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Section 1: Preliminaries
Motivation of the need for spatial epidemiology; Types of spatial
study and examples; Overview of epidemiological framework;
Overview of Statistical Techniques; R.
Section 2: Disease Mapping
Non-spatial and spatial smoothing models; Bayesian inference and
computation (WinBUGS software); Statistical models; Examples.
Section 3: Spatial Regression
Simple approaches via logistic and Poisson regression; The
ecological fallacy; Sophisticated approaches; Geostatistical
regression for point data; Methods for point sources with count
data; Examples.



Spatial Epidemiology
Epidemiology: The study of the distribution, causes and control of
diseases in human populations.
Disease risk depends on the classic epidemiological triad of person
(genetics/behavior), place and time – spatial epidemiology focuses
on the second of these.
Place is a surrogate for exposures present at that location,
e.g. environmental exposures in water/air/soil, or the lifestyle
characteristics of those living in particular areas.



Types of Data
An important distinction is whether the data arise as:

I Point data in which “exact” residential locations exist for
cases and non-cases, or

I Count data in which aggregation (typically over administrative
units) has been carried out. These data are ecological in
nature, in that they are collected across groups, in spatial
studies the groups are geographical areas.

We will only consider non-infectious diseases, though many of the
issues transfer to infectious diseases.



Need for Spatial Methods
All epidemiological studies are spatial!
When do we need to “worry”, i.e. acknowledge the spatial
component?

I Are we explicitly interested in the spatial pattern of disease
incidence? e.g. disease mapping, cluster detection.

I Is the clustering a nuisance quantity that we wish to
acknowledge, but are not explicitly interested in? e.g. spatial
regression.

If we are interested in the spatial pattern then, if the data are not
a complete enumeration, we clearly we need the data to be
randomly collected in space



Growing interest in spatial epidemiology due to:

I Public interest in effects of environmental “pollution”,
e.g. Sellafield, UK.

I Development of statistical/epidemiological methods for
investigating disease “clusters”.

I Epidemiological interest in the existence of large/medium
spread in chronic disease rates across different areas.

I Data availability: collection of health data at different
geographical scales.

I Increase in computing power and methods (Geographical
Informations Systems).



It is convenient to distinguish three types of study:

1. Disease mapping – provide information on a measure of
disease occurrence across space. Mapping studies exploit
spatial dependence in order to smooth rates and provide
better predictions.

2. Spatial regression – specifically interested in the association
between disease risk and exposures of interest. For count data
we examine the association between risk and exposures at the
area level via ecological regression; Poisson regression is the
obvious framework. For point data logistic regression is the
obvious approach though we may also use “geostatistical”
methods. In this context spatial dependence is a hindrance to
the use of standard statistical tools (and interpretation is
difficult due to the potential for “confounding by location”).



3. Clustering/Cluster detection – the former examines the
tendency for disease risk (or better to think of residual risk,
after controlling for population distribution, and important
predictors of disease that vary by area such as age and race)
to exhibit “clumpiness”, while the latter refers to on-line
surveillance or retrospective analysis, to reveal “hot spots”.
Here understanding the form of the spatial dependence is the
aim.



Disease Mapping
Aims:

I Simple description – a visual summary of geographical risk.

I Provide estimates of risk by area to inform public health
resource allocation.

I Give clues to etiology via informal examination of maps with
exposure maps, components of spatial versus non-spatial
residual variability may also provide clues to source of
variability (e.g. environmental exposures usually have spatial
structure). The formal examination is carried out via spatial
regression.

I In general mapping is based on count data (which is more
routinely available) – may also be carried out with point data
but much less common (case-control studies are explicitly
carried out to examine an exposure of interest, and cannot
inform on risk without additional information).



I Provide a context within which specific studies may be placed.
For example:

I Surveillance of disease registries will be greatly helped if we
have a knowledge of the variability in residual spatial risk, and
the nature of that variability (spatial versus non-spatial),
i.e. what is the “null” distribution (distribution in absence of a
“hot spot”).

I Regression will be aided if we have a “prior” on the
background variability.

I More recently there has been increased interest in statistical
models for disease mapping in time and space.



Example: Scottish Lip Cancer Data
Incidence rates of lip cancer in males in 56 counties of Scotland,
registered in 1975–1980. These data were originally reported in the
mapping atlas of Kemp, Boyle, Smans and Muir (1985).
The form of the data is:

I Observed and “expected” number of cases (based on the
county age populations, details shortly) – allows the
calculation of the standardized morbidity ratio, the ratio of
the observed to the expected cases.

I A covariate measuring the proportion of the population
engaged in agriculture, fishing, or forestry (AFF).

I The projections of the longitude and latitude of the area
centroid, and the “position” of each county expressed as a list
of adjacent counties.



