
Quantifying the Health Impacts of Air Pollution
Day 1: The Health Impacts of Air Pollution

In this session we will introduce the R statistical software and demonstrate its functionality through an
example. The example performs an assessment of health impacts of outdoor air pollution.

An introduction to R

R is an integrated suite of software facilities for data manipulation, calculation and graphical display. It
provides an environment within which almost all classical and modern statistical techniques have been
implemented. A few of these are built into the base R environment, but many are supplied as packages.
There are about 25 packages supplied with R and many thousands more are available through the CRAN
family of Internet sites (cran.r-project.org)

RStudio is an integrated development environment (IDE) for R. It includes a console, syntax-highlighting
editor that supports direct code execution, as well as tools for plotting, history, debugging and workspace
management.

Both R (cran.r-project.org) and RStudio (www.rstudio.com) are open source and can be downloaded free of
charge. They are both available for Windows, Mac OSX and Linux.

Packages

Packages are collections of R functions and data. The area where packages are stored is called the library. R
comes with a standard set of packages, for example base (the R base package).

To help others who wish to do similar analyses, developers often make these packages publicly available
on CRAN (www.r-cran.org), a repository for R software. These packages will need to be downloaded and
installed.

The install.packages() function will download and install the packages that we need. For example, the
foreign package allows the user to read in data from other statistical analysis software such as Stata or SAS,
which we can install.
install.packages("foreign")

Alternatively, we can install packages clicking the ‘Install’ button in the ‘Packages’ pane and searching for
the required package.

Once packages are downloaded and installed, we need to load them before using functions and/or data inside.
We do this by using the library() function.
library(foreign)

R packages need to be loaded everytime a session in R is opened.

Packages are frequently updated. To update your packages, we use the update.packages(). Alternatively,
we can update packages by clicking the ‘Update’ button in the Packages pane of RStudio.
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Getting Help with R

CRAN (the repository for R software and packages), requires all package authors to create, manuals with
examples and help pages. The help() function and ? operator in R provide access to help pages for all R
functions and data sets in installed packages. Lets bring up the help pages for the sum function.
?sum
help(sum)

A help page will appear in the lower right pane in RStudio and will contain the following information (there
maybe more):

• Description: purpose of the function
• Usage: an example of a typical implementation
• Arguments: a list of the arguments you can supply to the function and what each does
• Details: more detailed information about the function and its arguments
• Value: information about the likely output of a function (e.g. does the function return an integer, or a

list, or a matrix, or something different)
• See Also: a list of useful related functions
• References: citations which can often be very useful
• Examples: example code

The basic components of data analysis using R

When working in RStudio, you write/edit code in the editor (upper left window). To run your code, you hit
the ‘Run’ button, on a line of code and the output is displayed in the console (lower left window). If your
code runs properly, the results will display in black. If there are errors in your code, warnings and errors will
display in red.

Comments

R makes use of the # sign to add comments. Comments are useful so that you and others can understand what
the R code does. It is good practice to always comment your code. Whenever R encounters the # operator, it
will ignore everything printed after it in the current line so they don’t influence your results.
# Calculating 3+4
3 + 4
[1] 7

As you can see the line beginning with # has produced no results, and the other line has. In its most basic
form, R can be used as a simple calculator, using some of the following operators.
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Functions

R comes with many functions that are installed as part of the base package. All functions have names and
take arguments in parentheses: function(...). Here are some of the basic functions R knows

• print() – prints objects
• sum() – computes the sum of all elements entered
• table() – computes frequency tables
• summary() – computes a summary of inputted data
• length() – tells you the number of entries in a vector
• round() – rounds the input to the nearest decimal place.

# Printing 'Hello!'
print('Hello!')
[1] "Hello!"

# Sum 1,2 and 3
sum(1,2,3)
[1] 6

# Absolute value of 2 and -2
abs(2); abs(-2)
[1] 2
[1] 2

Storing numbers as variables

We can assign numbers (and many more things) to named variables so that we can use them again or use
them as part of other calculations. To assign a number, for example, to a variable we <-.
# Assign the value 42 to x
x <- 42

# Print out the value of the object x
x
[1] 42

# Add 2 to x
x + 2
[1] 44

# Add 5 to x
x + 5
[1] 47

If a calculation is made, the results are printed but not stored, unless assigned to another object. So if we are
interested in storing the results from our calculations to use in further ones later, they should be stored in
other objects.
# Add 5 to x and reassigning to x
y <- x + 5

# Print out the value of the object x
y
[1] 47
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When storing results of your calculations, be aware that assigning a result to a variable will overwrite what
was already there.

