
Disease mapping has a long history in epidemiology, and may be
defined as the estimation and presentation of summary measures of
health outcomes.
The aims of disease mapping include

I simple description,

I hypothesis generation,

I allocation of health care resources, assessment of inequalities,
and

I estimation of background variability in underlying risk in order
to place epidemiological studies in context.



We begin by noting a number of non-statistical issues, for more
background see Chapters 12 and 13 of EWBB:

I In broad-scale studies (in particular international endeavors),
data comparability is a major issue. Precise disease definition
(via ICD codes) is also extremely important.

I Mortality data tend to be more reliable than incidence data,
but the latter are of greater epidemiological interest in general.

I There is a trade-off when a geographical scale is chosen:
larger geographical areas providing more stable rates and less
problems of migration, but relative risk summaries may be
distorted due to the large aggregation of individuals.

I If the relative risk shows marked variation within a particular
area this information will be lost – if a particular subregion has
a high relative risk then this will be diluted under aggregation;
finding such subregions is not possible unless there are data
available at a lower level of aggregation.



I The size of the areas chosen also determines the sort of
questions that can be posed – larger areas are likely to offer
greater contrasts in relative risks and exposures. Localized
effects can only be detected with data at a smaller level of
aggregation.

I Presentation:
I Chloropleth (areas shaded) are the most popular kind of maps,

but isopleth (contours) and cartograms (size of areas
proportional to denominator), have also been used.

I Choice of color is important – multiple colors can be confusing,
shading with a single color can work well.

I Cut-points should be chosen to be epidemiologically
meaningful and convey as much information as possible.

We first consider mapping for area-level data. Background reading:
EWBB: Chapter 7.



Unfortunately there are well-documented difficulties with the
mapping of raw estimates since, for small areas and rare diseases in
particular, these estimates will be dominated by sampling
variability.
For the model

Yi ∼ Poisson(Eiθi)

the MLE is

θ̂i = SMRi =
Yi
Ei

with variance

var(θ̂i) =
θi
Ei

so that areas with small Ei have high associated variance.



Example: Surveillance
We imagine separate monthly surveillance for each of three areas
over a 10-year period.
We simulate data from the model

Yi|θ ∼ind Poisson(Eθ),

i = 1, ..., 120, where the relative risk θ = 1 in each case.
Recall that the MLE of the SMR in each time period is θ̂i = Yi/E
with variance proportional to 1/E so that areas with small
expected numbers have high variability.
The expected numbers differ in the three plots in Figure 1, and the
resultant instability in the SMR is apparent.



Figure: Simulations from the Poisson distribution under different
expected numbers.



Example: Scottish Lip Cancer
Figure 2 shows the SMRs for the Scottish lip cancer data, and
indicates a large spread with an increasing trend in the south-north
direction.
The variance of the estimate is var(SMRi) = SMRi/Ei, which will
be large if Ei is small.
For the Scottish data the expected numbers are highly variable,
with range 1.1–88.7. This variability suggests that there is a good
chance that the extreme SMRs are based on small expected
numbers (many of the large, sparsely-populated rural areas in the
north have high SMRs).
Figure 3 (left panel) shows the SMRs versus the estimated
standard errors and clearly illustrates that the high SMRs have
high associated standard error.
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Figure 26: SMRs in 56 counties of Scotland.
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Figure: SMRs in 56 counties of Scotland.
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Figure 27: Estimates versus standard errors for 56 counties of Scotland.
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Figure: Estimates versus standard errors for 56 counties of Scotland.



Maps showing p-values of exceedence of 1 are even less informative
than maps of SMRs since although they account for sample size
they do not show the extent of the risk. Hence areas with large
populations may provide statistically significant SMRs, even for
small exceedences of 1.
Smoothing Models
The above considerations led to methods being developed to
smooth the SMRs using hierarchical/random effects models that
use the data from the totality of areas to provide more reliable
estimates in each of the constituent areas.
We first describe models that do not use spatial information before
turning to models that exploit both spatial and non-spatial
informtation.



Poisson-Gamma Model Without Covariates
We begin by describing a simple Poisson-Gamma two-stage model
that offers analytic tractability and ease of estimation.
We assume there are no covariates and assume the first stage
likelihood is given by

Yi|θi, β ∼ind Poisson (µEiθi) , (1)

where µ is the overall relative risk, and reflects differences between
the reference rates and the rates in the study region.
At the second stage the random effects θi are assigned a
distribution. We initially assume that across the map the
deviations of the relative risks from the mean, µ, are modelled by

θi|α ∼iid Ga(α, α), (2)

a gamma distribution with mean 1, and variance 1/α.