County Obs Exp Prop SMR Project Project Adjacent
No. i Cases Yi Cases Ei AFF N (km) E (km) Counties

1 9 1.4 0.16 6.43 834.7 162.2 5,9,19
2 39 8.7 0.16 4.48 852.4 385.8 7,10
3 11 3.0 0.10 3.67 946.1 294.0 12
4 9 2.5 0.24 3.60 650.5 377.9 18,20,28
5 15 4.3 0.10 3.49 870.9 220.7 1,12,19
6 8 2.4 0.24 3.33 1015.2 340.2 Island
7 26 8.1 0.10 3.21 842.0 325.0 2,10,13,16,17
8 7 2.3 0.07 3.04 1168.9 442.2 Island
9 6 2.0 0.07 3.00 781.4 194.5 1,17,19,23,29
...
47 2 5.6 0.01 0.36 640.8 277.0 24,31,46,48,49,53
48 3 9.3 0.01 0.32 654.7 282.0 24,44,47,49
49 28 88.7 0.00 0.32 666.7 267.8 38,41,44,47,48,52,53,54
50 6 19.6 0.01 0.31 736.5 342.2 21,29
51 1 3.4 0.01 0.29 678.9 274.9 34,38,42,54
52 1 3.6 0.00 0.28 683.7 257.8 34,40,49,54
53 1 5.7 0.01 0.18 646.6 265.6 41,46,47,49
54 1 7.0 0.01 0.14 682.3 267.9 34,38,49,51,52
55 0 4.2 0.16 0.00 640.1 321.5 18,24,30,33,45,56
56 0 1.8 0.10 0.00 589.9 322.2 18,20,24,27,55
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Figure 1: Labels for 56 counties of Scotland.

14

Figure: Labels for 56 counties of Scotland.
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Figure 2: SMRs for male lip cancer in 56 counties of Scotland.
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Figure: SMRs for male lip cancer in 56 counties of Scotland.



Example: Lung and Brain cancer in the North-West of England
(Chapter 7, EWBB)
This study was used as an illustration of smoothing techniques
using a variety of hierarchical models.
Two tumors were chosen to contrast mapping techniques for
relatively non-rare (lung), and relatively rare (brain) cancers.
The absence of information on smoking means that for lung cancer
in particular the analysis should be viewed as illustrative only (since
a large fraction of the residual variability would disappear if
smoking information were included).
This is important point – residual spatial dependence is induced by
missing variables that are predictive of disease outcome (or data
errors/model misspecification).



Study details:

I Study period is 1981–1991.

I Incidence data by postcode, but the analysis is carried out at
the ward level of which there are 144 in the study region. For
brain cancer the median number of cases per ward over the 11
year period is 6 with a range of 0 to 17. For lung the median
number is 20 with range 0–60.

I “Expected counts” were based on ward-level populations from
the 1991 census, by 5-year age bands and sex.

The SIRs are shown in Figures 3 and the smoothed rates for lung
and brain in Figures 4 5, respectively.
Notice that for lung the smoothed area-level relative risk estimates
are not dramatically different from the raw versions in Figure 3(a)
– the large number of cases here mean that the raw SIRs are
relatively stable. For brain we see a much greater smoothing of the
estimates as compared to the raw relative risks in Figure 3(b).



Figure: SIRs for (a) lung cancer, and (b) brain cancer.



Figure: Smoothed SIRs for lung cancer under (a) a conditional spatial
model, and (b) a marginal spatial model.



Figure: Smoothed SIRs for brain cancer under (a) a conditional spatial
model, and (b) a marginal spatial model.



Example: Colorectal cancer in the West Midlands of England
(Kelsall and Wakefield, 2002, JASA)
We include this example to illustrative one useful way of thinking
about disease mapping, in terms of a continuous spatial risk
surface.
Study details:

I Study period is 1989.

I Incidence data by postcode but the analysis is carried out at
the ward level, of which there are 39 in the study region.
There are a total of 568 cases with a range of 5–27, and a
median of 14 per ward.

I Expected counts were based on ward-level populations from
the 1991 census, by 5-year age bands and sex, total
population is approximately 1 million.

Figure 6 shows the raw SIRs, while Figure 7 gives the smoothed
surface – based on a model that assuming a particular smoothing
model for the relative risks (a Gaussian process model on the log
scale).



Figure: SIRs for colorectal cancer in the West Midlands.



Figure: Smoothed relative risk surface for colorectal cancer in the West
Midlands – note the arbitrariness of the area boundaries.



Spatial Regression
Aims:

I Examination of the association between disease outcome and
explanatory variables, in a spatial setting, using regression
models.

I Conventional modeling approaches such as logistic regression
for point data, and loglinear models for count data may be
used though if there is significant residual variation methods
must acknowledge this in order to obtain appropriate standard
errors.

I Also included in this enterprise is the examination of risk with
respect to a specific point or line putative source of pollution.

I For count data in particular, the disease mapping models we
describe may be extended to incorporate a regression
component.



Example: Childhood asthma in Anchorage, Alaska
Study details:

I Data were collected on first grade children in Anchorage, with
questionnaires being sent to the parents of children in 13
school districts (the return rate was 70% which has
implications for interpretation).

