
1/ 222

The need for Spatio-Temporal modelling Spatial Lattice Processes Point Referenced Spatial Processes Spatio-Temporal Processes

When Populations and Hazards Collide:
Modelling Exposures and Health Risks

Gavin Shaddick
University of Bath

&

James V. Zidek
University of British Columbia

12th - 14th November 2015



2/ 222

The need for Spatio-Temporal modelling Spatial Lattice Processes Point Referenced Spatial Processes Spatio-Temporal Processes

COURSE CONTENTS

The need for Spatio-Temporal modelling

Spatial Lattice Processes

Point Referenced Spatial Processes

Spatio-Temporal Processes



3/ 222

The need for Spatio-Temporal modelling Spatial Lattice Processes Point Referenced Spatial Processes Spatio-Temporal Processes

OUTLINE

Thursday, November 12
I 09:30 - 10:00 Introduction
I 10:00 - 11:15 The need for Spatio-Temporal Modelling
I 11:15 - 11:30 Break
I 11:30 - 13:00 Spatial Lattice Processes and Applications
I 13:00 - 15:30 Lunch
I 15:30 - 17:00 Computer Labs
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I 11:30 - 13:00 Point Referenced Spatial Processes and Applications
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I 15:30 - 17:00 Spatio-Temporal Processes

Saturday, November 14
I 9:30 - 11:00 Computer Lab
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THE NEED FOR SPATIO-TEMPORAL MODELLING

I Spatial epidemiology is the description and analysis of
geographical data, specifically health data in the form of counts
of mortality or morbidity and factors that may explain variations
in those counts over space.

I These may include demographic and environmental factors
together with genetic, and infectious risk factors.

I It has a long history dating back to the mid-1800s when John
Snow’s map of cholera cases in London in 1854 provided an
early example of geographical health analyses that aimed to
identify possible causes of outbreaks of infectious diseases.
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EXAMPLE: JOHN SNOW’S CHOLERA MAP

Figure: John Snow’s map of cholera cases in London 1854. Red circles indicate locations of cholera
cases and are scaled depending on the number of reported cholera cases.Purple taps indicate
locations of water pumps.
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THE NEED FOR SPATIO-TEMPORAL MODELLING

I Advances in statistical methodology together with the increasing
availability of data recorded at very high spatial and temporal
resolution has lead to great advances in spatial and, more
recently, spatio–temporal epidemiology.

I These advances have been driven in part by increased awareness
of the potential effects of environmental hazards and potential
increases in the hazards themselves.
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THE NEED FOR SPATIO-TEMPORAL MODELLING

I Over the past two decades, population predictions based on
conventional demographic methods have forecast that the
world’s population will rise to about 9 billion in 2050, and then
level off or decline.

I However, recent analyses using Bayesian methods have
provided compelling evidence that such projections may vastly
underestimate the world’s future population and instead of the
expected decline, population will continue to rise.

I Such an increase will greatly add to the anthropogenic
contributions of environmental contamination and will require
political, societal and economic solutions in order to adapt to
increased risks to human health and welfare.
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THE NEED FOR SPATIO-TEMPORAL MODELLING

I In order to assess and manage these risks there is a requirement
for monitoring and modelling the associated environmental
processes that will lead to an increase in a wide variety of
adverse health outcomes.

I Addressing these issues will involve a multi-disciplinary
approach and it is imperative that the uncertainties that will be
associated with each of the components can be characterised and
incorporated into statistical models used for assessing health
risks.
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HEALTH-EXPOSURE MODELS

I An analysis of the health risks associated with an environmental
hazard will require a model which links exposures to the chosen
health outcome.

I There are several potential sources of uncertainty in linking
environmental exposures to health, especially when the data
might be at different levels of aggregation.

I For example, in studies of the effects of air pollution, data often
consists of health counts for entire cities with comparisons being
made over space (with other cities experiencing different levels
of pollution) or time (within the same city) whereas exposure
information is often obtained from a fixed number of monitoring
sites within the region of study.



14/ 222

The need for Spatio-Temporal modelling Spatial Lattice Processes Point Referenced Spatial Processes Spatio-Temporal Processes

HEALTH-EXPOSURE MODELS

I Actual exposures to an environmental hazard will depend on the
temporal trajectories of the population’s members that will take
individual members of that population through a sequence of
micro-environments, such as a car, house or street.

I Information about the current state of the environment may be
obtained from routine monitoring or through measurements
taken for a specialised purpose.

I An individual’s actual exposure is a complex interaction of
behaviour and the environment.

I Exposure to the environmental hazard affects the individual?s
risk of certain health outcomes, which may also be affected by
other factors such as age and smoking behaviour.
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ESTIMATING RISKS

I If a study is carefully designed, then it should be possible to
obtain an assessment of the magnitude of a risk associated with
changes in the level of the environmental hazard.

I Often this is represented by a relative risk or odds ratio, which is
the natural result of performing log-linear and logistic regression
models respectively.

I They are often accompanied by measures of uncertainty, such as
95% confidence (or in the case of Bayesian analyses, credible)
intervals.
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ESTIMATING RISKS

I However, there are still several sources of uncertainty which
cannot be easily expressed in summary terms.

I These include the uncertainty associated with assumptions that
were implicitly made in any statistical regression models, such as
the shape of the dose-response relationship (often assumed to be
linear).

I The inclusion, or otherwise, of potential confounders and
unknown latencies over which health effects manifest
themselves will also introduce uncertainty.
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A NEW WORLD OF UNCERTAINTY

I The importance of uncertainty has increased dramatically as the
twentieth century ushered in the era of post-normal science as
articulated by Funtowicz and Ravetz.

I Gone were the days of the solitary scientist running carefully
controlled bench-level experiments with assured reproducibility,
the hallmark of good classical science.

I In came a science characterized by great risks and high levels of
uncertainty, an example being climate science with its associated
environmental health risks.
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A NEW WORLD OF UNCERTAINTY

I Post-normal science called for a search for new approaches to
dealing with uncertainty

I Ones that recognised the diversity of stakeholders and
evaluators needed to deal with these challenges.

I That search led to the recognition that characterising uncertainty
required a dialogue amongst this extended set of peer reviewers
through workshops and panels of experts.

I Such panels are convened by the US Environmental Protection
Agency (EPA) who may be required to debate the issues in a
public forum with participation of outside experts (consultants)
employed by interest groups such as in the case of air pollution
the American Lung Association and the American Petroleum
Producers Association.
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DEPENDENCIES OVER SPACE AND TIME

I Environmental epidemiologists commonly seek associations
between an environ- mental hazard Z and a health outcome Y .

I A spatial association is suggested if measured values of Z are
found to be large (or small) at locations where counts of Y are
also large (or small).

I A classical regression analysis might then be used to assess the
magnitude of any associations and to assess whether they are
significant.
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DEPENDENCIES OVER SPACE AND TIME

I However such an analysis would be flawed if the pairs of
measurements (of exposures), Z and the health outcomes, Y , are
spatially correlated.

I This results in outcomes at locations close together being more
similar than those further apart.

I In this case, or in the case of temporal correlation, the standard
assumptions of stochastic independence between experimental
units would not be valid.
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EXAMPLE: SPATIAL CORRELATION IN THE UK

I An example of spatial correlation can be seen in the next slide
which shows the spatial distribution of the risk of hospital
admission for chronic obstructive pulmonary disease (COPD) in
the UK.

I There seem to be patterns in the data with areas of high and low
risks being grouped together suggesting that there may be
spatial dependence that would need to be incorporated in any
model used to examine associations with potential risk factors.
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Figure: Map of the spatial distribution of risks of hospital admission for a respiratory condition,
chronic obstructive pulmonary disease (COPD), in the UK for 2001. The shades of blue correspond
to standardised admission rates, which are a measure of risk. Darker shades indicate higher rates of
hospitalisation allowing for the underlying age–sex profile of the population within the area.
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EXAMPLE: DAILY MEASUREMENTS OF PARTICULATE

MATTER

An example of temporal correlation in exposures can be seen below,
which shows daily measurements of particulate matter over 250 days
in London in 1997. Clear auto-correlation can be seen in this series of
data with periods of high and low pollution.

Figure: Time series of daily measurements of particulate matter (PM10) for 250 days in 1997 in
London. Measurements are made at the Bloomsbury monitoring site in central London. Missing
values are shown by triangles. The solid black line is a smoothed estimate produced using a
Bayesian temporal model and the dotted lines show the 95% credible intervals associated with the
estimates.
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EXAMPLE: SPATIAL PREDICTION OF NO2

CONCENTRATIONS IN EUROPE

I In this example we see the result of using a spatial model to
predict levels of nitrogen dioxide (NO2) across Europe (Shaddick
etal., 2013).

I Measurements were available from monitoring sites at
approximately 400 sites situated throughout Europe and these
data were used to predict concentrations for every 1km × 1km
geographical grid cell within the region.

I In this case, a Bayesian model was fit within WinBUGS and
posterior predictions were imported (via R) to ESRI ArcGIS for
mapping. The results can be seen in the next slide.
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Figure: Predictions of nitrogen dioxide (NO2) concentrations throughout Europe. The predictions
are from a Bayesian spatial model and are the medians of the posterior distributions of predictions
based on measurements from approximately 400 monitoring sites.
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DEPENDENCIES OVER SPACE AND TIME

I Environmental exposures will vary over both space and time
and there will potentially be many sources of variation and
uncertainty.

I Statistical methods must be able to acknowledge this variability
and uncertainty and be able to estimate exposures at varying
geographical and temporal scales in order to maximise the
information available that can be linked to health outcomes in
order to estimate the associated risks.

I In addition to estimates of risks, such methods must be able to
produce measures of uncertainty associated with those risks.

I These measures of uncertainty should reflect the inherent
uncertainties that will be present at each of the stages in the
modelling process.
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DEPENDENCIES OVER SPACE AND TIME

I This has led to the application of spatial and temporal modelling
in environmental epidemiology, in order to incorporate
dependencies over space and time in analyses of association.

I The value of spatio–temporal modelling can be seen in two
major studies:

(1) The Children’s Health Study in Los Angeles and
(2) The MESA Air (Multi-Ethnic Study of Atherosclerosis Air

Pollution) study.
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EXAMPLE: CHILDREN’S HEALTH STUDY – LOS

ANGELES

I Children may suffer increased adverse effects to air pollution
compared to adults as their lungs are still developing.

I They are also likely to experience higher exposures as they
breathe faster and spend more time outdoors engaged in
strenuous activity.

