Statistics in Environmental Research (BUC Workshop Series) IV
Problem sheet 2

Website: http://www.stat.ubc.ca/~gavin/STEPIBookNewStyle/course_bath.html
Design of monitoring network

This lab covers, the design of monitoring networks as well as the analysis of spatio-temporal data
theoretical exercises as well as data analysis. EnviroStat, an R package downloadable from the R-
CRAN side is featured since it enables in a spatio-temporal setting:

e spatial mapping of random fields;

e the characterisation of the distribution of complex metrics, e.g. the maximum of a random spatial
field;

e projection of domains geo-referenced by (latitude, longitude) onto flat surfaces with distances
measured by kilometers;

e the elimination of non-stationarity in a random field using the SG method so that the correlation
between the random responses between site-pairs becomes a monotone function of their intersite
distance;

e the design of monitoring networks.

This illustration below shows how an hourly Ozone field with the staircase pattern of missing data com-
monly encountered in spatio-temporal data from environmental monitoring networks may be handled
in the hierarchical framework described in [2]. It particular, it also shows how new stations could be
optimally added to such networks.

In Chapter 14 of [3], a more extended version of the analysis is given and those enrolled in the Lab
are invited to carry out that analysis after working through the example. It is assumed that you have
installed from the course webpage, the DEMO files in your root directory EnviRo.stat.1.0.1. In that
case the more extended analysis begins in Windows with the R commands:

data = matrix(scan("C:/EnviRo.stat.1.0.1/DEMO/data/data.ch14.txt") ,byrow=T,ncol=14)
location = matrix(scan("C:/EnviRo.stat.1.0.1/DEMO/data/location.chi4.txt") ,byrow=T,
ncol=2)

But first lets work through the example.

B s s s s s s s s
g g
Then start R to begin with our example

Dynamically linking the dll files and installing the R functions
I R

dyn.load("C:/EnviRo.stat.1.0.1/SG-method/SG.d11")
dyn.load("C:/EnviRo.stat.1.0.1/Design/design.1.0.411")

The following commands are not needed if the R functions have already been installed. Next

source("C:/EnviRo.stat.1
source("C:/EnviRo.stat.1
source("C:/EnviRo.stat.1
source("C:/EnviRo.stat.1.0.1/Pred.dist/LZ-predict.1.0.1.r")

Read the data
data = matrix(scan("C:/EnviRo.stat.1.0.1/DEMO/data/data.NY.txt") ,byrow=T,ncol=38)
format: Month, Weekday, sqrt03 (36 columns: 9 stations x 4 hours - 8am-12noon)

Extract the data - month, weekday, and sq03
month = datal,1]

weekday = datal,2]

sq03 = datal,3:38]

Read information on locations (lat, long)
site.loc = matrix(scan("C:/EnviRo.stat.1.0.1/DEMO/data/location.NY.txt") ,byrow=T, ncol=2)

B i g
it R
Fit the hierarchical model in the LZ method with covariates Z

S
B e e i

Rearrange data to have a monotone pattern

Calculate number of missing observations

apply(is.na(sq03),2,sum)

Output

[1] o o0 o 0109109109109 0 O O O O O O O 3 3 3
[20] 3 8 84 84 8 O O O O0O o0 o0 o o o o0 o0 o

+H+

Thus, the order of stations should be (2,6,5,1,3,4,7,8,9)
Note that within each stations, the elements must have the same missing number
of observations

+*

norder = c(2,6,5,1,3,4,7,8,9)

tt = NULL

for (i in 1:9) tt = c(tt,c(1:4)+4*x(norder[i]-1))
ndata = sq03[,tt]

nloc = site.loc[norder,]

Plot the stations
plot(nloc[,2],nloc[,1],xlab="Long", ylab="Lat", type="n"
text(nloc[,2],nloc[,1], c(1:9))

Preliminary analysis (not included here) suggests ’month’ and ’weekday’
as important covariates and the sqrt transformation of 03 levels to
be approximately nornal

Set the design matrix for the covariates using the ’model.matrix’ function

month[1:5]
weekday [1:5]

ZZ =model .matrix("as.factor(month)+ as.factor(weekday))
77[1:2,]