I We analyze data on 905 children, with 885 aged 5–7 years.
There were 804 children without asthma, the remainder being
cases.

I The exposure of interest is exposure to pollution from traffic.
Traffic counts were recorded at roads throughout the study
region and a 50m buffer was created at the nearest
intersection to the child’s residential address and within this
buffer traffic counts were aggregated (for confidentiality
reasons the exact residential locations were not asked for in
the survey).

Figure 8 shows the residential location of the cases and non-cases
in Anchorage.



510000
520000

530000
540000

550000

2600000 2610000 2620000 2630000 2640000

EASTING
S

NORTHINGS

Figure: Asthma cases (4) and non-cases (+) in Anchorage.



Naive non-spatial logistic modeling

I Initially we may ignore confounding and the spatial nature of
the data and fit a logistic regression of asthma incidence on
exposure (with the exposure variable scaled to lie between 0
and 10).

I Such an analysis gives an odds ratio of 1.09 with a 90%
confidence interval of 1.00–1.18.

I This analysis assumes that, given exposure, the Bernoulli 0/1
labels are independent. Due to unmeasured variables with
spatial structure this may not be true which will result in
inappropriate standard errors.

I At this stage we make the important point that the
sophistication of any analysis should be consistent with the
quality of the data. In any observational study, the potential
for bias due to confounding and data selection and recording
procedures should be carefully considered. In a regression
setting, accounting for spatial dependence will often be of
secondary importance when compared to these other issues.



Example: Stomach cancer in the North-East of England (Wakefield
and Morris, 2001, JASA)
Study objective: examination of risk close to a municipal
incinerator.

I Cases are aggregated from post code to Enumeration District
– there are 85 counts with 0–10 cases per Enumeration
District.

I Populations are available from the decennial census and are
aggregated to 44 Enumeration Districts (by age/sex) – the
total population in the study region is 36,824.

I Standard caveat: Why are we carrying out the statistical
investigation? Is this a random incinerator? Or was it selected
because the risk appears elevated, in which case standard
measures of measuring the departure from the null (no effect)
are not appropriate.

I No exposure measurements are available here, so instead the
spatial location of each enumeration district
population-weighted centroid relative to the location of the
incinerator was used.



Exploratory Analyses
I Figure 9 gives a number of exploratory plots for this example.

Panel (a) gives positions of Enumeration District centroids in
relation to the incinerator (represented by the origin); the
large concentric circle represents the extent of the study
region and the smaller circle has radius 3km. The additional
circles are centered on the ED centroids and have radii
proportional to the expected number of cases.

I In panel (b) we plot Standardized Incidence Ratios versus
distance and see a decrease in risk with increasing distance
from incinerator (assumed isotropic effect, i.e. no directional
effects).

I In panel (c) a census-based index of socio-economic status is
plotted versus distance – relatively poorer areas are closer to
the pollution source.

I Finally, panel (d) gives SIRs plotted versus socio-economic
status. The solid lines on (b)–(d) denote local smoothers.
Panels (b)–(d) indicate that confounding of the distance-risk
relationship by socio-economic status could be a problem here.
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Figure: Exploratory plots for the municipal incinerator example.



Clustering/Cluster Detection
Clustering Aims:

I Examination of residual spatial clustering in order to gain
clues to disease etiology. For example, is there an infectious
agent? Or, a significant unmeasured risk factor?

I The formal comparison of geographical risk with risk factors is
the subject of spatial regression. So the examination of
clustering step may be seen as exploratory.

I Detection of clustering may also aid in model building in
spatial regression settings.



Cluster Detection Aims:

I Cluster detection – examination of spatially-indexed data in
order to detect “clusters”. May be carried out retrospectively,
or prospectively – in the latter case the operation is referred
to as surveillance.

I Surveillance may offer clues to etiology, but also has a public
health role, for example, to determine whether screening
programs are being taken up universally (across space).

I Cluster examination in response to an inquiry is subtly
different because the hypothesis of increased risk may be the
result of data dredging.

I Surveillance is data dredging, but we have set the rules for
dredging and so can attempt to adjust significance levels.



Example: Chorley-Ribble point data (Chapter 8, EWBB)
Study details:

I The data for this example consist of the residential locations
of 467 cases of larynx cancer and 9191 cases of lung cancer
that, for purposes of illustration, will be considered as a set of
controls.

I These data were collected in the Chorley-Ribble area of
Lancashire in the UK over the period 1974–1983.

Figure 10(a) shows the locations of the cases and controls and
Figure 10(b) a perspective view of a kernel density estimate of the
controls alone.
The non-uniform distribution of residences is clearly the major
source of variation in the spatial distribution of cases and controls.
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Figure: Case-control data in the Chorley-Ribble area of England: (a)
Larynx cancer cases (+) and controls (·), (b) Perspective view of kernel
density estimate of control data.



Example: Cluster detection for lung and brain cancer (Chapter 8,
EWBB)

I Study details were previously described.

I Here we use these data to determine if there are any
“clusters” that might merit further investigation.