I The effects of air pollution on children?s health is therefore a
very important health issue.
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EXAMPLE: CHILDREN’S HEALTH STUDY – LOS

ANGELES

I The Children’s Health Study began in 1993 and is a large,
long-term study of the effects of chronic air pollution exposures
on the health of children living in Southern California.

I Approximately 4000 children in twelve communities were
enrolled in the study although substantially more have been
added since the initiation of the study.

I Data on the children’s health, their exposures to air pollution
and many other factors were recorded annually until they
graduated from high school.

I While the study was observational in nature, children were
selected to provide good contrast between areas of low and high
exposure.

I Spatio–temporal modelling issues had to be addressed in the
analysis since data were collected over time and from a number
of communities which were distributed over space
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EXAMPLE: CHILDREN’S HEALTH STUDY – LOS

ANGELES

Current levels of air pollution have chronic, adverse effects on lung growth
leading to clinically significant deficit in 18-year-old children. Air pollution
affects both new onset asthma and exacerbation. Living in close proximity to
busy roads is associated with risk for prevalent asthma. Residential traffic
exposure is linked to deficit in lung function growth and increased school
absences. Differences in genetic makeup affect these outcomes.
(http://hydra.usc.edu/scehsc/about-studies-childrens.html)
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EXAMPLE: AIR POLLUTION AND CARDIAC DISEASE

I The MESA Air (Multi-Ethnic Study of Atherosclerosis and Air
Pollution) study involves more than 6000 men and women from
six communities in the United States.

I The study started in 1999 and continues to follow participants’
health.

I The central hypothesis for this study is that long-term exposure
to fine particles is associated with a more rapid progression of
coronary atherosclerosis (hardening of the heart arteries)

I The problems caused by the smallest particles is their capacity to
move through the gas exchange membrane into the blood
system.

I Particles may also generate anti-inflammatory mediators in the
blood that attack the heart.
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EXAMPLE: AIR POLLUTION AND CARDIAC DISEASE

I Data are recorded both over time and space and so the analysis
has been designed to acknowledge this.

I The study was designed to ensure the necessary contrasts
needed for good statistical inference by taking random spatial
samples of subjects from six very different regions.

I The study has yielded a great deal of new knowledge about the
effects of air pollution on human health.

I In particular, exposures to chemicals and other environmental
hazards appear to have a very serious impact on cardiovascular
health.
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EXAMPLE: AIR POLLUTION AND CARDIAC DISEASE

Results from MESA Air show that people living in areas with higher levels
of air pollution have thicker carotid artery walls than people living in areas
with cleaner air. The arteries of people in more polluted areas also thickened
faster over time, as compared to people living in places with cleaner air.
These findings might help to explain how air pollution leads to problems like
stroke and heart attacks. (http://depts.washington.edu/mesaair/)
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BAYESIAN HIERARCHICAL MODELS

Bayesian hierarchical models are an extremely useful and flexible
framework in which to model complex relationships and
dependencies in data and they are used extensively throughout the
course. In the hierarchy we consider, there are three levels;
(1) The observation, or measurement, level; Y|Z,X1, θ1.

Data, Y, are assumed to arise from an underlying process, Z,
which is unobservable but from which measurements can be
taken, possibly with error, at locations in space and time.
Measurements may also be available for covariates, X1. Here θ1
is the set of parameters for this model and may include, for
example, regression coefficients and error variances.
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BAYESIAN HIERARCHICAL MODELS

(2) The underlying process level; Z|X2, θ2.
The process Z drives the measurements seen at the observation
level and represents the true underlying level of the outcome. It
may be, for example, a spatio–temporal process representing an
environmental hazard. Measurements may also be available for
covariates at this level, X2. Here θ2 is the set of parameters for
this level of the model.

(3) The parameter level; θ = (θ1, θ2).
This contains models for all of the parameters in the observation
and process level and may control things such as the variability
and strength of any spatio–temporal relationships.
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A HIERARCHICAL APPROACH TO MODELLING

SPATIO–TEMPORAL DATA

I A spatial–temporal random field, Zst, s ∈ S, t ∈ T , is a stochastic
process over a region and time period.

I This underlying process is not directly measurable, but
realisations of it can be obtained by taking measurements,
possibly with error.

I Monitoring will only report results at NT discrete points in time,
T ∈ T where these points are labelled T = {t0, t1, . . . , tNT}.

I The same will be true over space, since where air quality
monitors can actually be placed may be restricted to a relatively
small number of locations, for example on public land, leading to
a discrete set of NS locations S ∈ S with corresponding labelling,
S = {s0, s1, . . . , sNT}.
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A HIERARCHICAL APPROACH TO MODELLING

SPATIO–TEMPORAL DATA

I There are three levels to the hierarchy that we consider.
I The observed data, Yst, s = 1, ...,NS, t = 1, ...,NT, at the first level

of the model are considered conditionally independent given a
realisation of the underlying process, Zst.

Yst = Zst + vst

where vst is an independent random, or measurement, error term
I The second level describes the true underlying process as a

combination of two terms: (i) an overall trend, µst and (ii) a
random process, ωst.

Zst = µst + ωst
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A HIERARCHICAL APPROACH TO MODELLING

SPATIO–TEMPORAL DATA

I The trend, or mean term, µst represents broad scale changes over
space and time which may be due to changes in covariates that
will vary over space and time.

I The random process, ωst has spatial–temporal structure in its
covariance.

I In a Bayesian analysis, the third level of the model assigns prior
distributions to the hyperparameters from the previous levels.
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DEALING WITH ‘BIG’ DATA

I Due to both the size of the spatio–temporal components of the
models that may now be considered and the number predictions
that may be be required, it may be computationally impractical
to perform Bayesian analysis using packages such as WinBUGS
or MCMC in any straightforward fashion.

I This can be due to both the requirement to manipulate large
matrices within each simulation of the MCMC and issues of
convergence of parameters in complex models.

I During this course, we will show examples of recently developed
techniques that perform ‘approximate’ Bayesian inference.

I This is based on integrated nested Laplace approximations
(INLA) and thus do not require full MCMC sampling to be
performed.

I INLA has been developed as a computationally attractive
alternative to MCMC.
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DEALING WITH ‘BIG’ DATA

I In a spatial setting such methods are naturally aligned for use
with areal level data rather than the point level.

I This is available within the R-INLA package and an example of
its use can be seen in the Figure on the next slide

I This shows a triangulation of the locations of black smoke (a
measure of particulate air pollution) monitoring sites in the UK.

I The triangulation is part of the computational process which
allows Bayesian inference to be performed on large sets of
point-referenced spatial data.
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DEALING WITH ‘BIG’ DATA

Figure: Triangulation for the locations of black smoke monitoring sites within the UK for use with
the SPDE approach to modelling point-referenced spatial data with INLA. The mesh comprises
3799 edges and was constructed using triangles that have minimum angles of 26 and a maximum
edge length of 100 km. The monitoring locations are highlighted in red.
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SPATIAL DATA

Three main types of spatial data are commonly encountered in
environmental epidemiology. They are:

(i) Lattice
(ii) Point-Referenced

(iii) Point-Process Data
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SPATIAL DATA: LATTICES

I Lattices refer to situations in which the spatial domain consists of
a discrete set of ‘lattice points’.

I These points may index the corners of cells in a regular or
irregular grid.

I Alternatively, they may index geographical regions such as
administrative units or health districts.

I We denote the set of all lattice points by Lwith data available at
a set of NL points, l ∈ L where L = l1, ..., lNL .

I In many applications, such as disease mapping, L is commonly
equal to L. A key feature of this class is its neighbourhood
structure; a process that generates the data at a location has a
distribution that can be characterised in terms of its neighbours.
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SPATIAL DATA: POINT-REFERENCED

I Point-referenced data are measured at a fixed, and often sparse,
set of ‘spatial points’ in a spatial domain or region.

I That domain may be continuous, S but in the applications
considered in this course the domain will be treated as discrete
both to reduce technical complexity and to reflect the
practicalities of siting monitors of environmental processes.

I For example, when monitoring air pollution, the number of
monitors may be limited by financial considerations and they
may have to be sited on public land.

I Measurements are available at a selection of NS sites, s ∈ S where
S = s1, ..., sNS .

I Sites would usually be defined in terms of their geographical
coordinates such as longitude and latitude, i.e. sl = (al, bl).
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SPATIAL DATA: POINT PROCESSES

I Point-process data consists of a set of points, S, that are
randomly chosen by a spatial point process.

I These points could mark, for example, the incidence of a disease
such as childhood leukaemia.

I Despite the importance of spatial point process modelling we do
not cover this topic and its range of applications in this course.
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EXAMPLE: VISUALISING SPATIAL DATA

I Data visualisation is an important topic which encompasses
aspects of model building, including the assessment of the
validity of modelling assumptions, and the presentation of
results.

I We illustrate this by mapping measurement of lead
concentrations in the Meuse River flood plain.

I The Meuse River is one of the largest in Europe and the subject
of much study.

I A comprehensive dataset was collected in its flood plain in 1990
and provides valuable information on the concentrations of a
variety of elements in the river.

I The information is measured at 155 sampling sites within the
flood plain.
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EXAMPLE: VISUALISING SPATIAL DATA

I The figure on the next slide shows the result of using Google
maps to visualise data. It shows the sampling sites marked with
map tacks.

I Google’s Street View then lets an observer see the map tacks.
Clicking on one of the visible map tacks reveals the sample data
record for that site within Street View.
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EXAMPLE: VISUALISING SPATIAL DATA

(a) Sampling sites near Meuse River (b) Map tack opens to show sample

Figure: Google Earth and Google Street Map provide useful ways of visualising spatial data. Here
we see (a) the location at which samples were taken in the Meuse River flood plain and (b) the
information that was collected.
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GOOD APPROACHES TO SPATIO-TEMPORAL

MODELLING

I Often spatio–temporal models are purpose-built for a particular
application and then presented as a theoretical model.

I It is then reasonable to ask what can be done with that model in
settings other than those in which it was developed.

I More generally, can it be extended for use in other applications?
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GOOD APPROACHES TO SPATIO-TEMPORAL

MODELLING

There are a number of key elements which are common to good
approaches to spatio–temporal modelling. The approaches should do
the following:

I Incorporate all sources of uncertainty. This has led to the
widespread use of Bayesian hierarchical modelling in theory and
practice.

