
Statistics in Environmental Research (BUC Workshop Series) IV
Problem sheet 1

Website: http://www.stat.ubc.ca/~gavin/STEPIBookNewStyle/course_bath.html

Spatial modelling with INLA - Part 1

The aims of this practical are to get a general understanding of

• how to fit simple spatial point process models

• including covariates in a spatial model and model choice

• using constructed covariates

1. Preliminary things:

library(spatstat)

library(mvtnorm)

library(lattice)

library(mgcv)

library(pixmap)

library(numDeriv)

library(fields)

library(INLA)

Specify the working directory (the path will be different on your machine; change accordingly):
Enter folder /home/inla workshop/day 2/data

Also source a file with functions that you need later:

source(/home/inla workshop/day 2/data/functions.r)

2. A simple point process model

We initially fit a simple model to a plant data set from Australia. The structure of the model
forms the basic structure of many other more complicated models. Hence all the other models
may be regarded as generalisations of this simple example.

The original data set comprises the locations of 67 different species collected in 22m x 22m plot.
Here we focus on one of the plant species, Andersonia heterophylla, an erect or ascending shrub,
0.1 - 0.5 m in height, grows in sandy, very nutrient poor soils.
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A plot of the plants reveals that the pattern is inhomogeneous. This might have been caused by
varying soil conditions or by how the species is spreading. Clearly, if covariate data were available
we would want to include these in a model.

However, here no covariates are available that could be explicitly included in a model to explain
this inhomogeneity (e.g. soil conditions). We therefore fit a model that takes into account the
spatial large scale variability of the pattern, assuming that this is the result of an underlying
environmental trend even in the absence of data on this. The approach we take here fits a smooth
surface to the data that reflects this trend without making any assumptions on the parametric
form of the trend.

(a) Reading in and gridding the data

We read in the data as:

paul<- read.delim("paul.txt")

# type 5 is Andersonia heterophylla

data<-paul[paul$type=="5",]

x=data$x/10

y=data$y/10

We transform the data into a point pattern object (using several commands from the library
spatstat, for details check the library help files). Ignore the warning about duplicated
points.

x.area=22

x.win=owin(c(0, x.area),c(0, x.area))

data.pp=ppp(x,y,window=x.win)

plot(data.pp, main= " Andersonia heterophylla")

We now need to transform the data, i.e. construct a grid with 30 x 30 cells

nrow=30

ncol=nrow

x.grid=quadrats(x.win,ncol,nrow)

and count the number of points in each grid cell; note that this will be our response variable.

count.grid=quadratcount(data.pp, tess=x.grid)

plot(count.grid)

(b) Running a first model

We have to transform the grid of counts into a vector (and we now use the notation from the
slides for the response variable):

Y = as.vector(count.grid)

The number of grid cells
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n = ncol*nrow

And calculate the area of the grid cells:

cell.area<-x.area^2/n

E<-rep(cell.area, n)

INLA requires separate indices for each of the spatial effect and the error term.

I = 1:n

J = 1:n

We have to specify a prior for the spatial effect

prior.spat=c(1,0.00005) #Default!

hyper.spat=list(prec=list(param=prior.spat))

We can no specify the model formula

formula = Y ~ 1+f(I, model="rw2d", nrow=nrow, ncol=ncol,

hyper=hyper.spat)+f(J, model="iid")

and run the model (this should take only a few seconds at most)

result=inla(formula,data=data.frame(Y,I,J),

family="poisson",E=E, verbose=TRUE,

control.compute=list(dic=TRUE))

We can look at a summary and a plot of the results

summary(result)

plot(result)

The estimated intercept

result$summary.fixed

the (posterior mean of the) spatial effect

f.spat=result$summary.random$I$mean

plot it

im.matrix(matrix(f.spat, ncol, nrow))

the error term

f.unstruct=result$summary.random$J$mean

im.matrix(matrix(f.unstruct, nrow, ncol))

the resulting fit (compare with original pattern) scaled up by the area.

fit=E*result$summary.fitted.values$mean

im.matrix(matrix(fit, nrow, ncol))
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Exercise

• Fit a model without the spatial or the error term to the same data and compare using
the DIC.