I Figure 11 shows one particular method, that of Openshaw et
al. (1987), which scans across the map highlighting collections
of cases that are “significant” with respect to the underlying
population. The circles indicate potential clusters.



Figure: Results of Openshaw’s Geographical Analysis Machine for (a)
lung cancer, and (b) brain cancer data. Axes labels are in meters.



I The incidence proportion measures the proportion of people
who develop the disease during a specified period.

I The prevalence proportion is the proportion of people with the
disease at a certain time.

I The risk is the probability of developing the disease within a
specified time interval – estimated by the incidence proportion
(note: a probability so between 0 and 1).

I The relative risk is the ratio of risks under two exposure
distributions.

Precise definitions of the outcomes and exposures under study are
required.
The majority of epidemiological studies are observational in nature
(interventions provide an example of an experimental study).



Cohort studies select a study population and obtain exposure
information, and then the population is followed over time to
determine incidence. Requires large numbers of individuals (since
diseases are usually statistically rare), and long study duration (for
most exposures).
Case-control studies begin by identifying “cases” of the disease and
a set of “controls”, exposure is then determined. Although subject
to selection bias, can overcome the difficulties of cohort studies.
Cross-sectional studies determine the exposure and disease
outcome on a sample of individuals at a particular point of time.
Ecological studies use data on groups, areas in a spatial setting.
No direct linkage between individual disease and
exposures/confounders.
Semi-ecological studies collect individual-level data on disease
outcome and confounders, and supplement with ecological
exposure information.



Rothman and Greenland (1998) give the following criteria for a
confounder:

1. A confounding factor must be a risk factor for the response.

2. A confounding factor must be associated with the exposure
under study in the source population.

3. A confounding factor must not be affected by the exposure or
the response. In particular it cannot be an intermediate step
in the causal path between the exposure and the response.

Note that if a variable is assigned its value before the exposure is
assigned, and before the response occurs, then it cannot be caused
by either exposure or response.



An Example of When to Adjust
Suppose Y is the rate of lung cancer, X the smoking rate, and Z
represents diet and alcohol variables. In this case Z is a
confounder under the above definition since it satisfies 1.–3. The
causal diagram in Figure 12 illustrates one plausible mechanism for
this situation, U denotes unmeasured variables; U could represent
education level (or poverty) here. If we obtain data on X,Z, Y
then we will see an association between X and Y , but also
between Z and Y , hence we must control for Z.

U

X

Z

Y

Figure: U denotes unmeasured variables.



Variables on the Causal Pathway
We give an example of a variable that satisfies 1. and 2. but not 3.
In Figure 13, U denotes unmeasured variables, X is smoking, Z is
a variable representing tar deposits, and Y is lung cancer.
If we looked at the marginal associations we would find
relationships between X and Y but also between Z and Y .
In this case we should not adjust for Z because this would dilute
the causal effect of X on Y .
In this example Z is not a confounder because it is on the causal
pathway between X and Y (thus invalidating criteria 3.), Z is
known as an intermediary variable.

U X Z Y

Figure: Z is an intermediary variable, and should not be controlled for.



Variables Affected by the Response
To further illustrate a situation in which a variable satisfies 1. and
2. but contradict 3., we consider an example given by Greenland,
Pearl and Robins (1999) in which Y represents endometrial cancer,
X estrogen and Z uterine bleeding. The latter could be caused by
X or Y and so, under this scenario, we have the causal diagram
represented by Figure 14. Again we should not adjust for Z since
the estimated causal effect of X on Y would be distorted. Note
that we would observe marginal associations between X and Z and
Y and Z and so 1. and 2. are satisfied.

U X

Z

Y

Figure: Z is caused by X and Y , and should not be controlled for.



Spatial Examples
Example 1: Exposure to Sunlight
In the absence of a direct measurement we might use Northings as
a surrogate for exposure to sunlight.
However, if we have an available measure (average hours of
sunshine by location) then we would not want to include Northings
in the model.
Example 2: Confounding by Location
Often, spatial analyses will not contain all of the information on
confounders and spatial location will be included in the model to
act as a surrogate for the unmeasured variables.
If we are interested in estimating the association between a health
outcome and an environmental pollutant then great care must be
taken in modeling space: including a complex term for the spatial
model will dilute the estimate of the effect of pollution (since this
has spatial structure), and including a very simple term may not be
sufficiently subtle to control for the unmeasured confounders. See
Figures 15 and 16.
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U

X

Y

Z

Figure 15: With confounders Z.
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Figure: With confounders Z.
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U

X

Y

Z

S

Figure 16: With confounders Z and space S – with Z (or components

there-of) unmeasured an association is induced between S and Y . In this

case S may act as surrogates for these components.
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Figure: With confounders Z and space S – with Z (or components
there-of) unmeasured an association is induced between S and Y . In this
case S may act as surrogates for these components.



Socio-economic confounding

I In spatial epidemiological applications that use count data,
population data are obtained from the census and so while
one can control for known factors such as age and gender
(and sometimes race), information is not available on other
possible confounders.