EM staircase fit using the ’staircase’ function - only missing data at the beginning
of the series allowed but all elements within a station must have the same
number of missing observations

HHS S
#staircase.EM =function(data,p=1,block=NULL, covariate=NULL,BO=NULL,init=NULL,a=2,r=.5,verbose=F,
maxit=20,tol=1e-6) {

#

HHHHHHHHH AR R R RS

Model:

data ~ MVN (z x beta , kronecker(I, Sigma))

beta ~ MVN (BetaO , kronecker(Finv , Sigma)

Sigma ~ GIW (Theta , delta’s)

#

Theta is a collection of hyperparamaters including XiO, Omega, Lambda, Hinv
#

Input:

data: data matrix, organized to have a staircase pattern of missing observations;
stations having the same number of missing observations are put in the same step
and the steps are organized in order of decreasing number of missing

observations, ie. step 1 has more missing observations than step 2.

Default structure:

Each column represent data from a station; rows are for time

#

H o HF HOH O H

H oH HF O H HHHHHFHHHHHEHHHHHEHHFEHH R H R

Optional input:
p: number of pollutants measured at each stations.
(first p columns of y are for p pollutants from station 1, block 1).

block: a vector sequentially indicating the number of stations to be grouped together.
Ex: block=rep(l,g) where g is number of stations will have one station in each block.
Note that stations in each block must be contained in ONLY ONE step.
That is, stations within each step could be separated into multiple blocks as an option.
Default structure: The steps are used as blocks

covariate: design matrix for covariates created with "model.matrix" with "as.factor"

BO: Provided if the hyperparameter beta_0 (BO) is known and not estimated

init: Initial values for the hyperparameters; output of this function can be used for that

a,r : When p=1, the type-II MLE’s for delta’s are not available. Delta’s are assumed to follow
a gamma distribution with parameters (a,r)

verbose: flag for writing out the results at each iteration

maxit: the default maximum number of iteration

tol: The convergence level.

Output:

Delta: The estimated degrees freedom for each of the blocks (list)

Omega: The estimated covariance matrix between pollutants

Lambda: The estimated conditional covariance matrix between stations in each block given

data at stations in higher blocks (less missing data) - (list)

XiO: The estimated slopes of regression between stations in each blocks and those in higher
blocks (list). Note that tau_0i = kronecker (XiO, diag(p)) - same across stations
for each pollutants.

BetaO: Coefficients - assumed to be the same across stations for each pollutant

Finv: Scale associated with beta_0

Hinv : The estimated hyperparameters (list) - inverse of H_j

Psi: The estimated (marginal) covariance matrix between stations

block: From input

n.miss: Vector showing the number of missing observations in each of the blocks

data: From input

covariate: From input

Lambda.1K: The inverse Bartlett decomposition

HEHHHA R R R R R R R R R R R R

#
#

Here the staircase steps are used for the block structure (default)

em.fit = staircase.EM(ndata,p=4,covariate= ZZ,maxit=200,to0l=.000001, verbose=T)

#

This takes a couple of minutes!

em.fit$block

#

4 blocks with the first block having 1 station and the last one 6 stations

en.fit$0mega
between hours covariance

em.fit$Lambda
residual covariances

em.fit$Betal[,1:4]

Current version only allows exchangeable structure for each elements

ie. the same b0 is assumed for each hour across all stations but different
b0’s for different hours

Get the marginal correlation matrices (’corr.est’: spatial and ’omega’: between hours)
cov.est = em.fit$Psi[[1]]

diml= dim(cov.est) [1]

dim2= dim(em.fit$0mega) [1]

corr.est = cov.est / sqrt(matrix(diag(cov.est),diml,diml)*t(matrix(diag(cov.est),diml,diml)))
#Spatial correlation

round(corr.est,2)

Correlation between hours

omega= em.fit$0mega/sqrt(matrix(diag(em.fit$Omega),dim2,dim2)*t (matrix(diag(em.fit$Omega),
dim2,dim2)))
round (omega, 2)

Plot correlation vs inter-distances

Projecting the coordinates into a rectangular ones using Lambert projection

(°Flamb2’: a function in SG package)