I Have an associated practical theory of data-based inference.
I Allow extensions to handling multivariate data. This is vital as it

may be a mix of hazards that cause negative health impacts.
Even in the case where a single hazard is of interest, the
multivariate approach allows strength to be borrowed from the
other hazards which are correlated with the one of concern.
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GOOD APPROACHES TO SPATIO-TEMPORAL

MODELLING

I Be computationally feasible to implement. This is of increasing
concern as we see increasingly large domains of interest. One
might now reasonably expect to see a spatial domain with
thousands of sites and thousands of time points.

I Come equipped with a design theory that enables measurements
to be made optimally for estimating the process parameters or
for predicting unmeasured process values. Good data are
fundamental to good spatio–temporal modelling, yet this aspect
is commonly ignored and can lead to biased estimates of
exposures and thus risk.
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GOOD APPROACHES TO SPATIO-TEMPORAL

MODELLING

I Produce well calibrated error bands. For example, a 95% band
should contain predicted values 95% of the time, i.e. they have
correct coverage probabilities. This is important not only in
substantive terms, but also in model checking.

I There may be questions about the formulation of a model, for
example of the precise nature of the spatio–temporal process that
is assumed, but that may be of secondary importance if good
empirical performance of the model can be demonstrated.
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Spatial Lattice Processes



54/ 222

The need for Spatio-Temporal modelling Spatial Lattice Processes Point Referenced Spatial Processes Spatio-Temporal Processes

WHY MODEL LATTICE PROCESSES?

I To spot spatial patterns such as elevated disease counts near
hazardous waste sites.

I To smooth data across space by borrowing strength - small units
may not contain much data
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EXAMPLE: SIDS DATA

This well known data were treated in Cressie’s 1993 text on spatial
statistics. The represent counts of the sudden death infant syndrome.
A plot of the counts and their counts is given in the figure. This
exemplifies data obtained from records representing administrative
regions like cities. Concerns about cause in high count regions.
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PROXIMITY MATRICES

Play fundamental role in analyzing such data. Form: W = {wij}with
wii = 0 represents the proximity to one another of two locations or
regions i, j.

I Examples:
I wij = 1 if and only they have common boundary.
I wij = inverse distance between units
I wij = 1 if distance between units is ≤ K
I wij = 1 for all m of i’s nearest neighbours j

I W is typically symmetric, but need not be
I W̃: is standardized so rows sum to one but symmetry lost
I W’s elements called "weights"
I Can be used to define neighbours of i
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MORAN’S I

W can be used to define clustering indices such as Moran’s I for n
regions:

I =

∑
i
∑

j wij/w{−i}·(Zi − Z̄)(Zj − Z̄)∑
i(Zi − Z̄)2/n

.

Here w{−i}· =
∑

i 6=j wij & I large means that nearby points are similar.
Good exploratory tool for cluster detection.

NOTE: W can be used to construct smoothers.
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MARKOV RANDOM FIELD (MRF)
Markov random fields focus on local modelling of spatial
relationships through conditional distributions.
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NEIGHBOURHOODS

I D = {s1, . . . , sm} be the lattice indices (e.g centroids)
I Y(si) be a process of interest
I Y−i: all responses but Y(si)

I Define N(si) ⊂ {s1, . . . , sm} as si neighbourhood if
[Y(si) | Y−i] = [Y(si) | Y(sj), sj ∈ N(si)]
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LOCAL DEPENDENCE

Specify local spatial dependencies by:

[Y(si)|Y(sj), sj ∈ N(si)] for all i

Do these determine joint distribution [Y(s1), . . . ,Y(sm)]?

If yes field is MRF.
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BROOK’S LEMMA

Brook’s lemma says “YES” if N(si) ≡ D−i for all i. More precisely it
says if m = 2 for simplicity and we pick fix (y10, y20), for any (y1, y2).

[y1, y2] =
[y1 | y2][y2 | y10]

[y10 | y2][y20 | y10]
[y10, y20]

Left hand side proper means integration determines normalizing
constant. But doesn’t answer question for all MRFs. Need some new

concepts.
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GENERAL RESULT

I Definition: A clique is a set of cells or lattice indices such that
each element is a neighbour of every other element

I Definition: A potential function Q of order k is a function of k
arguments that is exchangeable in these arguments

I Example: For binary (i.e. 0,1) data and k = 2, we take
Q(yi, yj) = I{(yi = yj} = yiyj + (1− yi)(l− yj)

I Definition: p(y1, . . . , ym) is a Gibbs distribution if [as function of
{yi}] it’s product of potentials on cliques
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LOCAL MODELLING

I All cliques of size 1⇔ implies independence
I For cliques of size 2⇔ common choice is

p(y1, . . . , ym) ∝ exp

− 1
2τ 2

∑
i,j

(yi − yj)
2I{i ∼ j}


and therefore [yi | y−i] = N(

∑
j∈N(si)

yj/mi, τ
2/mi) where

mi =| N(si) | is the number of neighbours of i
I Hammersley-Clifford Theorem: If MRF (i.e. [yi | yj , j ∈ N(s−i) ]

uniquely determines p(y1, . . . , ym)) then the latter must be a
Gibbs distribution.

I Geman and Geman: The converse: if we have a joint Gibbs
distribution, then we have an MRF.
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MARKOV RANDOM FIELDS - EXAMPLE

Features:
I Y(si) = probability a health event for any individual in a region i

with m(si) susceptibles.
I Z(si) = # of infecteds ∼ Bin(m(si),Y(si)).
I N(si) = all regions within fixed distance (e.g.48 km) of i.

Conditional on N(si), Y(si) has beta distribution with parameters
depending on counts in neighbours.

I parsimonious model but unclear how to include time
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MARKOV RANDOM FIELDS: NOTES

PROS:
I elegant, simple mathematics + computational power
I may be useful component in hierarchical model

CONS:
I compatible joint distribution may not exist
I neighbours may be hard to specify
I a new site may not have neighbours for spatial prediction!
I conditional distributions may be hard to specify when “sites” are

regions
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CONDITIONAL AUTOREGRESSIVE MODEL (CAR)

Space not ordered like time. The conditional autoregressive approach
(CAR) tries to emulate the AR approach. An MRF form. As before:

I D = {s1, . . . , sm} be the lattice
I Y(si) be a response of interest
I Y−i be all responses but Y(si)

I N(si) be si neighbourhood

CAR model (Gaussian case):

Y(si) ∼ N
(
µi, σ

2
i
)
, for all i

with
E(Y(si)|Y−i) =

∑
sj∈N(si)

bijY(sj, t), Var(Y(si)|Y−i) = τ 2
i
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CONDITIONAL AUTOREGRESSIVE MODEL (CAR)

Does CAR necessarily determine a joint distribution

[Y(si), . . . ,Y(sm)]?

Answer: Yes under reasonable conditions.
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IMPLICATIONS

Brook’s lemma implies:

p(y) = e−
1
2 y′D−1(I−B)y

with y = y1:m where D = diag{τ 2
1 , . . . , τ

2
m} & B = {bij}. Note that

D−1(I − B) must be symmetric so for all i, j

bij

τ 2
i

=
bji

τ 2
j

meaning that B is not symmetric! Also note that Cov(Y) = (I− B)−1D.
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IAR: INTRINSIC AUTOREGRESSION

Much flexibility exists in choice of B. But natural choice is B = W
with wij = 0 or 1 for an adjacency matrix. Yet that would not be an
allowable. Curiously bij = wij/wi+ works & gives

p(yi | y−i) = N(
∑

j

wijyj/wi·, τ
2
i /wi+)

with wi· =
∑

j wij while

p(y) = e−
1
2 y′(Dw−B)y

where D = diag{w1+, . . . ,wm+} and hence Cov(Y)−1 = Dw − B
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IAR: INTRINSIC AUTOREGRESSION

However

(Dw − B)

 1
...
1

 = 0

so:
1. the inverse of the covariance matrix is singular
2. the covariance is undetermined
3. the probability distribution is not integrable.
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IAR: INTRINSIC AUTOREGRESSION

More explicitly,

p(y) ∝ exp

− 1
2τ 2

∑
i,j

(yi − yj)
2wij


which is non-integrable. An example where natural & proper local
dependence models do not yield proper joint distribution. Meaning Y
does not have stochastic generator, MCMC cannot be used, and so
on. This model has been called the intrinsic autoregression model which
de facto means a model concentrated on a lower dimensional space
say where Y· = 0. Modellers use it despite issues.
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FIXING THE IAR

Choose Dw − ρW instead with ρ < 1.

But now,
p(yi | y−i) = N(ρ

∑
j

wijyj/wi+, τ
2
i /wi+)

so conditional mean is fraction of neighbourhood mean. Makes
interpretation and inference challenging (ρ is an extra parameter).
Further even with ρ large say 0.95, Moran’s I is small (around 0.25) in
simulated samples. So fix is unappealing.

Situation resembles AR(1) as the autocorrelation goes to 1 - model
flips from AR (a stationary process) to a random walk (a
non-stationary process).
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THE REVISED IAR

PROS:
I makes distribution proper
I adds parametric flexibility
I ρ = 0 interpretable as independence

CONS:
I hard to rationalize model with Yi’s conditional expectation a

fraction of neighbour average – spatial interpretation?
I interpretation of ρ? As correlation seems tenuous since

I ρ = 0.80 yields 0.1 < Moran′sI < 0.15
I ρ = 0.90 yields 0.2 < Moran′sI < 0.25
I ρ = 0.99 yields Moran′sI < 0.5
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CAR NOTE:

Spatial prediction with CAR is ad hoc using:

p(y0 | y) = N(
∑

j

w0jyj/w0+, τ
2/w0+)

Well defined but not a CAR! That is it could not arise by application
of Brook’s lemma.
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CAR IN THE NON-GAUSSIAN CASE

The CAR theory extends to the non–Gaussian case as the following
example shows.

The following hierarchical model induces a CAR structure.
I Measurement model:

Z(si) ∼ ind Poi(exp [Y(si)])

I Process model:

[Y|β, τ 2, φ] = Gau(Xβ,Σ[τ 2, φ])

where X represents site specific covariates or factors & Σ[τ 2, φ]
the CAR neighbourhood structure.

I Parameter model: [β, τ 2, φ]
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SIMULTANEOUS AUTOREGRESSION (SAR)

This natural model is like a CAR:

Y(si)− µ(si) =
∑

j

bij(Y(sj)− µ(sj)) + εi

where εi ∼ indN(0, σ2
i ). In vector matrix form:

Y− µ = B(Y− µ) + ε

or
Y = µ+ ε∗

where ε∗ ∼ Nm(0, (I − B)−1Σ(I − B′)−1) with Σ = diag{σ2
1 , . . . , σ

2
m}.