I In such situations it has become common to control for a
measure of socio-economic status.

I Across various scales of aggregation, measures of deprivation
have been shown to be powerful predictors of a variety of
health outcomes.

I Deprivation may be viewed as a surrogate for individual-level
characteristics such as smoking, diet and alcohol consumption.

I Could be true area-level effects, however, for example, access
to health care services.

I Relationship between health, socio-economic status and
exposure to environmental pollution is complex since ill-health
may cause deprivation (e.g. lose job) so that Y causes Z.



Carstairs Index
A number of area-level indices of deprivation have been created in
the UK (e.g., Carstairs, Jarmen, Townsend). In the US income and
education may be used as surrogates.
The Carstairs index has been extensively used by the Small Area
Health Studies Unit (SAHSU), a number of whose studies we shall
use as illustration in this course. This index measures (from the
census) the proportion of individuals within each ED who: are
unemployed; live in overcrowded accommodation; lack a car; have
a head of the household who is in low social class.
These variables are standardized across the country and then
added together to give a continuous area-based measure with high
values indicating increased deprivation.
Important Point: since control is at the ecological, and not the
individual, level, the control is not likely to be strong – casting
doubt in situations in which small relative risks are observed.



Age, for example, will almost always need controlling for – different
disease risks in different area may reflect differences in the age
population. There are a number of ways to control for
confounding, and one method is direct or indirect standardization.
Let Yij denote the number of cases, within some specified period
(in years) of S (which is assumed the same for each individual in
the study population) in area i and confounder stratum j, and Nij

be the corresponding population at risk, i = 1, ...,m, j = 1, ..., J .
Let Zj and Mj denote the number of cases and population in
stratum j in a “reference”, or standard, population.



The risk of disease in confounder stratum j in area i, over the time
period T , is p̂ij = Yij/Nij . The rate of disease is
rij = 1000× Yij/[Nij × T ] per 1000 person years. Note that a
rate does not need lie between 0 and 1. The crude rate in area i is
given by 1000× Yi/

{∑J
j=1Nij × S

}
per 1000 person years.



The directly standardized rate in area i is given by
∑J

j=1 rijwj , per
1000 person years, where wj = Mj/

∑
jMj is the proportion of

the population in stratum j (these weights may be based on the
world, or a uniform, population.
The directly standardized rate is a weighted average of the
stratum-specific risks, and corresponds to a “counter-factual”
argument in which the estimated rates within the study region are
applied to the standard population.
If qj = 1000× Zj/[Mj × T ] is a standard disease rate in stratum j
then the comparative mortality/morbidity figure (CMF) for area i
is given by:

CMFi =

∑J
j=1 rijwj∑J
j=1 qjwj

In small-area studies in particular the CMF is rarely used since it is
very unstable, due to small counts by stratum in area i, Yij .



The method of indirect standardization produces the standardized
mortality/morbidity ratio (SMR):

Yi∑J
j=1Nij q̂j

where Yi =
∑

j Yij is the total number of cases in area i, and
q̂j = Zj/Mj is a reference risk.
The indirectly standardized rate compares the total number of
cases in an area to those that would result if the rates in the
reference population were applied to the population of area i.
Which reference rates to use? In a regression setting dangerous to
use internal standardization in which q̂j =

∑
i Yij/

∑
iNij .

External standardization uses risks/rates from another area.



Expected Numbers
The expected numbers Ei =

∑J
j=1Nijqj follow from assuming the

proportionality model
pij = θiqj

where θi is the relative risk associated with area i (this assumption
removes the need to estimate J risks in each area). Since

E[Yij ] = Nijθiqj

we obtain

E[Yi] =
J∑
j=1

Nijθiqj = θiEi.

The SMR is therefore given by

SMRi =
Yi
Ei
.

If incidence is measured then also known as the Standardized
Incidence Ratio (SIR). Control for confounding may also be carried
out using regression modeling.



In routinely carried out investigations the constituent data are
often subject to errors.
Population data

I Population registers are the gold standard but counts from the
census are those that are typically routinely-available.

I Census counts should be treated as estimates, however, since
inaccuracies, in particular underenumeration, are common.

I For inter-censual years, as well as births and deaths, migration
must also be considered.

I The geography, that is, the geographical areas of the study
variables, may also change across censuses which causes
complications.



Health data.

I For any health event there is always the possibility of
diagnostic error or misclassification.

I For other events such as cancers, case registrations may be
subject to double counting and under registration.

In both instances local knowledge is invaluable.



Exposure data

I Exposure misclassification is always a problem in
epidemiological studies.

I Often the exposure variable is measured at distinct locations
within the study region, and some value is imputed for all of
the individuals/areas in the study.

I A measure of uncertainty in the exposure variable for each
individual/area is invaluable as an aid to examine the
sensitivity to observed relative risks.

Wakefield and Elliott (1999, Statistics in Medicine) contains more
discussion of these aspects.
In terms of combining the population, health and exposure data,
this is easiest if such data are nested, that is, the geographical
units are non-overlapping.