• Fit similar models to another spatial pattern from the data set in paul.txt and discuss
the results.

• Investigate the effect of changing the prior for the spatial effect on the smoothness of the
estimated effect. Do this by changing the shape and scale parameters of the prior.

3. A model with covariates We now model a rainforest data set. Some extraordinarily detailed
multi-species maps are being collected in tropical forests as part of an international effort to gain
greater understanding of these ecosystems. These data comprise the locations of all trees with
diameters at breast height (dbh) 1 cm or greater, a measure of the size of the trees (dbh), and
the species identity of the trees. The data usually amount to several hundred thousand trees
in large (25 ha or 50 ha) plots that have not been subject to any sustained disturbance such
as logging. The spatial distribution of these trees is likely to be determined by both spatially
varying environmental conditions and local dispersal. In our example we will only look at species
association with environmental covariates, our current paper however discusses taking into account
local dispersal as well.

The model is fitted to a data set from a 50 ha forest dynamics plot on Barro Colorado Island (BCI)
and consists of the spatial pattern formed by a total of 3887 trees of the species Beilschmiedia
pendula Lauraceae. We fit a similar model as before but we include two (normalised) covariates,
elevation and gradient, for each grid cell.

Again we start by reading in the data and gridding it; read in the data it is a big data set and
takes a while to load up.

nrow=50

ncol=100

n<-nrow*ncol

BCIData <- read.delim("Routput.txt")

species<-BCIData[BCIData$sp=="beilpe",]

spec.string="Beilschmiedia p.L."

x<-species$gx[is.na(species$gx)==F]

y<-species$gy[is.na(species$gy)==F]

x.win=owin(c(0,1000),c(0,500))

data.pp<-ppp(x,y, window=x.win)

plot(data.pp, main=spec.string)

Area=rep(1,nrow*ncol)

Generate the count grid
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x.grid=quadrats(x.win,ncol,nrow)

count.grid=quadratcount(data.pp, tess=x.grid)

Find midpoints of each cell

mid.p=midpoints.func(x.win,nrow,ncol)

We also need to read in the covariate data, elevation and gradient. This is done in the file
read cov.txt (check details if you are interested but it depends on the format of the data and is
hence not that interesting here):

source("read_cov.txt")

Plot the centred elevation (as stored in elev.mean)

im.matrix(matrix(elev.mean,nrow,ncol))

Plot the centred gradient (as stored in grad.mean)

dev.new()

im.matrix(matrix(grad.mean,nrow,ncol))

The response

Y=as.vector(count.grid)

the explanatory variables

Z1=as.vector(elev.mean)

Z2=as.vector(grad.mean)

the grid cell index for the spatial effects

I = 1:n

J = 1:n

Use the log-gamma prior for the precision

param.spat=list(prec=list(prior="pc.prec",param=c(u=1,alpha=0.01)))

And we fit a model with the two covariates, a spatially structured effect and an error term, as
before.
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formula = Y ~ 1 + Z1 + Z2 + f(I, model="rw2d", nrow=nrow,

ncol=ncol, hyper=param.spat, scale.model=T)+ f(J, model="iid")

result.rain = inla(formula, data=data.frame(Y,Z1,Z2, I, J), family = "poisson",

E=Area, verbose = TRUE , control.compute=list(dic=TRUE))

This might take a few minutes (96 seconds when I last ran it). If you want to use a quick and
dirty (i.e. slightly less exact) method use

result.rain2 = inla(formula, data=data.frame(Y,Z1,Z2, I,J), family = "poisson",

E=Area, verbose = TRUE , control.compute=list(dic=TRUE),

control.inla = list(strategy = "gaussian", int.strategy = "eb"))

# Posterior estimates

# Compare result.rain and result.rain2

summary(result.rain)

# The structured and unstructured spatial effects

im.matrix((matrix(result.rain$summary.random$I$mean, nrow, ncol)))

dev.new()

im.matrix((matrix(result.rain$summary.random$J$mean, nrow, ncol)))

Exercise

• Investigate the effect of changing the prior (by adjusting u) for the spatial effect on the
smoothness of the estimated effect.