This model capture spatial independence through the mean structure
- a moving average of the {εi}.
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SAR IN EXTENDED FORM

I Data model: [Z(si) | Y(si), σε] = indN(Y(si), σε)

I Process model: [Y | β, σ2, ρ] = N(Xβ, σ2(I− ρW′)(I− ρW)) where
W has zeros down the diagonal but need not be the adjacency
matrix.

I Parameter model: Prior distribution on the parameters.

A large class of models. Can see the affect of covariates on the process
Y. CAR can also incorporate the Xβ type model.
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NOTE ON MISALIGNED DATA

Different responses measured at monitoring sites in a systematic way.
We call unmeasured complements at each site.

systematically missing. Often these unmeasured values are
predicted from the others at different sites.

Change of support means data measured at different resolutions, e.g.
some at a county level, some at point locations.
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NOTES ON AREAL DATA

Sometimes areal data can profitably be modelled as an aggregate of
individual data.

I Can reflect greater uncertainty due to variation within areas.
I Was used to explore the ecological effect and develop model that

avoids it.
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DISEASE MAPPING

Disease mapping has a long history in epidemiology, and may be
defined as the estimation and presentation of summary measures of
health outcomes.

The aims of disease mapping include
I simple description,
I hypothesis generation,
I allocation of health care resources, assessment of inequalities,

and
I estimation of background variability in underlying risk in order

to place epidemiological studies in context.
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DISEASE MAPPING

Unfortunately there are well-documented difficulties with the
mapping of raw estimates since, for small areas and rare diseases in
particular, these estimates will be dominated by sampling variability.

For the model
Yi ∼ Poisson(Eiθi)

the MLE is
θ̂i = SMRi =

Yi

Ei

with variance
var(θ̂i) =

θi

Ei

so that areas with small Ei have high associated variance.
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EXAMPLE: SCOTTISH LIP CANCER

The Figure on the next slide shows the SMRs for the Scottish lip
cancer data, and indicates a large spread with an increasing trend in
the south-north direction.

The variance of the estimate is var(SMRi) = SMRi/Ei, which will be
large if Ei is small.

For the Scottish data the expected numbers are highly variable, with
range 1.1–88.7. This variability suggests that there is a good chance
that the extreme SMRs are based on small expected numbers (many
of the large, sparsely-populated rural areas in the north have high
SMRs).
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EXAMPLE: SCOTTISH LIP CANCER 2007 Jon Wakefield, Biostat 578
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Figure 26: SMRs in 56 counties of Scotland.

93
Figure: SMRs in 56 counties of Scotland.
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SMOOTHING MODELS

The above considerations led to methods being developed to smooth
the SMRs using hierarchical/random effects models that use the data
from the totality of areas to provide more reliable estimates in each of
the constituent areas.

We first describe models that do not use spatial information before
turning to models that exploit both spatial and non-spatial
information.
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POISSON-GAMMA MODEL WITHOUT COVARIATES

We begin by describing a simple Poisson-Gamma two-stage model
that offers analytic tractability and ease of estimation.

We assume there are no covariates and assume the first stage
likelihood is given by

Yi|θi, β ∼ind Poisson (µEiθi) , (1)

where µ is the overall relative risk, and reflects differences between
the reference rates and the rates in the study region.

At the second stage the random effects θi are assigned a distribution.
We initially assume that across the map the deviations of the relative
risks from the mean, µ, are modelled by

θi|α ∼iid Ga(α, α), (2)

a gamma distribution with mean 1, and variance 1/α.
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POISSON-GAMMA MODEL WITHOUT COVARIATES

The advantage of this Poisson-gamma formulation is that the
marginal distribution of Yi|µ, α (obtained by integrating out the
random effects θi), is negative binomial.

Marginally, the mean and variance are given, respectively, by

E[Yi|µ, α] = Eiµ

var(Yi|µ, α) = E[Yi|µ, α](1 + E[Yi|µ, α]/α), (3)

so that the variance increases as a quadratic function of the mean,
and the scale parameter α can accommodate different levels of
“overdispersion”.

This form is substantively more reasonable than the naive Poisson
model; it is important to consider excess-Poisson variability resulting
from unmeasured confounders, data anomalies in numerator and
denominator, and model misspecification.
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EXAMPLE: DISEASE MAPPING FOR SCOTLAND

We make use of a mapping function that is on the course website:
PrettyPoly <- function(y, poly, nrepeats, ncut=1000,

nlevels=10, lower=NULL, upper=NULL ) with arguments:
I y the variable to be mapped
I poly the x− y coordinates of the polygons, with different

polygons separated by NAs.
I nrepeats a vector of the same length as y with each entry

containing the number of repeats of the appropriate entry in y.
I ncut The number of grey-scale levels to convert y to.
I nlevels The number of grey levels to plot.
I lower The value (on the same scale as y) that white is assigned

to.
I upper The value (on the same scale as y) that black is assigned

to.
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EXAMPLE: DISEASE MAPPING FOR SCOTLAND
2007 Jon Wakefield, Biostat 578
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Figure 32: SMRs for Scottish counties. 115
Figure: SMRs for Scottish counties.
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EXAMPLE: DISEASE MAPPING FOR SCOTLAND
2007 Jon Wakefield, Biostat 578
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Figure 33: Empirical Bayes posterior mean estimates for Scottish counties. 118Figure: Posterior mean estimates for Scottish counties.
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POISSON-GAMMA MODEL

We now carry out a fully Bayesian analysis of the model for which
empirical Bayes was used previously:

Yi|θi, β0 ∼ Poisson(Eieβ0θi)

θi ∼ Ga(α, α)

We require priors for β0 and α. For example:

β0 ∼ N(m, v)

α ∼ Ga(a, b)

with m, v, a, b picked to reflect beliefs about β0 and α.
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MCMC ANALYSIS OF THE POISSON-GAMMA MODEL

In the example that follows we specify a flat prior for β0, and a
Ga(1,1) prior for α.

The iterative algorithm is run for 10,000 iterations, with the first 4,000
discarded as “burn-in”.

We summarize the posteriors for the relative risks:

RRi = exp(β0)θi

and for β0 and α. The posterior mean for β0 is 0.36, compared to 0.35
under empirical Bayes, and the posterior mean for α is 1.79,
compared to 1.88 under empirical Bayes.

Similarly the posterior means and posterior medians agree very
closely.
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POISSON-LOGNORMAL MODEL

The Poisson-gamma model offers analytic tractability, but does not
easily allow the incorporation of spatial random effects.

A Poisson-lognormal non-spatial random effect model is given by:

Yi|β,Vi ∼ind Poisson(EiµieVi) Vi ∼iid N(0, σ2
v) (4)

where Vi are area-specific random effects that capture the residual or
unexplained (log) relative risk of disease in area i, i = 1, ...,n.
Whereas in the Poisson-Gamma model we have θ ∼ Ga(α, α), here
we have θ = eVi ∼ LogNormal(0, σ2).

Model (??) does not give a marginal distribution of known form, but
does naturally lead to the addition of spatial random effects.

The marginal variance is of the same quadratic form as (??). Empirical
Bayes is not so convenient for this model, and so we resort to a fully
Bayesian approach for which we need to specify prior distributions.
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PRIOR CHOICE FOR NON-SPATIAL MODEL
We need to specify priors for:

I The regression coefficients β.
I The variance of the random effets σ2

v .
For a rare disease, a log-linear link is a natural choice:

logµ(xi,β) = β0 +

J∑
j=1

βjxij,

where xij is the value of the j-th covariate in area i.

For regression parameters β = (β0, β1, ..., βJ), an improper prior

p(β) ∝ 1

may often be used, but in very circumstances such a choice may lead
to an improper posterior.

If there are a large numbers of covariates, or high dependence
amongst the elements of x, then more informative priors will be
beneficial.
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I In general we might expect residual relative risks in areas that
are “close” to be more similar than in areas that are not “close”.

I We would like to exploit this information in order to provide
more reliable relative risk estimates in each area.

I This is analogous to the use of a covariate x, in that areas with
similar x values are likely to have similar relative risks.

I Unfortunately the modelling of spatial dependence is much
more difficult since spatial location is acting as a surrogate for
unobserved covariates.

I We need to choose an appropriate spatial model, but do not
directly observe the covariates whose effect we are trying to
mimic.
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We first consider the model

Yi|β,γ,Ui,Vi ∼ind Poisson(EiµieUi+Vi)

with
logµi = g(Si,γ) + f (xi,β), (5)

where
I Si = (Si1,Si2) denotes spatial location, the centroid of area i,
I f (xi,β) is a regression model,
I g(Si,γ) is an expression that we may include to capture

large-scale spatial trend – the form

f (Si) = γ1Si1 + γ2Si2,

is a simple way of accommodating long-term spatial trend.
I The random effects Vi ∼iid N(0, σ2

v) represent non-spatial
overdispersion,

I Ui are random effects with spatial structure. We describe two
forms.
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A JOINT MODEL

I Assume that U = (U1, ...,Un) arise from a zero mean
multivariate normal distribution with variances var(Ui) = σ2

u
and correlations corr(Ui,Uj) = exp(−φdij) = ρdij where dij is the
distance between the centroids of areas i and j, and ρ > 0 is a
parameter that determines the extent of the correlation.

I This model is isotropic since it assumes that the correlation is the
same in all spatial directions. We refer to this as the joint model,
since we have specified the joint distribution for U.

I More generally the correlations can be var as
corr(Ui,Uj) = exp(−(φdij)

κ).
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A CONDITIONAL MODEL

I An alternative approach is to specify the distribution of each Ui
as if we knew the values of the spatial random effects Uj in
“neighbouring areas”

I We need to specify a rule for determining the “neighbours” of
each area.

I Spatial models that start with the n area-specific residual spatial
random effects all suffer from a level of arbitrariness in their
specification – in an epidemiological context the areas are not
regular in shape (as opposed to images for example, which are
on a regular grid).

I To define neighbours, a number of authors have taken the
neighbourhood scheme to be such that areas i and j are taken to
be neighbours if they share a common boundary. This is reasonable
if all regions are of similar size and arranged in a regular pattern
(as is the case for pixels in image analysis where these models
originated), but is not particularly attractive otherwise.
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I Various other neighbourhood/weighting schemes are possible.
I We could take the neighbourhood structure to depend on the

distance between area centroids and determine the extent of the
spatial correlation (i.e. the distance within which regions are
considered neighbours).