I A GIS is a computer-based set of tools for collecting, editing,
storing, integrating, displaying and analyzing spatially
referenced data.

I A GIS allows linkage and querying of geographically indexed
information. So for example, for a set of geographical
residential locations a GIS can be used to retrieve
characteristics of the neighborhood within the locations lies
(e.g. census-based measures such as population characteristics
and distributions of income/education), and the proximity to
point (e.g. incinerator) and line (e.g. road) sources.

I Buffering – a specific type of spatial query in which an area is
defined within a specific distance of a particular point, line or
area.



I Time activity modeling of exposures – we may trace the
pathway of an individual, or simulate the movements of a
population group through a particular space-time
concentration field, in order to obtain an integrated exposure.

I In this course, we will not use any GIS tools, but use
capabilities within R and WinBUGS/GeoBUGS to display maps.

Examples
Figure 17 shows a map of Washington state with various features
superimposed; this was created with the Maptitude GIS.
Figure 18 smoothed relative risk estimates for bladder cancer.
Figure 19 shows 16 monitor sites in London – a GIS was used to
extract mortality and population data within 1km of the monitors,
and the association with SO2 was estimated.



Figure: Features of Washington state, created using a GIS.



Figure: Smoothed relative risk estimates for bladder cancer in 1990–2000
for counties of Washington state.



Figure: Air pollution monitor sites in London.



GLMs are a convenient family for fitting a range of data types – we
will use the glm function in R. A GLM is defined by:

I The data arise as an independent sample from an exponential
family probability distribution; this family includes the normal,
binomial and Poisson distributions.

I A link function linking the mean function, µ = E[Y ] to a
linear predictor g(µ) = xβ; logistic regression and log-linear
models form two common examples.

By assuming a linear predictor certain aspects of inference are
simplified, both in terms of computation and properties of the
resultant estimates.



In their original form, GLMs assume independent data, GLMMs
extend this to allow dependence induced by random effects.
The link function now has

g(µi) = xiβ + bi,

where bi represents a random effect.
The random effects are then assigned a distribution, and in a
spatial setting it is natural to assume

b = (b1, ...,bm)T ∼iid Nm(0,Σ),

where Σ is an m×m covariance matrix with (i, j)-th element
defining the covariance between random effects at locations i and
j.
A simple choice model is Σij = σ2ρdij , for i, j = 1, ...,m, with
σ2 > 0, 0 < ρ < 1 and dij the distance between the centroids of
areas i and j. This model is isotropic since the covariance only
depends on the distance between points.



Estimation of parameters may be based on specifying mean and
variance of the data only, as in quasi-likelihood, or on specifying
the complete probability distribution of the data, as in likelihood
and Bayesian approaches.
The likelihood function is the probability distribution viewed as a
function of the unknown parameter, and maximum likelihood
estimation (MLE) the estimation criteria that chooses that value of
the parameter that gives the highest probability to the observed
data.
For most models the MLE is asymptotically normal which allows
confidence intervals/tests to be constructed.



Example:

Poisson likelihood.
Suppose we have a count Y in an area with expected number E.
Assumed probability model for data, for fixed λ:

Pr(Y = y|λ) =
e−Eλ(Eλ)y

y!

for y = 0, 1, .... Here λ is the relative risk.
For fixed y we have the likelihood function:

l(λ) =
e−Eλ(Eλ)y

y!
∝ e−Eλλy

for λ > 0.



Example: Seascale excess

Figure 20 gives an example for y = 4, E = 0.25 for which the MLE
is λ̂ = 16 = ebα = e2.773 with 95% asymptotic confidence interval

(e2.773−1.96×0.5, e2.773+1.96×0.5) = (6.0, 42.6).

Here is the R code for finding the MLE and the standard error:

> y <- 4; E <- 0.25
> summary(glm(y~1+offset(log(E)),family=poisson))
Coefficients:

Estimate Std. Error z value Pr(>|z|)
(Intercept) 2.773 0.500 5.545 2.94e-08 ***

The “offset” is the known multiplier in the log-linear mean
function:

logµ = logE + α

and ∼1 denotes the intercept.
Notice that the parameter is on the linear predictor scale.
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Figure: Likelihood (left) and log-likelihood (right) for Poisson data with
y = 4, E = 0.25.



For the log-linear model

Yi ∼ind Poisson(µi),

with
logµi = logEi + α+ βXi

i = 1, ..., n the MLEs for α and β are not available in closed form
but reliable maximization routines are available in all statistical
packages.



Example: Simple regression in the Scottish Lip Cancer Data
The file scotdat.txt contains the Scottish data as a list:

z <- list(N = 56, Y = c( 9, 39, 11 ... 1, 0, 0),
E = c( 1.4, 8.7, 3.0... 7.0, 4.2, 1.8),
X = c( 0.16, 0.16, 0.10 ... 0.01, 0.16, 0.10))

> source(‘‘scotdat.txt’’)
> SMR <- z$Y/z$E
> postscript("scot_smr.ps",horiz=F)
> par(mfrow=c(1,2)) # creates a 1 x 2 plot
> hist(SMR,xlab="SMR")
> plot(z$X,SMR,type="n")
> text(z$X,SMR)
> lines(lowess(z$X,SMR))
> dev.off()

This code creates a postscript file for Figure 21.