• The matrix cov.all contains (log-transformed) soil covariates along with the two topography
covariates we used before. cov.string tells you the names of the covariates. Take a look at
these (column no) using im.matrix(matrix(cov.all[,no],nrow,ncol)).

• Find a suitable model for the given species.
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Spatial modelling with INLA - Part 2

In this practical we will look at some more complex spatial models.

The aims of this practical are to get a general understanding of how to fit

• joint models/ models with several likelihoods

• marked point processes (qualitatively marked point patterns, quantitatively marked point pat-
terns)

• models of replicated point patterns

1. Preliminary things (same as before):

library(spatstat)

library(mvtnorm)

library(lattice)

library(mgcv)

library(pixmap)

library(numDeriv)

library(fields)

library(INLA)

specify the working directory (the path will be different on your machine; change accordingly):

setwd("/home/inla\_workshop/day 2/data")

read in some functions that we will need later

source("functions.r")

2. A joint model of two species

The first model we fit is a model of two rainforest species (Protium tenuifolium and Protium
panamense) where we model the species jointly. This means we have two separate likelihoods. In
this case these are both Poisson likelihoods; we will see in the next example that it is also possible
to have different likelihoods and more than two likelihoods within the same model.

We consider a joint model here with a shared spatial effect in order to differentiate between co-
occurrence as the result of a shared environmental preference that cannot be accounted for by the
covariates and local spatial interaction. In a simpler option would be to simply model a single
species given the other species. However, if this is done it is not easily possible to distinguish the
two potential explanations for the species co-occurrence.
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(a) Reading in and gridding the data

We read in the data as:

nrow=50

ncol=100

n=nrow*ncol

BCIData <- read.delim("Routput.txt")

species1<-BCIData[BCIData$sp=="protte",]

spec.string1="Protium tenuifolium"

species2<-BCIData[BCIData$sp=="protpa",]

spec.string2="Protium panamense"

We transform the data into two point pattern objects before

species<-species1

x<-species$gx[is.na(species$gx)==F]

y<-species$gy[is.na(species$gy)==F]

x.win=owin(c(0,1000),c(0,500))

cell.area=100

data1.pp<-ppp(x,y, window=x.win)

E1<-rep(cell.area, n)

species<-species2

x<-species$gx[is.na(species$gx)==F]

y<-species$gy[is.na(species$gy)==F]

x.win=owin(c(0,1000),c(0,500))

data2.pp<-ppp(x,y, window=x.win)

E2<-rep(cell.area, n)

E<-c(E1,E2)

and count the number of points in each grid cell; note that these will be our two response
variables.

x.grid=quadrats(x.win,ncol,nrow)

count1.grid=quadratcount(data1.pp, tess=x.grid)

count2.grid=quadratcount(data2.pp, tess=x.grid)

The midpoints

mid.p=midpoints.func(x.win,nrow,ncol)

We read in the soil covariate data along with elevation and gradient.

source("read_cov.txt")
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In this model we work with the principal components of the covariates (just for simplicity)

pc=princomp(cov.all,cor=T)

pc.log=pc$scores[,1:3]

(b) Running a joint model

We have to generate two vectors of response variables for the joint model with NAs in the
appropriate places. Anything related to species 1 has values in the first n entries and NAs
elsewhere and anything related to species 2 has NAs in the first n entries and values in
(n + 1, , 2n)

nothing = rep(NA, n)

y = as.vector(count1.grid)

yNA = as.vector(c(count1.grid, nothing))

z = as.vector(count2.grid)

zNA = as.vector(c(nothing, count2.grid))

and put them in a matrix (B for both)

B= matrix(c(yNA,zNA), ncol=2)

We have to generate the index vectors for the spatial effects for each species; for species 1

i.spat1 = c(1:n, nothing)

j.error1 = c(1:n, nothing)

for species 2

i.spat2 = c(nothing,1:n)

j.error2 = c(nothing,1:n)

The covariates also have to be stored in stacked vectors

pc.1<-pc.log[,1]

pc.2<-pc.log[,2]

PC11<-c(pc.1, nothing)