I In typical applications it is difficult to assess whether the spatial
model chosen is appropriate, which argues for a simple form,
and to assess the sensitivity of conclusions to different choices
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THE ICAR MODEL

I A common model is to assign the spatial random effects an
intrinsic conditional autorgressive (ICAR) prior.

I Under this specification it is assumed that

Ui|Uj, j ∈ ∂i ∼ N
(

Ui,
ω2

u

mi

)
,

where ∂i is the set of neighbours of area i, mi is the number of
neighbours, and Ui is the mean of the spatial random effects of
these neighbours.

I The parameter ω2
u is a conditional variance and its magnitude

determines the amount of spatial variation.
I The variance parameters σ2

v and ω2
u are on different scales, σv is

on the log odds scale while ωu is on the log odds scale, conditional
on Uj, j ∈ ∂i; hence they are not comparable (in contrast to the
joint model in which σu is on the same scale as σv).
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THE ICAR MODEL

I Notice that if ω2
u is “small” then although the residual is strongly

dependent on the neighbouring value the overall contribution to
the residual relative risk is small.

I This is a little counterintuitive but stems from spatial models
having two aspects, strength of dependence and total amount of
spatial dependence, and in the ICAR model there is only a single
parameter which controls both aspects.

I In the joint model the strength is determined by ρ and the total
amount by σ2

u. A non-spatial random effect should always be
included along with the ICAR random effect since this model
cannot take a limiting form that allows non-spatial variability; in
the joint model with Ui only, this is achieved as ρ→ 0. If the
majority of the variability is non-spatial, inference for this model
might incorrectly suggest that spatial dependence was present.
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2007 Jon Wakefield, Biostat 578
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(b) Smoothed estimates

Figure 42: Raw and smoothed estimates in 56 counties of Scotland.

176

Figure: Raw and smoothed estimates in 56 counties of Scotland.
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Point Referenced Spatial Processes
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EXAMPLE: US OZONE MONITORING SITES
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RANDOM FIELD

A random process Y(s), s ∈ D ⊂ Rd for some d

Usually d = 2. Interest focuses on stochastic inter-site spatial
dependence (correlation in the case of Gaussian fields) between Y(s1)
and Y(s2).

Why?
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CORRELATION: IS YOUR ENEMY!

Suppose Y(si) = µ+ W(si), i = 1, . . . , p where for any two sites
corr[W(s1),W(s2)] = 0.97. A naive statistician might take

Ȳ± 1.96
s
√p

as a 95% CI. But strong correlation effectively reduces the sample size
to p = 1. It makes the CI much larger. Of particular concern in spatial
regression where Y = Xβ + ε where Y is sample of measurements
made at various locations in a random field.
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CORRELATION IS YOUR FRIEND!

Strong intersite correlation enables strength to be “borrowed”.
Measurements at a few sites can be used to predict the rest.

Bad and good correlation has thus led to an explosion of interest in
stochastic models for random fields.
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SPATIAL MODELLING: START WITH EDA! CASE

STUDY 1

The Maas or Meuse: major European river. Rises in France. Flows
through Belgium & the Netherlands. Draining into North Sea. ITotal
length of 925 km. Has been monitored over time.
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SPATIAL MODELLING: START WITH EDA! CASE

STUDY 1

Various chemical measurements are stored in a dataset found in the
gstat package.

> library(gstat)
> data(meuse)
> str(meuse)
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SPATIAL MODELLING: START WITH EDA! CASE

STUDY 1

‘data.frame’: 155 obs. of 13 variables:
$ x : num 181072 181025 181165 181298 181307 ...
$ y : num 333611 333558 333537 333484 333330 ...
$ cadmium: num 11.7 8.6 6.5 2.6 2.8 3 3.2 2.8 2.4 1.6 ...
$ copper : num 85 81 68 81 48 61 31 29 37 24 ...
$ lead : num 299 277 199 116 117 137 132 150 133 80 ...
$ zinc : num 1022 1141 640 257 269 ...
$ elev : num 7.91 6.98 7.80 7.66 7.48 ...
$ dist : num 50 30 150 270 380 470 240 120 240 420 ...
$ om : num 13.6 14 13 8 8.7 7.8 9.2 9.5 10.6 6.3 ...
$ ffreq : Factor w/ 3 levels "1","2","3": 1 1 1 1 1 1 1 1 1 1 ...
$ soil : Factor w/ 3 levels "1","2","3": 1 1 1 2 2 2 2 1 1 2 ...
$ lime : Factor w/ 2 levels "0","1": 2 2 2 1 1 1 1 1 1 1 ...
$ landuse: Factor w/ 15 levels "Aa","Ab","Ag",..: 4 4 4 11 4 11 4 2 2 15 ...$
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SPATIAL MODELLING: START WITH EDA! CASE

STUDY 1

First of all: inspect sampling locations.

> print(xyplot(y ~ x, data = meuse))

x

y

●
● ●

●

●
●

●●

●
●

●
●

●
●

●
●

●

●

●

● ● ●
●

●

●
●●

●
●

●

●
●

●
●
●●

●

●
●

●

●

●●

●

●

●

●

●

●

●
●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●●

● ●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●●

●

●
●

●

●●
●

●
●

●

●

●

●
●

●

●

●

●●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

● ●

●

●
●

●●
●

●

●

●

●●
●

●

330000

331000

332000

333000

178500 179000 179500 180000 180500 181000 181500



111/ 222

The need for Spatio-Temporal modelling Spatial Lattice Processes Point Referenced Spatial Processes Spatio-Temporal Processes

SPATIAL MODELLING: START WITH EDA! CASE

STUDY 1
Ad hoc checks for non-stationarity can be done. Conditioning plots
are one such approach.

> coplot(zinc ~ x | y, data = meuse)
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SPATIAL MODELLING: START WITH EDA! CASE

STUDY 1

> coplot(zinc ~ y | x, data = meuse)
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SPATIAL MODELLING: START WITH EDA! CASE

STUDY 1

Next distributional checks, e.g. "Box and Whisker plot".

> print(bwplot(~zinc, data = meuse))
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SPATIAL MODELLING: START WITH EDA! CASE

STUDY 1

Or a histogram.

> print(histogram(~zinc, data = meuse))
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SPATIAL MODELLING: START WITH EDA! CASE

STUDY 1
The empirical cdf

> library(stepfun)
> cdf.zinc <- ecdf(meuse$zinc)
> plot(cdf.zinc, verticals = T, do.points = F)
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SPATIAL MODELLING: START WITH EDA! CASE

STUDY 1
The q–q (quantile-quantile) plot

> qqnorm(meuse$zinc)
> qqline(meuse$zinc)
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SPATIAL MODELLING: START WITH EDA! CASE

STUDY 1

geoR alternative to gstat has nice plot function. But data must be
converted to a geodata object from the meuse dataset, a dataframe
object.

> library(geoR, warn = F)
> meuse.geo <- as.geodata(meuse, data.col = 6)

Loading required package: mva
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SPATIAL MODELLING: START WITH EDA! CASE

STUDY 1

> plot(meuse.geo)
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SPATIAL MODELLING: START WITH EDA! CASE

STUDY 1

CONCLUSION: Log zinc fitted reasonably well with a student t
distribution - very heavy tails.
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SOME THEORY: MOMENTS

Y ∼ F: random vector field. Fixed time t omitted in sequel. s and x
commonly used for spatial coordinates, e.g. (lat, long). We use s.
For locations {s1, . . . , sg} for any g

Fs1,...,sg(y1, . . . , yg) ≡ P{Y(s1) ≤ y1, . . . ,Y(sg) ≤ yg}.

Fs1,...,sg(y) is joint distribution distribution (DF)
I Moment of kth-order:

E[Y(s)]k ≡
∫

ykdFs(y)
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SOME THEORY

I Expectation: If exists, defined as the 1st-order moment for any s

µ(s) ≡ E[Y(s)]

I Variance:
Var[Y(s)] ≡ E[Y(s)− µ(s)]2.

I Covariance between locations s1 & s2,

C(s1, s2) ≡ E[(Y(s1)− µ(s1))(Y(s2)− µ(s2))]

NOTE: C(s1, s1) ≡ Var[Y(s1)]
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SOME THEORY: STATIONARITY

An important concept in characterizing the random field Y
I Strict stationarity Y strictly stationary if:

Fs1,...,sn(y) = Fs1+h,...,sn+h(y)

for any vector h & an arbitrary n
I Second–order stationarity Y is second-order stationary if:

µ(s) = E[Y(s)] = µ
C(s, s + h) = C(s + h− s) = C(h)

when h = 0 : Var[Y(s)] = C(s, s) = C(0)
ie. Mean, Variance do not depend on location
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SOME THEORY: STATIONARITY

I Second–order stationarity - cont’d
C(h): covariogram (or autocovariance in time series) implies
Intrinsic Stationarity (weaker)

Var[Y(s)− Y(s + h)] = Var[Y(s)] + Var[Y(s + h)]

−2Cov[Y(s),Y(s + h)]

= C(0) + C(0)− 2C(h)

= 2[C(0)− C(h)].

or equivalently semi-variogram

γ(h) = C(0)− C(h)
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PROPERTIES OF C(h)

X second-order stationary process with covariance function C(h).
I Positive Definiteness (PD): If Σ = {C(hij)} being covariance

matrix of random vector (Y(s1), . . . ,Y(sn)) makes it PD implying
for any vector a that: ∑

i

∑
j

aiajC(hij) > 0

I Anisotropy: C(h) - function of length & direction
I Isotropy: C(h) - function only of length |h|
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VARIOGRAMS

Matheron supposed that at least for small | h |

E[Y(s + h)− Y(s)] = 0

would be reasonable assumption. He then defined the
I Variogram:

2γ(h) ≡ var[Y(s + h)− Y(s)]
= E[Y(s + h)− Y(s)− (µ(s + h)− µ(s))]2.
= E[Y(s + h)− Y(s)]2.