#

I

Flamb2 <- function(geoconfig, latrfl = NA, latrf2 = NA, latref = NA, lngref = NA)

Evaluate Lambert projection for geoconfig: (lat, -long)

latrfl, latrf2, latref, lngref: point of reference - to be computed if not provided.
Lo s s s s s s s s s s s s s s S s s s s s s s S s s s s s s S

coords = Flamb2(abs(nloc))
coords

Calculate distance between the locations using the ’Fdist’ function - a function in SG package

I
#Fdist <- function(crds)

Function to compute interpoint distances for nxp coordinate matrix.
L s s s s s s S s s s s s s s s s s

dist = Fdist(coords$xy)

Plot the spatial correlation vs inter-distances

par (mfrow=c(1,1))

plot(-.2,0,x1im=c(0,250) ,ylim=c(-.2,1) ,x1lab="Dist",ylab="Spatial correlation",type="n"
for (i in 1:8) for (j in (i+1):9) points(dist[i,j],corr.estli,jl)

Plot the dispersion vs inter-distances

disp = 2-2%corr.est
plot(-.2,0,x1im=c(0,250) ,ylim=c(0,2) ,xlab="Dist",ylab="Dispersion",type="n")
for (i in 1:8) for (j in (i+1):9) points(distl[i,j],displi,jl)

Add a fitted exponential variogram using the ’Fvariogfit3’ function (in SG package)
with model=1 for Exponential (default) and = 2 for Gaussian

Exponential variogram: a[1]l+ (2-a[1])*(1-exp(-t0 *h))

Gaussian variogram: a[1]l+ (2-a[1])*(1-exp(-t0 *h~2))

h.1t = dist[row(dist) < col(dist)]
disp.lt = displrow(disp) < col(disp)]
variogfit <- Fvariogfit3(disp.lt, h.lt, a0=1.5, t0=.1)
x = seq(min(h.1t) ,max(h.1t),1)

a0 = variogfit$al1l]

t0 = variogfit$tO

lines(x, a0+(2-a0)*(l-exp(- (tO0* x))))
Save it for later comparison!

B g S s s e g g
B g 2
#

Use SG method to extend the spatial covariance to new locations

#

#
g
B s s s s

#

Step 1: Identifying a thin-plate sline mapping transformation with no smoothing (lambda =0)
using the Falternate3d function - a SG function

Starting with the spatial correlation

#

B e s s
#Falternate3 <- function(disp, coords, model = 1., a0 = 0.1, t0 = 0.5,

max.iter = 50., max.fcal= 100., alter.lim = 50., tol = 1le-05, prt = O.,
dims = 2., lambda = 0., dev.mon = "postscript", ncoords)
#{

Do simultaneous estimation of coords and exponential or gaussian
variogram by alternating weighted least squares.
This version permits dimension > 2 for scaling.

In the plotting we’ll use a plot symbol proportional to the
third coordinate.

This version also passes a smoothing parameter to the optimization.
This parameter probably is not scaled exactly the same as it is

in sinterp and this has not been investigated yet.

Warning: make sure that coords are scaled reasonably small

before attempting to compute; otherwise matrix inversion is

likely not to work in calculation of bending energy matrix.

Other arguments:
model: 1 (exponential), 2 (gaussian)
a0,t0: initial variogram parameter estimates
max.iter, max.fcal: control parameters for calls to nlmin
(same values used in MDS step and in variogram step)
dev.mon: device number for plot monitoring convergence of objective
ncoords: optional initial coordinates to use (2 dim) if not G-plane

Note: Exponential variogram: a[1]+ (2-a[1])*(1-exp(-t0 *h))
Gaussian variogram: a[1]+ (2-a[1])*(l-exp(-t0 *h~2))

H o H H H HF H HFHHHHHEFHHHHHEHH

HHHHHHFHHBHHH B HHAFH BB H RS H B F B H R R HH B R A SRR R R R R

OSmaller distances seem to work better with the multidimensional scaling method
X110
coords.lamb = coords$xy/10

The exponential variogram (default) is used
If Gaussian one is preferred, set model=2

sg.est = Falternate3(disp,coords.lamb,max.iter=100,alter.1im=100, model=1)

sg.est

Step 2: Selecting a smoothing parameter for the identified spline mapping
through the ’Ftransdraw’ function.