Vectors

A vector is a simple tool to store data. They contain a collection of numbers or text. You can create a vector
using the concatenates function c(). This function takes a series of numbers or text, separated by commas,
and puts them together into a vector.
# Storing 5 values in a vector and assigning to 'a'
a <- c(1, 2, 3, 4, 5)

# Storing 5 values in a vector and assigning to 'b'
b <- c(-2, -4, 6, 7, 8)

More information on the c() function can be seen on the help pages by typing help(c) into R

Elements from a vector can be extracted using ‘[]’ with the corresponding element(s) to extract.
# Extracting the first element of a
a[1]
[1] 1

# Extracting the first and third element of a
a[c(1,3)]
[1] 1 3

Vectors can be used in arithmetic expressions, and the operations are performed element-wise. This means
that if we want to add two vectors together, R will take the first element of the vectors and add them, then
take the second elements of the vectors and add them and so on.
# Lets add a and b
a + b
[1] -1 -2 9 11 13

Similarly, if we want to multiply by two and add five to all elements of a vector, R will do this element-wise.
# Lets add a and b
2 * a + 5
[1] 7 9 11 13 15

Dataframes

Dataframes are very flexible objects for data analysis in R. Dataframes are two-dimensional, with an observation
taking up a row, and a variable taking up a column, similar to a database or a spreadsheet. It can also be
thought of as a collection of vectors concentrated into one object.

We can create dataframes using the data.frame() function. This function will take a list of vectors and
concatenate them together into one object. You can also give specific variable names. More information and
examples of the data.frame() function can be see by typing data.frame into R.
# Storing 5 values in a vector and assigning to 'a'
a <- c(1, 2, 3, 4, 5)

# Storing 5 values in a vector and assigning to 'b'
b <- c(-2, -4, 6, 7, 6)
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# Creating a dataframe from 'a' and 'b'
mydata <- data.frame(a,b)

# Printing mydata
mydata

a b
1 1 -2
2 2 -4
3 3 6
4 4 7
5 5 6

Activities

• Create a vector called c which contains the elements 2, 3, 1, 6 and -1 and create a dataframe that
contains variables a, b and c.

Datasets in R

R also has an extensive repository of example datasets which we can use. To call datasets to the workspace,
we use the data() function. If entered without arguments, it will bring up a list of all datasets that currently
available within R.
# List all the datasets stored in R
data()

Have a look at the iris dataset (Edgar Anderson’s Iris Data, https://en.wikipedia.org/wiki/Iris_flower_
data_set)
# Load the iris dataset in the workspace
data(iris)

Getting to know the structure of dataframes

Once a dataframe has been loaded into R, you should understand the data stored within. Initially, we can
understand our dataset by finding the number of observations and variables in dataframes by using the
nrow() and ncol() functions respectively.
# Viewing the structure of the iris dataset
nrow(iris)
[1] 150

# Viewing the first 5 rows of the iris dataset
ncol(iris)
[1] 5

A quick way of viewing the dataset to see the data are using the names(), str() and head() functions. The
names() function will display the variable names within a dataframe. The str() function will display the
structure of the dataset and the head() function will display the first 6 rows in the dataframe.
# Display the variable names
names(iris)
[1] "Sepal.Length" "Sepal.Width" "Petal.Length" "Petal.Width"
[5] "Species"

# Viewing the structure of the iris dataset
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str(iris)
'data.frame': 150 obs. of 5 variables:
$ Sepal.Length: num 5.1 4.9 4.7 4.6 5 5.4 4.6 5 4.4 4.9 ...
$ Sepal.Width : num 3.5 3 3.2 3.1 3.6 3.9 3.4 3.4 2.9 3.1 ...
$ Petal.Length: num 1.4 1.4 1.3 1.5 1.4 1.7 1.4 1.5 1.4 1.5 ...
$ Petal.Width : num 0.2 0.2 0.2 0.2 0.2 0.4 0.3 0.2 0.2 0.1 ...
$ Species : Factor w/ 3 levels "setosa","versicolor",..: 1 1 1 1 1 1 1 1 1 1 ...