I γ(h) is called semi-variogram.
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ISOTROPIC SEMI-VARIOGRAM MODELS

Second order stationarity implies γ(h) = C(0)− C(h)→ γ(0) = 0
I But often limh→0 γ(h) 6= 0. Discontinuity called nugget effect.
I When γ(h)→ B as h→∞, B called a sill
I Note: Few functions satisfy positive definiteness condition - only

certain ones (eg. variogram)
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COMMON ISOTROPIC MODELS

Exponential model

|h|

se
m

i
va

rio
gr

am

γ(h) = a  +   b  (1 − e−t0  h )
for h > 0 , a ≥ 0 , b ≥ 0, and t0 ≥ 0

a

b
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COMMON ISOTROPIC MODELS

Gaussian model

|h|

se
m

i
va

rio
gr

am

γ(h) = a  +   b  (1 − e−t0  h2 )
for h > 0 , a ≥ 0 , b ≥ 0, and t0 ≥ 0

a

b
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COMMON ISOTROPIC MODELS

Whittle Matern model

|h|

se
m

i
va

rio
gr

am

γ(h) = a  +   b  (1 − (t0h)ν Kν(t0h) c)
c = 2ν−1Γ(ν)
Kν : Modified Bessel function

for h > 0 , a ≥ 0 , b ≥ 0, and t0 ≥ 0

a

b
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SPATIAL PREDICTION

Typo: Change X to Y

Problem: Estimate at location s0 given observed levels X(si) ?

X(s1)

X(sn)

X(s3)

X(s2)

s0
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CASE STUDY 1: ZINC LEVELS IN THE NETHERLANDS

Values of log zinc at sampling locations. Mapping the basin would
mean predicting unmeasured responses at other sites without

measurements.
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ORDINARY KRIGING

Goal:. Ignoring measurement error for simplicity predict Y(s0) given
observations y1, . . . , yn at locations s1, . . . , sn. Assumption

I Covariance structure known
I Y(s) = µ+ W(s) & intrinsic stationary, ie.

E[Y(s)] = µ

Var[Y(s)− Y(s + h)] = 2γ(|h|)

I Linear predictors:

Y∗(s0) =

n∑
i=1

αiY(si)
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ORDINARY KRIGING

Reaching the goal: choose {α} to get unbiasedness & minimal
prediction error

σ2
s0
≡ E [Y∗(s0)− Y(s0)]

2

Result: Kriging predictor = best linear unbiased predictor (BLUP)
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ORDINARY KRIGING SYSTEM

I E[Y∗(s0)] = E
[∑n

i=1 αiYsi)
]

= µ
∑n

i=1 αi (1)

implies
∑n

i=1 αi = 1.
I Prediction error (Kriging variance).

σ2
s0
≡ E [Y∗(s0)− Y(s0)]

2
= E

[
n∑

i=1

αi[Y(si)− Y(s0)]

]2

=

n∑
i=1

n∑
j=1

αiαjE[Y(si)− Y(sj)]
2/2

−
n∑

i=1

αiE[Y(si)− Y(s0)]2

=

n∑
i=1

n∑
j=1

αiαjγ(|hij|)− 2
n∑

i=1

αiγ(|hi0|) (2)

α’s chosen to minimize (2) & satisfy (1)
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IMPLEMENTATION IN SUMMARY

I Select good semi-variogram model. Estimate γ̂(.) since it will not
be known as assumed.

I Solve the Kriging system to obtain α̂’s

Resulting Kriging predictor & estimated Kriging variance

Ŷ∗(s0) =

n∑
i=1

α̂iyi

σ̂2
s0

=

n∑
i=1

n∑
j=1

α̂iα̂jγ̂(|hij|)−
n∑

i=1

α̂iγ̂(|hi0|)
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REMARKS

I Y ∼ Gaussian implies 95% prediction interval:

[Y∗(s0)− 1.96σs0 ,Y
∗(s0) + 1.96σs0 ]

I Kriging predictor is exact interpolator;
(interpolator = observed value at that location)

I σ2
s0

is

σ2
s0

=

n∑
i=1

n∑
j=1

αiαjC(si, sj)− 2
n∑

i=1

αiC(si, s0) + Var(Y(s0))

I Stationarity required only because cannot otherwise estimate the
covariance.
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UNIVERSAL KRIGING

Random fields with non-constant means. Let

Y(s) = µ(s) + W(s)

I Here W(s) is 2nd-order stationary with mean E[W(s)] = 0

I µ(s) =
∑k

l=1 alfl(s) {fl(s), l = 1, . . . , k} : known functions with
parameters and {al}. Can be dummy variables.

Universal Kriging Estimator:

Y∗(s0) =

n∑
i=1

αiY(si)

Weights α’s chosen to get unbiased estimate with smallest prediction
error.



138/ 222

The need for Spatio-Temporal modelling Spatial Lattice Processes Point Referenced Spatial Processes Spatio-Temporal Processes

SIMULATION STUDY

geoR provides a random field simulation function. Notice that we
have used the Matern covariance function to generate the data with
κ = 0.5 so it gives an exponential variogram. The range is φ = 0.05
but this varies in the simulation study.

grf(n, grid = "irreg", nx, ny, xlims = c(0, 1),
ylims = c(0, 1), borders, nsim = 1,
cov.model = "matern", cov.pars = c(1,0.04) kappa = 0.5, nugget =
0, lambda = 1, aniso.pars,
mean = 0, method, RF=TRUE, messages)
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SIMULATION STUDY

We begin with the variogram clouds for φ = 0.05, 0.50.
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SIMULATION STUDY

We turn to bins or φ = 0.05, 0.50.
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SIMULATION STUDY

We finish with smoothers φ = 0.05, 0.50.
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VARIOGRAM FITTING STRATEGIES

First choose a parametric variogram family.

Then use:
Least squares: We use four LS methods below, all of
which fit to the binned variogram:

1. ordinary least squares
2. weighted least squared- bin counts; variances;

Cressie weights.
Maximum likelihood: Needs to have a specified
sampling distribution.
Bayes: Distributions put on the parameters.
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CASE STUDY 1 (CONTINUED)

Values of log residuals, after detrending the data by removing effect
of “distance from river” and “elevation” through universal kriging.
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CASE STUDY 1 (CONTINUED)

Predicted spatial residual surface.
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CASE STUDY 1 (CONTINUED)

Standard error of prediction of residual.
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LEAST SQUARE ESTIMATORS

Ordinary least squares: Choose θ to minimize

(γ̂ − γθ)′(γ̂ − γθ).

Ordinary LS immediately implementable by a
nonlinear least squares procedure. But estimates γ̂(h)
may vary a lot so assigning equal weights to all γ̂(h)
unsatisfactory.
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LEAST SQUARE ESTIMATORS

Number weighted least squares: Modification of equal weights
scheme uses weights given by number of pairs in each
bin as in second method above. Choose θ to minimize

(γ̂ − γθ)′M(γ̂ − γθ),

where M is a diagonal matrix of the number of pairs of
points in each bin.
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LEAST SQUARE ESTIMATORS

Weighted least squares: Choose θ to minimize

(γ̂ − γθ)′Wθ(γ̂ − γθ),

where Wθ is a diagonal matrix of the variances of the
entries of γθ.
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LEAST SQUARE ESTIMATORS

Generalized least squares: Choose θ to minimize

(γ̂ − γθ)′Vθ(γ̂ − γθ),

where Vθ denotes the covariance matrix of γθ.

NOTES:
I The weighted and generalized least squares method require

specification of the matrices Wθ and Vθ.
I Generalized LS is possible in principle, but complicated to

implement.
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CASE STUDY 2: SOIL CALCIUM IN BRAZIL

These data consist of calcium content in soil from a region in Brazil.
They are in the geoR library. For a description use > ?ca20 on the
command line in R.
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CASE STUDY 2: SOIL CALCIUM IN BRAZIL

Fitting variograms by ordinary least squares.
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CASE STUDY 2: SOIL CALCIUM IN BRAZIL

Estimated parameters.

model sill range nugget RSS
exponential 139.1881 179.0273 7.3292 678.683
gaussian 87.8525 273.3551 56.7929 443.8803
spherical 104.1764 555.6048 40.3781 375.0742
matern 110.7297 135.1417 35.213 601.5659
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CASE STUDY 2: SOIL CALCIUM IN BRAZIL

Number weighted least square fitting.
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CASE STUDY 2: SOIL CALCIUM IN BRAZIL

Estimated parameters.

model sill range nugget RSS
exponential 139.901 249.1264 20.3517 430123.7
gaussian 90.6371 303.4283 59.9994 251816.7
spherical 107.8644 599.9593 41.8199 149820.6
matern 114.1321 170.633 42.6684 355798.4
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CASE STUDY 2: SOIL CALCIUM IN BRAZIL

Estimated parameters –spherical model – different fitting methods.

method sill range nugget RSS
ordinary 104.1764 555.6048 40.3781 375.0742
number 107.8644 599.9593 41.8199 149820.6
cressie 108.1 598.2109 41.6151 8.8353
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LIKELIHOOD APPROACH

The likelihood approach is viewed as best method since points in the
empirical variogram are highly correlated. Makes LS inefficient and
misleading. geoR has that option.
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ENSURING SIMPLE MODELS

Adding parameters can always reduce residal sums of squares. But
also need to minimize # of parameters. Distributional assumptions &
Akaike Information Criterion (AIC) can do this:

AIC =− 2 log(maximized likelihood) + 2(number of parameters),

AIC’s variable part is estimated by

n log(RSS) + 2p.

Here n = # of points, p= #of model parameter and RSS = residual sum
of squares.



158/ 222

The need for Spatio-Temporal modelling Spatial Lattice Processes Point Referenced Spatial Processes Spatio-Temporal Processes

CROSS-VALIDATION WITH KRIGING

Spatial prediction important goal of kriging. So choose model that
does this best. How? By leave–one–out cross–validation.

1. Estimate variogram using sample data & fitted plausible models.
2. For each model, predict excluded Y’s using kriging value there.

Calculate kriging variance as well.
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CROSS-VALIDATION WITH KRIGING

Diagnostics from results: mean–deviation (ME);
mean–squared–deviation (MSE); mean–squared–deviation–ratio (MSDR)
found from squared–errors & kriging variances, σ̂2(si):

ME =

N∑
i=1

| y(si)− ŷ(si) | /N

MSE =

N∑
i=1

| y(si)− ŷ(si) |2 /N

MSDR =

N∑
i=1

(y(si)− ŷ(xi))
2

σ̂2(si)
/N.
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CROSS-VALIDATION WITH KRIGING

NOTES:
I ME should be close to 0, since kriging is an unbiased prediction

method.
I MSE should be as small as possible.
I If the model is accurate then the MSDR should be close to 1.
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CASE STUDY 2 (CONT’D).

