=’’REML’’)

lines(olsfit,lty=1)

lines(wlsfit,lty=2)

lines(lfit,lty=3)

legend(500,50,legend=c("OLS","WLS","MLE"),lty=c(1,2,3),bty="n")
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7. An AR(1) process is a model for time series, and is given by the following difference equation

Xt = α1Xt−1 + Zt,

where Zt ∼ N(0, σ2Z). That is, the output at time t depends linearly on the previous value of the
process and on some noise term.

To simulate an AR(1) process with n = 50 and α1 = 0.5 we use the following R code.

sim <- arima.sim(n=50,model=list(ar=c(0.5)))

Note, that the processes is stationary only for α1 ∈ (−1, 1).

When α1 is close to 0, the output looks like random noise, the dependence on the previous value
is not obvious from the plots. For larger values of α1, as the correlation between Xt and Xt−1

increases, the contribution of the previous value of the series becomes more visible. However the
long-term fluctuation around the mean value might not be trivial when one is plotting only 50
elements of the series.

8. We start by extracting the relevant data from the dataset and plotting it by using the following
code.

LabOzone <- read.table("LabOzone.txt")

site9 <- ts(LabOzone[,14])

plot(site9)

As a first step we can try to fit an ARMA model, that is we assume stationarity. The ACF and
PACF plots suggest that the process has both AR and MA component, and the parameter of the
autoregressive process is about 2. After trying a few variations of the model, we can see that the
ARMA(3,3) is the best fit based on the AIC values. The model can be fitted by using the following
R code.

fit <- arima(site9,order=c(3,0,3))

Then the model can be checked by using the code

tsdiag(fit)

which plots the standardised residuals, the ACF of the residuals and also the p-values for a Ljung-
Box test. The plot of the ACF of the residuals show that there are still some significant correlations
around lag 24.

To predict 24 hours ahead, we can use

pred1 <- predict(fit,n.ahead=24)
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and then plot the prediction by using the following code.

plot(pred1$pred)

Based on the diagnostics (ACF of residuals) and the prediction, this model is not a good enough
fit.

We can try to capture the significant correlation around lag 24 by assuming non-stationarity,
which is a reasonable guess, as the plotted data doesn’t seem the have a constant mean. After
differencing and plotting the differenced process by using the codes

diff <- diff(site9,lag=1,difference=1)

plot(diff)

we see that now it looks stationary. After trying a few models, we find that the ARIMA(1,1,1) is
the best fit, however running the diagnostics still reveals some significant correlations around lag
24, and also the prediction does not look too realistic.

Finally we can try to explain the correlation by seasonality, and fit a SARIMA model with a period
of 24 hours. After playing around with the parameters, we find that a SARIMA(1,0,1)(1,1,1)

gives the lowest AIC value. This model can be fitted by using the following R code

fit <- arima(site9,order=c(1,0,1),

seasonal=list(order=c(1,1,1),period=24))

After fitting this model the significant spikes disappear on the plot of the ACF of residuals. The
plot of the 24 hour prediction has a similar shape to the one we would expect based on the data.
To have a better idea how the predicted values behave, we can also use the forecast function of
the forecast package, and plot the resulting series.

9. The sp package is needed to access the meuse dataset.

(a) When calculating the empirical variogram, the formula log(zinc)~1 means that we assume
constant trend for log(zinc). For a theoretical variogram model we can use, among others,
exponential, spherical, Gaussian or Matern class of models. A good inital guess could be 0.5
for the nugget, 0.6 for the sill and 800 for the range, thus we can use the code

meuse.vfit <- fit.variogram(vgm1, vgm(0.5,"Mat",800,0.6))

and then we can get the SSE associated with the model by using the following code.

attr(meuse.vfit, ’SSErr’)

Based on the SSE criteria, the sperical model with SSE = 9.011195e − 06 is the best fitted
model for the variable log(zinc).
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(b) To do leave-one-out cross validation we need to set the number of folds to the number of
samples we have, thus nfold=length(meuse$zinc). The error can be obtained by using
x$residual, while we get the variance using x$var1.var. For example, for the mean squared
error we can use the following function.

MSE <- function(xv.obj){ tmp <- xv.obj$residual

return(sum(tmp^2)/length(tmp))

}

After calculating the MSE and MSDR, we still get, that the spherical model is the best in
this case.
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