PC21<-c(pc.2, nothing)

PC12<-c(nothing, pc.1)

PC22<-c(nothing, pc.2)

Since we want to estimate separate offsets for each of the species we have to generate a factor
vector with two levels indicating the two outcome variables.

mu = as.factor(c(rep(1,n), rep(2,n)))

and the priors

param.cc=list(prec=list(param=c(15,0.005)))

param.spat=list(prec=list(param=c(80,10)))
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The call to R-INLA to run the full model is specified as

data=list(B=B, i.spat1=i.spat1, i.spat2=i.spat2, j.error1=j.error1,

j.error2=j.error2, E=E, PC11=PC11, PC21=PC21,

PC12=PC12, PC22=PC22)

formula = B ~ mu -1 +

f(i.spat1, model="rw2d", nrow=nrow, ncol=ncol, hyper= param.spat)+

f(i.spat2, copy="i.spat1", fixed=F)+

PC11 + PC21 + PC12 +PC22

In the call to inla we now also have a vector of families. They are both the same here but
this can of course vary. Also note that since we assume a joint spatial use f(i.spat2,

copy="i.spat1", fixed=F) to make sure that the same spatial effect is used to explain
large scale aggregation for both species.

result= inla(formula, data=data, family =c( "poisson","poisson"),

E=E,verbose = TRUE ,

control.compute=list(dic=TRUE,return.marginals=FALSE),

control.inla = list(strategy = "gaussian", int.strategy = "eb"))

Note that to tell R-INLA to not calculate a joint offset -1 needs to be added to the formula.

Plotting the spatial effects- note that these are the same!

im.matrix((matrix(result$summary.random$i.spat1$mean, nrow, ncol)))

dev.new()

im.matrix((matrix(result$summary.random$i.spat2$mean, nrow, ncol)))

3. A joint model of marks and pattern

The data have been collected in a study conducted at the Koala Conservation Centre on Phillip
Island, near Melbourne, Australia. For each of 915 trees within a reserve enclosed by a koala-proof
fence, information on the leaf chemistry and on the frequency of koala visits has been collected.

The leaf chemistry is summarised in a measure of the palatability of the leaves. Palatability is
assumed to depend on the intensity of the point pattern. In addition, ”frequency marks” describe
for each tree the diurnal tree use by individual koalas collected at monthly intervals between 1993
and March 2004. The frequency marks’ are assumed to depend on the intensity of the point
pattern as well as on the leaf marks.

We fit a joint model to the pattern and the two different marks where we assume that they
share a common spatial effect. We now have three different likelihoods and two different types of
likelihoods.

This model is fitted to a subset of the data only. This is only done to avoid spending too much
time on formatting the data in this practical. The model can be easily fitted to the entire irregular
area and we are happy to pass on the code.
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(a) Read in the data stored in workspace EucData.Rdata

load("EucData.Rdata")

define the subwindow and subpatterns

sub.window<-owin(c(348140, 348250), c(5739140, 5739200))

sub.food.pp<-FOOD.ppp[sub.window]

sub.koala.pp<-KOALA.ppp[sub.window]

log the data so that they are close to normal

leave.marks<-log(sub.food.pp$marks)

koala.marks<-sub.koala.pp$marks

plot(unmark(data.ppp))

sub.pp<-data.ppp[sub.window]

points(sub.pp, col=3)

pp<-sub.pp #with leave marks

n.points<-length(pp$x)

a small data transformation

new.x<-pp$x- min( pp$x)

new.y<-pp$y- min( pp$y)

pp$x<-new.x

pp$y<-new.y

x.dim=c(0,106,0,60)

new.window<-owin(c(x.dim[1], x.dim[2]), c(x.dim[3], x.dim[4]))

pp$window<-new.window

plot(unmark(pp))

nrow<-20

ncol<-35

x.p=unmark(pp)

x.leave=x.p%mark%leave.marks

x.koala=x.p%mark%koala.marks

plot of subpattern

plot(matrix(c(x.koala$x,x.koala$y),nrow=x.koala$n,ncol=2),xlab="",

ylab="",main="")