# View the first 6 rows of the iris dataset
head(iris)

Sepal.Length Sepal.Width Petal.Length Petal.Width Species
1 5.1 3.5 1.4 0.2 setosa
2 4.9 3.0 1.4 0.2 setosa
3 4.7 3.2 1.3 0.2 setosa
4 4.6 3.1 1.5 0.2 setosa
5 5.0 3.6 1.4 0.2 setosa
6 5.4 3.9 1.7 0.4 setosa

# View the last 6 rows of the iris dataset
tail(iris)

Sepal.Length Sepal.Width Petal.Length Petal.Width Species
145 6.7 3.3 5.7 2.5 virginica
146 6.7 3.0 5.2 2.3 virginica
147 6.3 2.5 5.0 1.9 virginica
148 6.5 3.0 5.2 2.0 virginica
149 6.2 3.4 5.4 2.3 virginica
150 5.9 3.0 5.1 1.8 virginica

Extracting and creating variables

Data within dataframes can be extracted using ‘[]’. As dataframes are two-dimensional objects, we need to
specify two things, the row and/or the column, separated with a common for example [,]. Lets extract (i) the
variable Sepal.Width from iris, (ii) the first row from of iris and (iii) 3rd row for variable Petal.Length
from iris.
# Extracting the variable a from mydata
iris[,'Sepal.Width']

[1] 3.5 3.0 3.2 3.1 3.6 3.9 3.4 3.4 2.9 3.1 3.7 3.4 3.0 3.0 4.0 4.4 3.9
[18] 3.5 3.8 3.8 3.4 3.7 3.6 3.3 3.4 3.0 3.4 3.5 3.4 3.2 3.1 3.4 4.1 4.2
[35] 3.1 3.2 3.5 3.6 3.0 3.4 3.5 2.3 3.2 3.5 3.8 3.0 3.8 3.2 3.7 3.3 3.2
[52] 3.2 3.1 2.3 2.8 2.8 3.3 2.4 2.9 2.7 2.0 3.0 2.2 2.9 2.9 3.1 3.0 2.7
[69] 2.2 2.5 3.2 2.8 2.5 2.8 2.9 3.0 2.8 3.0 2.9 2.6 2.4 2.4 2.7 2.7 3.0
[86] 3.4 3.1 2.3 3.0 2.5 2.6 3.0 2.6 2.3 2.7 3.0 2.9 2.9 2.5 2.8 3.3 2.7

[103] 3.0 2.9 3.0 3.0 2.5 2.9 2.5 3.6 3.2 2.7 3.0 2.5 2.8 3.2 3.0 3.8 2.6
[120] 2.2 3.2 2.8 2.8 2.7 3.3 3.2 2.8 3.0 2.8 3.0 2.8 3.8 2.8 2.8 2.6 3.0
[137] 3.4 3.1 3.0 3.1 3.1 3.1 2.7 3.2 3.3 3.0 2.5 3.0 3.4 3.0

# Extracting the row (or observation) from mydata
iris[1,]

Sepal.Length Sepal.Width Petal.Length Petal.Width Species
1 5.1 3.5 1.4 0.2 setosa

# Extracting the 3rd row for variable b from mydata
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iris[3,'Petal.Length']
[1] 1.3

Alternatively, you can extract variables from dataframes we using the $ operator. We first specify the dataset
then give the name of the variable that we want. Lets extract the variable Sepal.Width from our new
dataframe iris.
# Extracting the variable a from mydata
iris$Sepal.Width

[1] 3.5 3.0 3.2 3.1 3.6 3.9 3.4 3.4 2.9 3.1 3.7 3.4 3.0 3.0 4.0 4.4 3.9
[18] 3.5 3.8 3.8 3.4 3.7 3.6 3.3 3.4 3.0 3.4 3.5 3.4 3.2 3.1 3.4 4.1 4.2
[35] 3.1 3.2 3.5 3.6 3.0 3.4 3.5 2.3 3.2 3.5 3.8 3.0 3.8 3.2 3.7 3.3 3.2
[52] 3.2 3.1 2.3 2.8 2.8 3.3 2.4 2.9 2.7 2.0 3.0 2.2 2.9 2.9 3.1 3.0 2.7
[69] 2.2 2.5 3.2 2.8 2.5 2.8 2.9 3.0 2.8 3.0 2.9 2.6 2.4 2.4 2.7 2.7 3.0
[86] 3.4 3.1 2.3 3.0 2.5 2.6 3.0 2.6 2.3 2.7 3.0 2.9 2.9 2.5 2.8 3.3 2.7

[103] 3.0 2.9 3.0 3.0 2.5 2.9 2.5 3.6 3.2 2.7 3.0 2.5 2.8 3.2 3.0 3.8 2.6
[120] 2.2 3.2 2.8 2.8 2.7 3.3 3.2 2.8 3.0 2.8 3.0 2.8 3.8 2.8 2.8 2.6 3.0
[137] 3.4 3.1 3.0 3.1 3.1 3.1 2.7 3.2 3.3 3.0 2.5 3.0 3.4 3.0