Do cross-validation for the four variogram models “exponential”,
“gaussian”, “spherical”, and “matern” on the ca20 data from the
geoR package. Then calculate diagnostic indices.

model ME MSE MSDR
exponential -0.008028705 60.94539 1.103823
gaussian -0.007405837 69.02756 1.064712
spherical -0.008975785 62.69338 1.022848
matern -0.00870061 62.96571 1.057020
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SOME DIAGNOSTIC PLOTS

The spherical model seems to win also in the cross-validation
competition. But diagnostic plots seen in the slides that follow can
also be useful.
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SOME DIAGNOSTIC PLOTS
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SOME DIAGNOSTIC PLOTS
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SOME DIAGNOSTIC PLOTS
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SOME DIAGNOSTIC PLOTS
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SOME DIAGNOSTIC PLOTS
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SOME DIAGNOSTIC PLOTS
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SOME DIAGNOSTIC PLOTS
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WHAT IF PROCESS SEEMS NON-STATIONARY?

Some options follow:
1. Change spatial mean: µ(s) will inevitably be misspecified as
µ∗(s) so the residual is misspecified as W∗(s) = Y(s)− µ∗(s).
Thus the calculated variogram will be non-stationary

E[W∗(s1)−W∗(s2)]2 = E[W(s1)−W(s2)]2+

[{µ∗(s1)− µ∗(s1)}−
{µ∗(s2)− µ∗(s2)}]2
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WHAT IF PROCESS SEEMS NONSTATIONARY?

2. Adopt non-stationary modelling approach, convolution
approach: Represent the residual as

W(s) =

∫
K(s− s′)W∗(s′)ds′

where W∗ is stationary. NOTE: Allows only modest degree of

nonstationarity.
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WHAT IF PROCESS SEEMS NONSTATIONARY?

3. Warping: The famous Sampson–Guttorp approach warps the
geographic space into dispersion space so that strongly
correlated sites are moved closet together, uncorrelated ones
further apart.

4. Dimension expansion: Keep the geographic space as is but add
additional dimensions.
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EXAMPLE: PARTICULATE MATTER IN VANCOUVER

I Small particulates, the size of those in cigarette smoke are nasty.
I They get deep into the lung to the gas exchange membrane

where they can generate antiinflammatory mediators.
I These in turn affect the cardio–vascular system and cause heart

problems.
I PM10 are all up to 10 microns in size. PM2.5 is the fraction with

the smallest sizes and are now of primary concern.
I However the spatial field can be quite nonstationary since these

particulates come from mobile and local sources.
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HOURLY PM10 IN VANCOUVER -1994-1999
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HOURLY PM10 IN VANCOUVER -1994-1999
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Spatio-Temporal Processes
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BAYESIAN HIERARCHICAL MODELS

Bayesian hierarchical models are an extremely useful and flexible
framework in which to model complex relationships and
dependencies in data and they are used extensively throughout the
book. In the hierarchy we consider, there are three levels;
(1) The observation, or measurement, level; Y|Z,X1, θ1.

Data, Y, are assumed to arise from an underlying process, Z,
which is unobservable but from which measurements can be
taken, possibly with error, at locations in space and time.
Measurements may also be available for covariates, X1. Here θ1
is the set of parameters for this model and may include, for
example, regression coefficients and error variances.
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BAYESIAN HIERARCHICAL MODELS

(2) The underlying process level; Z|X2, θ2.
The process Z drives the measurements seen at the observation
level and represents the true underlying level of the outcome. It
may be, for example, a spatio–temporal process representing an
environmental hazard. Measurements may also be available for
covariates at this level, X2. Here θ2 is the set of parameters for
this level of the model.

(3) The parameter level; θ = (θ1, θ2).
This contains models for all of the parameters in the observation
and process level and may control things such as the variability
and strength of any spatio–temporal relationships.
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A HIERARCHICAL APPROACH TO MODELLING

SPATIO–TEMPORAL DATA

I A spatial–temporal random field, Zst, s ∈ S, t ∈ T , is a stochastic
process over a region and time period.

I This underlying process is not directly measurable, but
realisations of it can be obtained by taking measurements,
possibly with error.

I Monitoring will only report results at NT discrete points in time,
T ∈ T where these points are labelled T = {t0, t1, . . . , tNT}.

I The same will be true over space, since where air quality
monitors can actually be placed may be restricted to a relatively
small number of locations, for example on public land, leading to
a discrete set of NS locations S ∈ S with corresponding labelling,
S = {s0, s1, . . . , sNT}.
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A HIERARCHICAL APPROACH TO MODELLING

SPATIO–TEMPORAL DATA

I There are three levels to the hierarchy that we consider.
I The observed data, Yst, s = 1, ...,NS, t = 1, ...,NT, at the first level

of the model are considered conditionally independent given a
realisation of the underlying process, Zst.

Yst = Zst + vst

where vst is an independent random, or measurement, error term
I The second level describes the true underlying process as a

combination of two terms: (i) an overall trend, µst and (ii) a
random process, ωst.

Zst = µst + ωst
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A HIERARCHICAL APPROACH TO MODELLING

SPATIO–TEMPORAL DATA

I The trend, or mean term, µst represents broad scale changes over
space and time which may be due to changes in covariates that
will vary over space and time.

I The random process, ωst has spatial–temporal structure in its
covariance.

I In a Bayesian analysis, the third level of the model assigns prior
distributions to the hyperparameters from the previous levels.
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SPATIO–TEMPORAL MODELLING

Handling time.
I Depends on random response paradigm: point referenced;

lattice; point process.
I Active area of current development
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GENERAL APPROACHES TO INCORPORATING TIME

I Approach 1: Treat continuous time as like another spatial
dimension with stationarity assumptions. Eg. Spatio–temporal
Kriging. NOTE: Constructing covariance models is more
involved

I Approach 2: Integrate spatial fields over time. Eg. Given a
spatial lattice let X(t) : m× 1 be vectors of spatial responses at
lattice points. Eg. use multivariate autoregression.

I Approach 3: Integrate times series across space. For a temporal
lattice let X(s) : 1× T be vector of temporal responses at - use
multivariate spatial methods. Eg.co–Kriging; BSP.
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SPECIALIZED APPROACHES

I Approach 4: Build a statistical framework on physical models
that describe the evolution of physical processes over time
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EXAMPLE: THE DLM

Combine dynamic linear models across space to get spatial

predictor & temporal forecastor. Result: model for hourly
√

(O3)

field over Mexico City - data from 19 monitors in Sep 1997.
Measurement model:

X(s, t) = β(t) + S′(t)α(s, t) + Z(s, t)γ(t) + ε(s, t)

where
I St : 2× 1 has sin’s and cos’s;
I α has their amplitudes, Z temperature covariate
I ε(s, t): un-autocorrelated error with isotropic exponential spatial

covariance.
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SPECIALIZED APPROACHES: EG DLM

Process model:

β(t) = β(t− 1) + ωβ(t)
α(s, t) = α(s, t− 1) + ωα(s, t)
γ(t) = γ(t− 1) + ωγ(t)
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SPECIALIZED APPROACHES: EG DLM

PROS:
I intuitive, flexible
I allows incorporation of physical/prior knowledge

CONS:
I computationally intensive - maximum of 10 measurement sites
I non - unique model specification - finding good one can be

difficult
I unrealistic covariance
I empirical tests suggest simpler multivariate BSP works better for

spatial prediction and temporal forecasting but much less
computationally demanding, Eg. 300 measurement sites
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PHYSICAL STATISTICAL MODELLING

I physical models needed for background
I prior knowledge often expressed by differential equations (de’s)
I can lead to big computer models
I yield deterministic response predictions
I can encounter difficulties:

I butterfly effect
I nonlinear dynamics
I lack of relevant background knowledge
I lack of sufficient computing power
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PHYSICAL STATISTICAL MODELLING

I statistical models also desirable
I prior knowledge expressed by statistical models
I often lead to big computer models
I yield predictive distributions
I can encounter difficulty:

I off-the-shelf-models too simplistic
I lack of relevant background knowledge
I lack of sufficient computing power



190/ 222

The need for Spatio-Temporal modelling Spatial Lattice Processes Point Referenced Spatial Processes Spatio-Temporal Processes

EXAMPLE: CHEMICAL TRANSPORTATION MODELS

MAQIP hourly ozone concentration prediction model outputs
version data. A CMAQ prototype. Red is from the model. Blue are
the data.
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PHYSICAL STATISTICAL MODELLING

May be strength in unity but:
I big gulf between two cultures
I communication between camps difficult
I approaches different
I route to reconciliation unclear
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PHYSICAL STATISTICAL MODELLING

Approach to reconciliation - depends on: purpose; context; # of
(differential) equations; etc.

With many equations (e.g. 100):

I build a better predictive response density for [field response |
deterministic model outputs]
eg. input model value as prior mean

I view model output as response and create joint density for
[field response,model output] =∫

[field response|λ][model output|λ]× π(λ|data)dλ
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PHYSICAL STATISTICAL MODELLING

With a few differential equations (de’s)

Example: dX(t)/dt = λX(t).
I Option 1: solve it and make known or unknown constants

uncertain (i.e. random):
X(t) = β1 expλt + β0

I Option 2: discretize the de and add noise to get a state space
model: X(t + 1) = (1 + λ)X(t) + ε(t)

I Option 3: use functional data analytic approach - incorporate de
through a penalty term as in splines∑

t(Yt − Xt)
2 + (smoothing parameter)

∫
(DX − λX)2dt
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DOWNSCALING PHYSICAL MODELS

Regression – like approaches may be used:

X(s, t) = αst + βMstM(S,T) + βstZcovariates(s, t)δ(s, t)

where M is physical model output, s ∈ Sgrid cell & t ∈ TTime Interval.
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EXAMPLE: MAQSIP REVISITED

MAQIP hourly ozone concentration prediction model outputs
version the downscaling model above.

time

oz
on

e 
le

ve
l i

n 
pb

bs

0 50 100 150 200

10
20

30
40

50
60

70

true measurements
prediction by space time model
prediction by MAQSIP modeling output



196/ 222

The need for Spatio-Temporal modelling Spatial Lattice Processes Point Referenced Spatial Processes Spatio-Temporal Processes

MODELLING MULTIPLE POLLUTANTS AT MULTIPLE

SITES: A CASE STUDY IN BAYESIAN HIERARCHICAL

MODELLING USING MCMC

Aims
I Investigate the spatial-temporal modelling of pollutants.
I Assess the contribution of different components of variability;

spatial, temporal and random variability.
I Develop methodology to provide:

I exposures (and measures of uncertainty) for use in mapping of
environmental factors

I studies investigating the health effects of pollution.
I Fit models and perform analyses in MCMC.
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BACKGROUND

I Daily measurements often available for different pollutants from
a number of sites