it R S
#Ftransdraw <- function(disp, Gcrds, MDScrds, gridstr, sta.names, lambda = O.,

1sq = F, eye, model = 1., a0 = 0.1, t0 = 0.5)
#{

Purpose: for varying (user-supplied) values of the spline smoothing
parameter lambda,

- compute image of coordinates, interpoint distances, and dist-disp plot.
- compute and draw image of regular grid (2D or 3D perspective plot)

Computed prior to execution of this code:

- disp: spatial dispersion matrix

- Gcrds: geographic coordinates (nx2)

- MDScrds: kyst mds solution (nx2 or nx3) - using Falternate3
- gridstr: regular grid structure on the G-plane (from Fmgrid)
HERHHHHHE R

First create a coordinate grid for examining the mapping transformation

apply(coords.lamb, 2, range)

coords.grid = Fmgrid(range(coords.lamb[,1]), range(coords.lamb[,2]))

par (mfrow=c(1,2))

temp = setplot(coords.lamb, ax=T)

deform = Ftransdraw(disp=disp, Gcrds=coords.lamb,MDScrds=sg.est$ncoords,
gridstr=coords.grid)

Note: In window, click on the window to register the curse before proceeding
and this interactive function will provide instructions - Particularly
when a new lambda value is given in R Console window.

#
#
#
#
Lambda = 50 may be ok

The fitted variogram is quite similar to the one with out any transformation (above)
The mapping is almost linear!

Step 3 - combining to get an optimal thin-plate spline using the

the ’sinterp’ function & results stored in Tspline

Tspline = sinterp(coords.lamb, sg.est$ncoords, lam = 50)

Plotting the biorthogonal grid characterizing the deformation of the G-space

par (mfrow=c(1,1))
Tgrid = bgrid(start=c(0,0), xmat=coords.lamb , coef=Tspline$sol)

tempplot = setplot(coords.lamb, ax=T)

text (coords.lamb,labels = c(1:(dim(coords.lamb) [1])))

draw(Tgrid, fs=T)

Solid lines indicate contraction and dashed lines indicate expansion
See Sampson+Guttorp (1992) for detail on interpretation

Step 4- estimating the dispersion between new locations and the stations
using the SG fit from steps 1-3 above
Here new locations are created using a grid of 100 points between the stations

lat10 = seq(min(nloc[,1]) ,max(nloc[,1]),length=10)
lati10

longl0 = seq(max(abs(nloc[,2])),min(abs(nloc[,2])),length=10)

longl0

llgrid = cbind(rep(lat10,10),c(outer(rep(1,10),longl0)))
llgrid[1:10,]

+*

the locations are ordered as (latl,longl),(lat2,longl), ...,
(latn,longl), (latl,longl),

*+

Project the new locations using the same Lambert project for stations above,

ie. using the same reference point.

Note the same scale factor of 10 is used as before

z = coords

newcrds.lamb = Flamb2(llgrid,latrfil=z$latrfl, latrf2=z$latrf2, latref=z$latref,
lngref=z$lngref)$xy/10

#Combine the new locations and stations together begining with new locations
allcrds = rbind(newcrds.lamb,coords.lamb)

Using the ’corrfit’ function to obtain correlations between the stations

g g s
corrfit <- function(crds, Tspline, sg.fit, model = 1)

#

This function estimates correlations between all the locations(new+stations)

using the results of the SG step

#

#

#Input

crds : coordinates of all locations beginning with new locations

Tspline: the thin-spline fit from the SG-steps

sg.fit: the mapping resulted from the SG method

Model: variogram model; 1: exponential 2: gaussian

#0utput

cor: correlation matrix among the locations

s s s

corr.est = corrfit(allcrds, Tspline = Tspline, sg.fit = sg.est, model = 1)
round(corr.est$cor[1:5,1:5],2)

Step 5: Interpolating the variance field

#

diag(cov.est)

Non-homogeneous and interpolating using the same thin-plate spline
Tspline.var = sinterp(allcrds[101:109,] ,matrix(diag(cov.est),ncol=1),lam=50)