Creating a new variable within a dataframe is straightforward. Let’s create a variable Sepal.Width.Plus.Sepal.Length
within iris which is the sum of the variables Sepal.Width and Petal.Length. For this we ex-
tract the variables Sepal.Width and Sepal.Length from iris, sum them and assign the results to
Sepal.Width.Plus.Sepal.Length in iris.
# Creating variable c by adding a and b together
iris$Sepal.Width.Plus.Sepal.Length <- iris$Sepal.Width + iris$Sepal.Length

# Printing the variable aplusb
iris$Sepal.Width.Plus.Sepal.Length

[1] 8.6 7.9 7.9 7.7 8.6 9.3 8.0 8.4 7.3 8.0 9.1 8.2 7.8 7.3
[15] 9.8 10.1 9.3 8.6 9.5 8.9 8.8 8.8 8.2 8.4 8.2 8.0 8.4 8.7
[29] 8.6 7.9 7.9 8.8 9.3 9.7 8.0 8.2 9.0 8.5 7.4 8.5 8.5 6.8
[43] 7.6 8.5 8.9 7.8 8.9 7.8 9.0 8.3 10.2 9.6 10.0 7.8 9.3 8.5
[57] 9.6 7.3 9.5 7.9 7.0 8.9 8.2 9.0 8.5 9.8 8.6 8.5 8.4 8.1
[71] 9.1 8.9 8.8 8.9 9.3 9.6 9.6 9.7 8.9 8.3 7.9 7.9 8.5 8.7
[85] 8.4 9.4 9.8 8.6 8.6 8.0 8.1 9.1 8.4 7.3 8.3 8.7 8.6 9.1
[99] 7.6 8.5 9.6 8.5 10.1 9.2 9.5 10.6 7.4 10.2 9.2 10.8 9.7 9.1

[113] 9.8 8.2 8.6 9.6 9.5 11.5 10.3 8.2 10.1 8.4 10.5 9.0 10.0 10.4
[127] 9.0 9.1 9.2 10.2 10.2 11.7 9.2 9.1 8.7 10.7 9.7 9.5 9.0 10.0
[141] 9.8 10.0 8.5 10.0 10.0 9.7 8.8 9.5 9.6 8.9

Activities

• Create a new variable called Sepal.Width.Times.Sepal.Length in iris which multiplies Sepal.Width
and Petal.Length together.

Subsetting dataframes

We can use subsetting to easily access specific data from dataframes. Logical operators are crucial for
subsetting data. When R evaluates statements containing logical operators it will return either TRUE or FALSE.

Here are some of the logical operators in R

• < - less than
• <= - less than or equal to
• > - greater than

7



• >= - greater than or equal to
• == - equal
• != - not equal
• & = and
• | - or

# Checking whether 1 == 2
1 == 2
[1] FALSE

# Checking whether1 == 1
1 == 1
[1] TRUE

Suppose we are interested in extracting the rows of the dataframe iris where the variable Sepal.Width is
greater than 3. To subset data, we use the subset() function.
# Subsetting iris where `Sepal.Width` is less than 3
subset(iris, Sepal.Width > 4)

Sepal.Length Sepal.Width Petal.Length Petal.Width Species
16 5.7 4.4 1.5 0.4 setosa
33 5.2 4.1 1.5 0.1 setosa
34 5.5 4.2 1.4 0.2 setosa

Sepal.Width.Plus.Sepal.Length
16 10.1
33 9.3
34 9.7
# And assign it to a new dataframe
BigIris <- subset(iris, Sepal.Width > 3)

Activities

• Use subsetting to extract the rows of iris where the variable Sepal.Width is equal to 2.9.
• Use subsetting to extract the rows of iris where the variable Sepal.Width is less than 2.9 and

Sepal.Length greater than 3.

Example: HIA associated with outdoor air pollution

We now demonstrate how using dataframes can allow us to perform HIA very efficiently. Following the example
on air pollution you have already seen, we will be calculating the annual number of deaths attributable to
PM2.5.

We wish to estimate the annual number of deaths attributable to PM2.5 air pollution. In order to do this, we
need

• a relative risk (RR),
• the population at risk for the areas of interest,
• the overall mortality rate (OMR), and
• a baseline value for air pollution (for which there is no associated increase in risk).