The advantage of this Poisson-gamma formulation is that the
marginal distribution of Yi|µ, α (obtained by integrating out the
random effects θi), is negative binomial.
Marginally, the mean and variance are given, respectively, by

E[Yi|µ, α] = Eiµ

var(Yi|µ, α) = E[Yi|µ, α](1 + E[Yi|µ, α]/α), (3)

so that the variance increases as a quadratic function of the mean,
and the scale parameter α can accommodate different levels of
“overdispersion”.
This form is substantively more reasonable than the naive Poisson
model; it is important to consider excess-Poisson variability
resulting from unmeasured confounders, data anomalies in
numerator and denominator, and model misspecification.



Empirical Bayes Estimation without Covariates
If µ and α were known then the posterior distribution of θi would
be gamma.
Suppose we have estimates µ̂, α̂. Then the distribution is given by

θi|by, µ̂, α̂ ∼ Ga(α̂+ yi, α̂+ Eiµ̂).

The relative risk (relative to the reference rates used in the
expected numbers) is given by RRi = µθi, and has mean

R̂Ri = µ̂× E[θi|by, µ̂, α̂] = µ̂

(
α̂+ Yi
α̂+ µ̂Ei

)
= E[RRi]× (1− wi) + SMRi × wi, (4)

a weighted combination of the prior estimate E[RRi] = µ, and the
SMR in area i.



The weight

wi =
Eiµ̂

α̂+ Eiµ̂
. (5)

on the observed SMR increases as Ei increases so that for areas
with large populations the estimate is dominated by the data.
If α is large then the random effects have a tight spread, and there
is more shrinkage since SMRs that are far from unity are
inconsistent with the total collection of estimates – the weight is
small in this case.
This behavior illustrates both the potential benefits and hazards of
smoothing; the estimates will be less variable than the SMRs, but
an outlying estimate that is not based on a large expected number,
will be shrunk, and we may miss an important excess.



Poisson-Gamma Model with Covariates
With area-level covariates we have the model

Yi|θi, β ∼ind Poisson (µiEiθi) ,

At the second stage the random effects θi are assigned a
distribution. We assume that across the map the deviations of the
relative risks from the mean, µi, are modelled by

θi|α ∼iid Ga(α, α),

a gamma distribution with mean 1, and variance 1/α.



Empirical Bayes Estimation with Covariates
Suppose we have estimates β̂, α̂. Then the distribution is given by

θi|by, β̂, α̂ ∼ Ga(α̂+ yi, α̂+ Eiµ̂i),

which has mean

R̂Ri = E[RRi]× (1− wi) + SMRi × wi, (6)

a weighted combination of the prior estimate E[RRi] = µi, and the
SMR in area i.
The weight is given by

wi =
Eiµ̂i

α̂+ Eiµ̂i
. (7)

In the right hand panel of Figure 3 we plot empirical Bayes
estimates versus standard errors using a log-linear model in AFF.
One possibility for obtaining estimates β̂, α̂ is to use maximum
likelihood estimation over the marginal likelihood

∏n
i=1 Pr(Yi|β, α)

(each term is a negative binomial).



Example: Scottish Lip Cancer
Figure 5 shows relative risk estimates from a variety of models,
with the SMRs on the left (referenced as position 0).
At position 1 the empirical Bayes estimates obtained without the
use of the covariate AFF are displayed.
The weights on the SMR, (5), range between 0.45 and 0.99, with
median 0.83. For these data the residual variability is large.
The standard deviation of the random effects is 1/

√
α, and is

estimated as 0.73, with 90% interval for residual relative risks
(0.16,2.4).
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Figure 28: Plot of Y/E versus proportion in AFF, x. Solid line corresponds

to a linear in x model; dashed line to a log link, linear in x model; and

dotted line to log link, cubic in x model.
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Figure: Plot of Y/E versus proportion in AFF, x. Solid line corresponds
to a linear in x model; dashed line to a log link, linear in x model; and
dotted line to log link, cubic in x model.
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Figure:

Figure details: Relative risk estimates for Scottish lip cancer data:

0 denote the SMRs;

1 the empirical Bayes estimates without the use of AFF;

2 the empirical Bayes estimates with log link and a linear model in AFF;

3 the empirical Bayes estimates with a log-linear cubic model in AFF;

4 the fully Bayes estimates with a log-linear cubic model in AFF.