The ’seval’ function is used to obtain variance estimates at the locations
Using the thin-plate spline and then arranged in to a matrix

varfit = seval(allcrds,Tspline.var)3y
temp = matrix(varfit,length(varfit),length(varfit))

Combine to get the covariance matrix for all stations
covfit = corr.est$cor * sqrt(temp * t(temp))

That completes the SG-method for extending the covariance matrix to ungauged sites
stored in covfit
IR

HAHHHAFHHHHHH R HHAFH BB H RS H R R B H B RS H R R H
HERSHH B H B H B RS H AR R R R R

Extend the results to estimate hyperparameters associated with the new
locations through the ’staircase.hyper.est’ function

HEH R
W
#staircase.hyper.est <- function(emfit,covfit,u,p,g,d0=NULL)

#

This function combines the results from the "staircase.EM" fit and the

SG method to estimate the hyperparameters associated with the ungauged sites
#

#Input

emfit : Output from the staircase.EM fit

covfit : The covariance matrix between all locations (with new locations

at the beginning). This is an output from the SG fitting
u: number of new locations

p: dimension of the multivariate response

g: number of statiomns

dO (Optional): The degrees of freedom for the new locations (ungauged block)
#0utput
Delta.O: The degree of freedoms for the new locations
= d0 if given (must be > uxp+2)
else
= mean(emfit$delta) if > uxp+2
= u*p+ min(emfit$delta) otherwise
Lambda.0 : Conditional variance between new locations given the gauged stations
Xi0.0 : the regression slope (Note: Tau_0i = Kronecker(XiO , diag(p))
H.O : The variance matrix for the rows of Tau” [ul
Also all components of the output of the staircase.EM fit (for blocks 1-K).

H o H H H O H HHH

S S S S i 1
u = 100 # number of new locations

p =4 # dimension of the multivariate response
hyper.est = staircase.hyper.est(emfit= em.fit,covfit=covfit,u =u, p=p)

10

IR
This completes the estimation of all hyperparameters
i T g s s s s

The predictive distribution can be used for spatial interpolation

Eg. Get the predictive mean and covariance for Day 183

Mo H O H R

hyper.est

tpt = 183

Z = x$covariate[tpt,]

y = x$dataltpt,]

The beta0 for u= 100 ungauged locations each with p=4 hours
b0 = matrix(rep(c(x$BetalO[,1:p]),u) ,nrow=length(Z))

Predictive mean for hours 8-12 on Day 183
mu.u = Z %*% b0 + (y- Z %*% x$Betal) Y%x*% kronecker (x$Xi0.0,diag(p))

X110

Plot the observed levels - Day 183

Select a set of colors - color = colors() if default is preferred

color = colors()[c(12,26,32,37,53,60,70,80,84,88,94,101,116,142,
366,371,376,386,392,398,400:657)]

Plot the observed values for Day 183 by hours

par (mfrow=c(1,1))

plot(c(7,13) ,range(y), type="n", xlab="Hours",ylab="Levels (log)")
for (i in 1:p) points(rep(i+7,9),yl[i+p*c(0:8)], col=color)
dev.off ()

X110

par (mfrow=c(2,2))

Plot the contour for hours
for (i in 1:p) {

tt = i+ p*c(0:(u-1))

mu = mu.ultt]

hr = matrix(mu,byrow=T, ncol=length(lat10))
print (range(hr))

contour(-longl0,lat10, hr, xlab="Long", ylab="Lat",
main=paste("Mean: Day 183 - Hour ", 7+i))

}

Note that the predictive covariance may have to be obtained recursively

11

(ie. when steps are involved). Generally the derivation is not

simple in this case. A simpler approach is to simulate realizations from
the predictive distribution and estimate the mean and covariance

from the simulated data as demonstrated next.

g g
B s s

Interpolation by simulation using the predictive distribution -

via the ’pred.dist.simul’ function with N= 1000
I
B s s s s s s s s s s s s s
#pred.dist.simul = function(hyperest, tpt, include.obs = T, N =1)

#

#

This function simulates N- replicates from the predictive distribution for

a given time point (tpt) from 1 to n (length of the data).