In this example, we use a RR of 1.06 per 10µgm−3 increase in PM2.5 exposure, the population at risk is 1
million and the OMR is 80 per 10000. We first enter this information into R by assigning these values to a
series of variables.
# Relative Risk
RR <- 1.06
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# Size of population
Population <- 1000000

# Unit for the Relative Risk
RR_unit <- 10

# Mortality rate
OMR = 80/10000

# Baseline value of PM2.5 for which there is no increased risk
baseline <- 5

In this example, we will calculate the attributable deaths for increments of 10, however the following code is
general and will work for any increments.
# PM2.5 categories
PM2.5.cats <- c(5,15,25,35,45,55,65,75,85,95,105)

# Create a dataframe containing the PM2.5 categoriess
Impacts <- data.frame(PM2.5.cats)

We now calculate the increases in risk for each category of PM2.5. For each category, we find the increase in
risk compared to the baseline.

For the second category, with PM2.5 = 15, the risk will be 1.06 (the original RR) as this is 10µgm−3 (one
unit) greater than the baseline.

For the next category, PM2.5 is 10µgm−3 higher than the previous category (one unit in terms of the RR)
and so the risk in that category again be increased by a factor of 1.06 (on that of the previous category). In
this case, the relative risk (with respect to baseline) is therefore 1.06 * 1.06 = 1.1236.

For the next category, PM2.5 = 25 which is again 10µgm−3 (one unit in terms of the RR) higher, and so the
relative risk is 1.06 multiplies by the previous value, i.e. 1.06 * 1.1236 = 1.191016.

We can calculate the relative risks for each category (relative to baseline) in R. For each category, we find the
number of units from baseline and repeatedly multiple the RR by this number. This is equivalent to raising
the RR to the power of (Category-Baseline)/Units, e.g.

RR

(Category-Baseline
Units

)
We add another column to the Impacts dataframe containing these values.
# Calculating Relative Risks
Impacts$RR <- RR^((Impacts$PM2.5.cats - baseline)/RR_unit)

Once we have the RR for each pollution level, we can calculate the rate for each category. This is found by
applying the risks to the overall rate. Again, we add these numbers to the Impacts dataframe as an additional
column.
# Calculating the rates in each category
Impacts$Rate <- Impacts$RR * OMR

# Add the nuimber of (expected) deaths per year for each category
Impacts$Deaths.Per.Year <- Impacts$Rate * Population

For each category, we need to calculate the extra deaths (with reference to the overall rate). The number of
deaths for the reference category is the first number in the Deaths.Per.Year column.
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# The number of deaths
Impacts$Deaths.Per.Year[1]
[1] 8000

# We can then calculate the excess numbers of deaths for each category
Impacts$Extra.Deaths <- Impacts$Deaths.Per.Year - Impacts$Deaths.Per.Year[1]

For each category, we then want to calculate the number of deaths gained. These are the difference between
the values in each category. We can find these using the diff() function. This will produce a set of differences
for which the length is one less than the number of rows in our Impacts dataframe. We need to add a zero to
this to ensure that they line up when we add them as another column.
# Calculate the number of deaths gained
diff(Impacts$Extra.Deaths)
[1] 480.0000 508.8000 539.3280 571.6877 605.9889 642.3483 680.8892
[8] 721.7425 765.0471 810.9499

# We can now add these gains to the main Impacts dataframe
Impacts$Gain <- c(0,diff(Impacts$Extra.Deaths))

# Show the results
Impacts

PM2.5.cats RR Rate Deaths.Per.Year Extra.Deaths Gain
1 5 1.000000 0.008000000 8000.000 0.000 0.0000
2 15 1.060000 0.008480000 8480.000 480.000 480.0000
3 25 1.123600 0.008988800 8988.800 988.800 508.8000
4 35 1.191016 0.009528128 9528.128 1528.128 539.3280
5 45 1.262477 0.010099816 10099.816 2099.816 571.6877
6 55 1.338226 0.010705805 10705.805 2705.805 605.9889
7 65 1.418519 0.011348153 11348.153 3348.153 642.3483
8 75 1.503630 0.012029042 12029.042 4029.042 680.8892
9 85 1.593848 0.012750785 12750.785 4750.785 721.7425
10 95 1.689479 0.013515832 13515.832 5515.832 765.0471
11 105 1.790848 0.014326782 14326.782 6326.782 810.9499

Activities

• A different city has a population of 9.6 million and an overall mortality rate of 95 per 100,000 people.
Carefully change the above code to recalcualte the health burden associated with PM2.5.

• Suppose now we have an updated relative risk which is now 1.15 per 10µgm−3. Carefully change the
above code to recalcualte the health burden associated with PM2.5.

Closing your R session

When closing down R, you will be asked whether you want to save your R workspace. Your R workspace
contains all the data and plots that you have created. At the end of an R session, you can save the current
workspace and then everything will automatically reload when you reopen R.
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