We carry out likelihood analyses using the glm function and the
log-linear mean function

log E[Yi] = logEi + α+ βXi, i = 1, ..., 56.

exp(β) represents the difference in area-level relative risk between
areas with all the population in AFF and zero of the population in
AFF.

> summary(glm(Y~offset(log(E))+X,data=z,family=poisson(link="log")))
Coefficients:

Estimate Std. Error z value Pr(>|z|)
(Intercept) -0.54227 0.06952 -7.80 6.21e-15 ***
X 7.37322 0.59557 12.38 < 2e-16 ***

(Dispersion parameter for poisson family taken to be 1)

So α̂ = −0.542 (0.070) and β̂ = 7.37 (0.60) – the relative risk
describing the area-based association between incidence and AFF is
exp(7.37) = 1588!!!
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Figure: Histogram of SMRs for the Scottish data, and SMR versus
proportion in AFF X.



The Poisson model is restrictive in the sense that the variance is
constrained to equal the mean.
In a quasi-likelihood approach we assume

var(Yi) = κE[Yi]

where κ allows overdispersion and is estimated as

κ̂ =
1

n− p
∑
i=1

(Yi − µ̂i)2

µ̂2
i

where n is the number of counts, and p the number of estimated
parameters.
Point estimates are identical to those from likelihood, but standard
errors are multiplied by κ̂1/2.



To fit a quasi-likelihood model:

> summary(glm(Y~offset(log(E))+X,data=z,family=quasipoisson(link="log")))
Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) -0.5423 0.1542 -3.517 0.000893 ***
X 7.3732 1.3208 5.583 7.89e-07 ***
---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
(Dispersion parameter for quasipoisson family taken to be 4.917963)

So α̂ = −0.542 (0.15) and β̂ = 7.37 (1.32) – identical point
estimates and standard errors multiplied by

√
4.92 = 2.22; large

overdispersion here, and the Poisson model is clearly inadequate.



For disease mapping and spatial regression in particular, the
Bayesian approach to inference is particularly convenient.
Bayes’ Theorem:

p(θ|y) =
p(y|θ)× p(θ)

p(y)
.

Three key elements:

I The prior distribution p(θ).

I The likelihood p(y|θ).

I The posterior distribution p(θ|y).

The crucial difference to likelihood inference is that θ is viewed as
a random variable and y as fixed.
The normalizing constant p(y) =

∫
l(θ)p(θ) dθ is often ignored to

give:
p(θ|y) ∝ p(y|θ)× p(θ).



Inference is made through the posterior distribution, and derived
quantities, and is based on probability.
To summarize a one-dimensional posterior distribution we might:

I Report the complete posterior distribution.

I Summarize in terms of posterior moments, for example the
posterior mean or posterior standard deviation, or quantiles,
for example the posterior median or a 90% credible interval.

In general it is not possible to obtain the above summaries
analytically (and it’s even worse for more than one parameter), but
obtaining samples from the posterior is more straightforward.



Example: Poisson data
Suppose

Y |θ ∼ Poisson(Eθ),

where Y is the number of disease events, E is the expected
number, and θ is the relative risk – viewing this probability
distribution as a function of θ gives the likelihood function.
For a Bayesian analysis we need a prior for θ.
Consider the gamma prior, Ga(a, b) which has the form:

p(θ) =
ba

Γ(a)
θa−1 exp(−bθ)

which has mean a/b and variance a/b2.
To use this as a prior we need to specify a and b to reflect what we
believe about the relative risk before we see the data.



Densities and Samples
We emphasize the duality between densities and samples.
Figure 22 shows the densities for three choices of a, b and
histograms of samples from these densities.

> nsim <- 10000
> upper <- 4
> a1 <- b1 <- 5
> thetavals <- seq(0,upper,.1)
> plot(thetavals,dgamma(thetavals,a1,b1),type="n",ylab="Density")
> lines(thetavals,dgamma(thetavals,a1,b1))
> theta1 <- rgamma(nsim,a1,b1)
> hist(theta1,main="",xlim=c(0,upper))
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Figure 22: Densities and samples for the three gamma distributions:
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Figure: Densities and samples for the three gamma distributions: Ga(5, 5)
(left column), Ga(1, 1) (middle column), Ga(0.5, 0.5) (right column).



Similarly we can calculate theoretical and sample-based prior
quantiles and moments.