I May be subject to measurement error
I Contain missing values

I Pollutants not measured at all sites
I Monitor being moved by design, e.g. six-day monitoring schedule
I Unreliable or faulty monitors
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DATA

I Eight sites within London, 1997-94
I PM10, SO2, NO and CO.
I All pollutants only measured at only 4 sites.
I Periods of operation between 1 and 4 years.
I Percentage of missing values as great as 37%.
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Time series plots of (logged) values of PM10
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Correlations between pollutants and temperature
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Data dependencies
I There are dependencies, both temporally and spatially, between

daily measurements of different pollutants.
I Pollutant dependence - common processes by which they are

formed and the relationship with meteorological conditions.
I Temporal dependence - atmospheric lifetimes and relationship

with meteorological conditions.
I Spatial dependencies - distance between sites and site type.
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Locations of monitoring sites and correlations with distance

(a)

Easting (km)

No
rth

in
g 

(k
m

)

500 510 520 530 540 550

16
5

17
0

17
5

18
0

18
5

19
0

Bexley

Bloomsbury

Brent

Eltham

Harringey Roadside

Hillingdon

North Kensington

Sutton

(b)

Distance (km)

Co
rre

la
tio

n

0 10 20 30 40

0.
75

0.
80

0.
85

0.
90

0.
95

1.
00



203/ 222

The need for Spatio-Temporal modelling Spatial Lattice Processes Point Referenced Spatial Processes Spatio-Temporal Processes

MODEL FRAMEWORK

I Bayesian hierarchical model.
I Pollutants modelled as a function of the true underlying level

with measurement error.
I Incorporate covariate information, e.g. temperature.
I Underlying level is a function of the previous day’s level.
I Missing values treated as unknown parameters within the

Bayesian framework and can be estimated.
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SINGLE POLLUTANT, SINGLE MONITORING SITE

I Stage One, Observed Data Model:

Yt = XT
t β1 + θt + vt,

vt is referred to as measurement error, and assumed to be are
independent and identically distributed (i.i.d.) as N(0, σ2

v)

I Stage Two, Temporal Model:

Autoregressive first order model

θt = ρθt−1 + wt

wt i.i.d. as N(0, σ2
w).
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SINGLE POLLUTANT, SINGLE MONITORING SITE

I Stage Three, Hyperprior:
Normal prior N(c,C) for β1, where c is a q1 × 1 vector and C a
q1 × q1 variance-covariance matrix.
σ−2

v ∼ Ga(av, bv) and σ−2
w ∼ Ga(aw, bw).
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Posterior distribution The posterior distribution is given by

p(θ, β1, σ
2
v , σ

2
w|y) = p(y)−1

{
T∏

t=1

p(yt|θt, β1, σ
2
v)

}
×{

T∏
t=2

p(θt|θt−1, σ
2
w)

}
×

p(θ1)p(β1)p(σ2
v)p(σ2

w)

I Samples may be generated in a straightforward fashion using
Markov chain Monte Carlo

I Dealing with the cyclical graph that arises at stage two, requires
some of the conditional distributions to be explicitly specified
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I Missing values are treated as parameters and the posterior
obtained over these values and the model parameters. Samples
can be generated from the distribution of missing values

p(ym|yo) =

∫
p(ym|λ)p(λ|yo)dλ

where λ = (θ, β1, σ
2
v , σ

2
w)′
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Time series of 250 days of observed and estimated levels (together with their differences) of PM10 at Bloomsbury
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I The following is a plot of posterior median (red line) and
posterior 95% intervals (dashed blue lines) for mu[t] (the
underlying mean daily pollutant concentration), with observed
concentrations shown as black dots.

I This plot was produced by selecting the model fit option from
the Compare menu (available from the Inference menu), with mu
specified as the node, day as the axis and y as other).

I Note that the dashed blue line shows the posterior 95% interval
for the estimated mean daily concentration, and is not a
predictive interval - hence we would not necessarily expect all of
the observed data points to lie within the interval.
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Using RW(1) model
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Equivalent plot assuming an RW(2) prior. Note the greater amount of
smoothing imposed by this prior
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SINGLE POLLUTANT, MULTIPLE MONITORING SITE

I S monitoring sites measuring a single pollutant.
I The underlying autoregressive structure remains constant across

sites with a constant adjustment in the mean level for site s by an
amount ms, s = 1, ...,S.

I Stage One, Observed Data Model:

Yst = X′stβ1 + X′sβ2 + ms + θt + vst

with vst i.i.d. as N(0, σ2
vs) and β1, β2, q1 × 1 and q2 × 1 vectors of

site/day and site only regression coefficients.
I Stage Two (a), Temporal Model:

θt = ρθt−1 + wt

with wt i.i.d. as N(0, σ2
w).
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I Stage Two (b), Spatial Model: The random effects
m = (m1, ...,mS)′ arise from the multivariate normal distribution

m ∼MVN(0S, σ
2
mΣm),

where 0S is an S× 1 vector of zeros,
σ2

m the between-site variance and
Σm is the S× S correlation matrix, in which element (s, s′)
represents the correlation between sites s and s′.

I This model is stationary and assumes an isotropic covariance
model in which the correlation between sites s and s′ is assumed
to be a function of the distance between them

f (dss′ , φ) = exp (−φdss′)

where φ > 0 describes the strength of the correlation
I A simpler model assumes that the site-specific levels are

(conditionally) independent

ms ∼ i.i.d N(0, σ2
m),



214/ 222

The need for Spatio-Temporal modelling Spatial Lattice Processes Point Referenced Spatial Processes Spatio-Temporal Processes

I Stage Three, Hyperpriors:
I Unless there is specific information to the contrary, i.e. that a

monitor with different characteristics is used at a particular site, we
will assume σ−2

vs ∼ Ga(av, bv).
I The between site precision has prior σ−2

m ∼ Ga(am, bm).
I A uniform prior is used for φ, with the limits being based on beliefs

about the relationship between correlation and distance.
I The distance, d, at which the correlation, ρ, between two sites might

be expected to fall to a particular level would be d = − log(ρ)/φ.
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ESTIMATING LEVELS AT UNMEASURED LOCATIONS

I Based on the posterior estimates of the site effects, ms and the
variance-covariance matrix σ2

mΣm, it is possible to estimate the
site effects, and thus pollution levels, at locations where there is
no monitoring site.

I For a site at a new location, mS+1, (m1, ...,mS,mS+1) follows a
multivariate normal distribution with zero mean and
(S + 1)× (S + 1) variance-covariance matrix.

I Letting m = (m1, ..,mS)′, the conditional distribution of mS+1|m
is, normal with mean and variance given by

E[mS+1|m] = σ−2
m Ω′Σ−1

m m,

var(mS+1|m) = σ2
m(1− Ω′Σ−1

m Ω),

I For exploratory purposes, the posterior medians may be
substituted into these expressions (although this will ignore the
inherent uncertainty in the estimates).
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SITE EFFECTS

Median 2.5% 97.5%
Bexley -0.0696 -0.0785 -0.0607
Bloomsbury 0.1341 0.1257 0.1426
Brent -0.1210 -0.1294 -0.1125
Eltham -0.1105 -0.1205 -0.1005
Harringey 0.1098 0.0999 0.1195
Hillingdon 0.0132 -0.0032 0.0300
North Kensington 0.0030 -0.0031 0.0090
Sutton 0.0410 0.0250 0.0572
σm 0.1019 0.0668 0.1794
φ 0.05675 0.02158 0.09778
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Contour plot of site effects based on a 20x20 grid of locations without a pollution monitor with corresponding standard deviations
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MULTIPLE POLLUTANTS, SINGLE MONITORING SITE

I Stage One, Observed Data Model:

Ypt = X′tβ1 + θpt + vpt

with vpt i.i.d. as N(0, σ2
vp) and β1 a q1 × 1 vector of regression

coefficients.
I Stage Two, Temporal and Pollutant Model:

θpt = θp,t−1 + wpt

wt = (w1t, ...,wPt)
′ are i.i.d. multivariate normal random

variables with zero mean and variance-covariance matrix ΣP.
I Stage Three, Hyperpriors:
σ−2

vp ∼ Ga(av, bv), p = 1, ...,P. Σ−1
P ∼WP(D, d), a P−dimensional

Wishart distribution with mean D and precision parameter d.
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I Model was applied to data from four pollutants (PM10, S02, NO
and CO) from the Bloomsbury site.

I Priors σ−2
vp ∼ Ga(1, 0.01), p = 1, ..,P, and β1 ∼ N(0, 1000).

I For the parameters of the Wishart distribution, d was chosen to
be equal to four, the dimension of ΣP;
D was then chosen so that the diagonals of the expected value
(D/d) represent a 10% coefficient of variation. The off-diagonals
were taken to be zero.

I Posterior correlations
PM10 SO2 NO CO

PM10 1.0000 0.8806 0.8192 0.8134
SO2 0.8806 1.0000 0.8472 0.9202
NO 0.8192 0.8472 1.0000 0.9146
CO 0.8134 0.9202 0.9146 1.0000

I Strong correlations mean that inference on missing values can be
made on the values of pollutants
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MULTIPLE POLLUTANTS, MULTIPLE MONITORING

SITES

I Stage One, Observed Data Model:

Yspt = X′ptβ1 + X′stβ2 + θpt + ms + vspt,

where vspt are i.i.d. N(0, σ2
sp), β1 a q1 × 1 vector of pollutant

regression coefficients, and β2 a q2 × 1 vector of spatial regression
coefficients.

I Stage Two, Spatial, Temporal and Pollutant Model:
The (p× 1) vector of daily pollution measurements, (θ1, ..., θP)′,
as a function of the previous days values with possible
correlation between the values of the different pollutants.
An alternative approach would be to allow the spatial effects to
be pollutant specific

I Stage Three, Hyperprior: In the absence of additional
information, we assume that σ−2

vsp ∼ Ga(av, bv).
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Components of variability
I Model 1 (Single pollutant, single site)

I Temporal 70%
I Measurement error 30%

I Model 2 (Single pollutant, multiple sites)
I Temporal 80%
I Spatial 10%
I Measurement error 10%

I Model 3 (Multiple pollutants, single site)
I Temporal 77%
I Measurement error 23%

I Model 4 (Multiple pollutants, multiple sites)
I Temporal 75%
I Spatial 15%
I Measurement error 10%
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SUMMARY

I Examine the contribution of spatial, temporal and random
variability.

I Allows levels to be estimated at non-measured locations.
I Calculate underlying levels of pollution for use in health studies.
I Estimates of missing values.
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