#

Input

hyperest: Output from the "staircase.hyper.est" functions, containing

estimates of all hyperparameters

tpt: A specific time point - from 1 to n corresponding to the

number of time points from the data set

include.obs: If True, the observed data, for time "tpt", are also returned

N Number of replicates

#

Output:

A matrix with N rows; the number of columns depends on whether the observed data are returned
The columns are organized consistent with the observed data

(ie. uxp ungauged blocks, glxp, g2xp , ...)

Note: This function could be slow if there are missing data at gauged sites

correspondind to the selected time point. That is, it is fastest at time points
corresponding to Block 1 and slower with higher blocks.

HHHAHBHHAHHAHBHHAH R HBHHAH B HBHHAH B HBH R AR RS H R H B HAH B R B R ARG H R HAH R H R RS H RS
simu = pred.dist.simul (hyper.est,tpt = 183, N=1000)

extract the simulated data at the gauged stations and
plot the contours of the mean in a new graphic window

x = apply(simu,2,mean) [1: (p*u)]
X110

par (mfrow=c(2,2))

Plot the contour for hours
for (i in 1:p) {

tt = i+ p*c(0:(u-1))

12

x1 = x[tt]

hr = matrix(xl ,byrow=T, ncol=length(lat10))

print (range(x1))

contour(-longl0,lat10, hr, xlab="Long", ylab="Lat",
main=paste("Mean: Day 183 - Hour ", 7+i))

}

Plot the corresponding variance field
x = simul,1: (u*p)]

X110

par (mfrow=c(2,2))

Plot the contour for hours

for (i in 1:p) {

tt = i+ p*xc(0:(u-1))
x1 = x[,tt]
x2 = diag(var(x1))

vv = matrix(x2 ,byrow=T, ncol=length(lat10))
contour(-longl0,lat10, vv, xlab="Long", ylab="Lat",
main=paste("Var: Day 183 - Hour ", 7+i))
points(nloc[,2],nloc[,1])

}

B L g L s s s s
i g S s s s s
Design Solution

B g g s
g s s e

The desing solution can be obtained with the ’ldet.eval’ function

B g g g g g R g G
ldet.eval = function(covmat,k,all = FALSE)

{

This R function calculates the log |determinant| off all sub-covariance
matrices of size (k x k) from a covariance matrix.

Input:
covmat: a covariance matrix (ie. non-negative definite,
square and symmetric)
k: dimension of sub-covariance matrices considered
Optional: if True, returns all combinations with corresponding logl|det|
Note - This option may need additionally a large amount of memory and
so may not work for a large number of combinations!!
Output:
coord.sel: The k coordinates having the largest logldet|
log.det : The logldet| of the submatrix corresponding the coord.sel

H O H F H HHHHHHHHEHHH

13

all.comb : Null if all = False
all combinations and their logldet| if all = True
HEHHH R R R R R R

To select additional 3 stations among the 100 new locations from the above grid.
Their conditional covariance is in ’hyper.est$Lambda.0’
The Entropy criterion selects the combination with the largest logldet|

The ’ldet.eval’ above evaluates the logl|det| for sub-covariance matrices of size ’nsel’
and returns the combination with largest value using option ’all =F’.

Option ’all=T’ returns all combinations with corresponding values. This

option needs a very large memory allocation if the number of combinations is big

and so should be used only for small number of potential sites, say < 15.

Note that when the number of combinations is large, this function
could be very slow even with option ’all=F’. For example, it could take about 30’
to select 5 out of 100.

H o HF O H HHHHHEHHH

nsel = 3
yy = ldet.eval((hyper.est$Lambda.0+ t(hyper.est$Lambda.0))/2,nsel,all =F)
Option all = T for a smaller matrix

yyl = 1ldet.eval(((hyper.est$Lambda.0+ t(hyper.est$Lambda.0))/2)[1:10,1:10],nsel,all =T)

References

[1] Shaddick, G., Zidek, J. V., Spatio-temporal methods in environmental epidemiology. Chapman and
Hall/CRC Press, London, 2015.

[2] Nhu, L. D., Zidek, J. V., Statistical analysis of environmental space-time processes. Springer, New
York, 2006.

[3] EnviroStat, Statistical analysis of environmental space-time processes. The Comprehensive R
Archive Network, 2015.

14