# Theoretical quantiles of a gamma Ga(a1,b1) distribution
# with a1 = b1 = 5.
> qgamma(c(.025,.05,.25,.5,.75,.95,.975),a1,b1) #
[1] 0.3246973 0.3940299 0.6737201 0.9341818 1.2548861 1.8307038 2.0483177
# Sample quantiles of a sample of 10,000 from a gamma Ga(a1,b1) distribution
> quantile(rgamma(nsim,a1,b1),probs=c(.025,.05,.25,.5,.75,.95,.975))

2.5% 5% 25% 50% 75% 95% 97.5%
0.3177495 0.3875716 0.6712929 0.9290584 1.2504534 1.8519038 2.0480844
# Theoretical and sample mean and variance
> a1/b1
[1] 1
> a1/b1^2
[1] 0.2
> mean(rgamma(nsim,a1,b1))
[1] 1.007807
> var(rgamma(nsim,a1,b1))
[1] 0.1982659



Example: Sellafield
We now illustrate the duality between samples and densities, and
the sensitivity of inference to the prior distribution.

I We consider the famous Sellafield nuclear site located in the
north-west of England on the coast of West Cumbria. The
Sellafield plant re-processes spent fuel from nuclear power
plants in Britain.

I In the period 1968–1982 there were four cases of lymphoid
malignancy among 0–14 year olds in the village of Seascale
which lies 3km to the south of the site, compared with an
expected number of 0.25 based on registration rates for the
Northern region of England.

I Statistical Model: If all disease risk factors were controlled for
in the expected numbers then we might expect the count to
follow a Poisson distribution – we start with this model but
acknowledge that due to unmeasured risk factors and data
anomalies (in particular errors in the population counts), we
would expect overdispersion.



Gamma Prior Analysis
I With a gamma prior Ga(a, b) on θ we obtain a posterior of

p(θ|y) ∝ l(θ)× p(θ)
∝ exp(−Eθ)θy × θa−1 exp(−θb)
= θa+y−1 exp(−θ[b+ E]),

which is a gamma distribution with parameters a+ y and
b+ E.

I This is an example of a conjugate analysis, in which the prior
and posterior are of the same form.

I The posterior mean is

E[θ|y] =
a+ y

b+ E
= w

a

b
+ (1− w)

y

E

where the “weight” w = b/(b+ E).
I For a reference analysis we may pick a = b = 0 (an improper

prior), and in this case the posterior mean coincides with the
MLE.



I The quantiles are given in Table 1 and indicate that under this
prior there is strong evidence that the relative risk associated
with the Seascale area is elevated. These values were obtained
using the distribution function for a gamma in R.

> y <- 4
> E <- 0.25
> a <- b <- 0
> qgamma(c(0.025,0.05,0.5,0.95,0.975),a+y,b+E)
[1] 4.359461 5.465274 14.688243 31.014626 35.069092
> 1-pgamma(1,a+y,b+E)
[1] 0.9998666 # posterior probability of exceedence of RR of 1

I In fact Pr(θ > 1|y = 4) = 0.99987.

Probability 0.025 0.05 0.5 0.95 0.975
Quantile 4.4 5.5 14.7 31.0 35.1

Table: Posterior quantiles



Gamma Informative prior

The choice Ga(a=5.66,b=5.00) gives Pr(θ < 0.5) = 0.059 and
Pr(θ > 2) = 0.948. The prior and posterior from the informative
Gamma prior and Poisson likelihood analysis are shown in Figure
23 – it is clear that the results will be highly dependent on the
prior (since the prior is very influential).
In this example we don’t need the sample quantities because the
theoretical versions are available – but in general priors and
likelihoods do not combine in such a convenient way, but if we can
produce samples from the posterior, we can reconstruct summaries
of interest.
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Two-Dimensional Example
Suppose we have Yj | pj ∼ Binomial(nj , pj), j = 1, 2, with
independent beta prior Be(a, b) distributions. e.g. no. of
respiratory health events close (j = 1) and not-close (j = 2) to a
point source that has experienced a discharge of pollutants.
The posteriors are available analytically as

p(pj | yj) ∝ p(yj |pj)p(pj)
∝ p

yj

j (1− pj)nj−yjpa−1
j (1− pj)b−1

= p
a+yj−1
j (1− pj)b+nj−yj+1

a Be(a+ yj , b+ nj − yj) distribution.
But suppose we are interested in inference for the odds ratio

φ =
p1

1− p1
/

p2

1− p2

and for the relative risk θ = p1
p2

for which known distributions are
not available.



The following is R code to simulate from φ | y1, y2 when
n1 = 35, n2 = 45, y1 = 30, y2 = 10:

> n1 <- 35; n2 <- 45; y1 <- 30; y2 <- 10
> nsamp <- 1000
> p1 <- rbeta(nsamp,y1+1,n1-y1+1); p2 <- rbeta(nsamp,y2+1,n2-y2+1)
> oddsrat <- (p1/(1-p1))/(p2/(1-p2)); rr <- p1/p2
> par(mfrow=c(2,2))
> hist(p1,xlim=c(0,1))
> hist(p2,xlim=c(0,1))
> hist(oddsrat)
> hist(rr)
> sum(oddsrat[oddsrat>10])/sum(oddsrat) # Posterior prob that odds ratio

# is > than 10
[1] 0.945683
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