Grid, reduced window

x=x.p$x

y=x.p$y
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eps=c((max(x)-min(x))/nrow/2,(max(y)-min(y))/ncol/2)

x.red=ppp(x,y,window=owin(c(min(x),max(x)),c(min(y),max(y))))

x.win=x.red$window

Midpoints and grid

x.x=matrix(rep(seq(min(x.red$x)+eps[1],max(x.red$x)-eps[1],length=nrow),ncol),

ncol,nrow,byrow=T)

x.y=matrix(rep(seq(min(x.red$y)+eps[2],max(x.red$y)-eps[2],length=ncol),nrow),

ncol,nrow)

x.ppp=ppp(x.x,x.y,window=x.win)

x.grid=quadrats(x.win,nrow,ncol)

Counts

x.count=quadratcount(x.red, tess=x.grid)

x.count=x.count[ncol:1,] # Oriented as x.p

The gridded point pattern

y.p=as.vector(x.count)

For the marks we need to find the mean mark in each cell. This is SLOW, but general

f.grid.mean=function(z,x.grid)

{

grid.mean.list=by(z,x.grid,FUN=function(z){mean(z$marks)})

grid.mean=matrix(as.numeric(grid.mean.list),ncol,nrow,byrow=T)

grid.mean=grid.mean[ncol:1,]

return(grid.mean)

}

leave.grid=f.grid.mean(x.leave,x.grid)

koala.grid=f.grid.mean(x.koala,x.grid)

leave.m<-as.vector(leave.grid)

koala.m<-as.vector(koala.grid)

(b) Fitting a model

As above

n=ncol*nrow

nothing<-rep(NA,n)

As above we need to define separate indices for the different levels of the model.

i1 = c(seq(1:n),nothing,nothing)

i2 = c(nothing, 1:n, nothing)

i3 = c(nothing, nothing, 1:n)

i = rep(1:n, 3)
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j = c(1:n, nothing, nothing)

k = c(nothing, 1:n, nothing)

l = c(nothing, nothing, 1:n)

and separate offsets

mu = as.factor(c(rep(1,n), rep(2,n), rep(3,n)))

and separate response vectors and a response matrix.

response.pattern<-c(y.p, nothing, nothing)

response.leave<-c(nothing, leave.m, nothing)

response.koala<-c(nothing, nothing, koala.m)

response.matrix<-matrix(c(response.pattern, response.leave, response.koala),

byrow=F, ncol=3)

y=response.matrix

since we assume that the leave chemistry impacts on the koala visits we also have a covariate
that only impacts on the third outcome.

cov.1<-c(nothing, nothing, leave.grid)

fitting the model

cell.area<-(max(x.p$x)/nrow)*(max(x.p$y)/ncol)

E<-rep(cell.area, 3*n)

prior.a=10

prior.b=0.001

formula = y ~ mu -1 + cov.1 +

f(i1, model="rw2d", nrow=nrow,ncol=ncol, param=c(prior.a, prior.b))+

f(i2, copy="i1", fixed= FALSE, param=c(1,0.5)) +

f(i3, copy="i1", fixed=FALSE, param=c(1,0.5)) +

f(j, model="iid", initial = 6, fixed=TRUE) +

f(k, model="iid", initial = 6, fixed=TRUE) +

f(l, model="iid", initial = 6, fixed=TRUE)

data=list(y=y,i1=i1,i2=i2,i3=i3,j=j,k=k,l=l,cov.1=cov.1)

result = inla(formula, data=data, family = c("poisson","normal","poisson"),

E=E, verbose = TRUE , control.compute=list(dic=TRUE),

control.inla = list(strategy = "gaussian", int.strategy = "eb"),

control.fixed = list(prec.intercept = 0.01))

summary(result)

Plotting the estimated spatially structured effect and the spatially unstructured effect

13



im.matrix((matrix(result$summary.random$i1$mean,nrow,ncol)))

dev.new()

im.matrix((matrix(result$summary.random$j$mean,nrow,ncol)))

dev.new()

im.matrix((matrix(result$summary.random$k$mean,nrow,ncol)))

dev.new()

im.matrix((matrix(result$summary.random$l$mean,nrow,ncol)))
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