Plotting symbol is county number.



In position 2 gives EB estimates using a log-linear model in AFF,

logµi = β0 + β1xi.

The standard errors of the estimates are shown in the right hand
panel of Figure 3. Four of the counties (4, 6, 14 and 32) have
proportion in AFF equal to 0.24 (the highest value) and we see
that the estimates for these counties are all moved upwards relative
to the no covariate model (position 1) when the covariate is added
to the model.
The latter is worrying, and we see the reason in Figure 4; the
log-linear model (dashed line) does not fit the data well for large
values of AFF.
This suggests that we use a more flexible model; after some
exploratory work we choose the cubic form

logµi = β0 + β1(xi − x) + β2(xi − x)2 + β3(xi − x)3 (8)

Figure 4 shows that this cubic model provides a better fit to the
data (dotted line), and in particular flattens off for larger values of
x. With linear and cubic models the sd of the random effects are
0.58 and 0.53.



We might expect the standard deviation to be reduced in size when
we add an important covariate but this does not have to happen.
In position 3 of Figure 15 the cubic estimates are plotted and we
see that for counties 4 and 6 in particular the estimates are more
reasonable.
In this study there are only six distinct AFF values and so one
could treat AFF as a factor and smooth using only those counties
with identical covariate values.
This example illustrates how smoothing is carried out via the
covariates, and the importance of deciding how much local
smoothing is appropriate. A similar issue is relevant to the extent
and nature of spatial smoothing.



Review

I The aim is the provide stable relative risk estimates for
area-level data.

I We have assumed that the relative risks arise from a common
gamma distribution, which allows smoothing towards a
common value.

I An empirical Bayes approach estimates the parameters of the
negative binomial model (β and α) and then combines the
gamma distribution with the data to obtain the empirical
Bayes posterior distribution for the relative risks.



Drawing Maps in R
Stages for mapping:

1. Require a set of polygons for each of the constituent areas in
the study region, each polygon defined by a set of x− y
coordinates.

2. Need to be able to draw a map using these polygons.

3. Data to be mapped needs to be spatially-referenced with a
common set of labels/order as the polygons.

4. Need to be able to fill in the polygons of the map using the
data.

Usually the number of polygons will be greater than the number of
areas, because some areas will be made up of disjoint sub-areas
(for example, islands).



The maps Library

> library(maps)

> map.text("county", "ohio")

> testdat <- runif(88) # need to read in the OhioMap function

> OhioMap(testdat,ncol=8,type="e",figmain="Ohio",lower=0,upper=2)

> OhioMap(testdat,ncol=8,type="e",figmain="Ohio random numbers",lower=0,upper=2)

> temp <- map("county","ohio")

> temp$names

[1] "ohio,adams" "ohio,allen" "ohio,ashland" "ohio,ashtabula"

[5] "ohio,athens" "ohio,auglaize" "ohio,belmont" "ohio,brown"

[9] "ohio,butler" "ohio,carroll" "ohio,champaign" "ohio,clark"

...

[77] "ohio,summit" "ohio,trumbull" "ohio,tuscarawas" "ohio,union"

[81] "ohio,van wert" "ohio,vinton" "ohio,warren" "ohio,washington"

[85] "ohio,wayne" "ohio,williams" "ohio,wood" "ohio,wyandot"
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Figure: Map of Ohio counties, with names.
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Figure: Map of Ohio random numbers, using the �OhioMap function.



Example: Disease Mapping for Scotland
We make use of a mapping function that is on the class website:
PrettyPoly <- function(y, poly, nrepeats, ncut=1000,

nlevels=10, lower=NULL, upper=NULL )

with arguments:

I y the variable to be mapped

I poly the x− y coordinates of the polygons, with different
polygons separated by NAs.

I nrepeats a vector of the same length as y with each entry
containing the number of repeats of the appropriate entry in y.

I ncut The number of grey-scale levels to convert y to.

I nlevels The number of grey levels to plot.

I lower The value (on the same scale as y) that white is
assigned to.

I upper The value (on the same scale as y) that black is
assigned to.



The following code produces Figure 8.

> library(MASS)

> source("PolyMap.R")

> source("scotdat.txt")

> SMR <- z$Y/z$E

> zp <- read.table("SMRSplusmap.txt")

> x <- zp[,2]/1000

> y <- zp[,3]/1000

> poly <- matrix(c(x,y),ncol=2)

> nrepeats <- c(3,1,1,1,1,3,1,2,2,1,5,1,1,1,1,1,1,1,1,1,1,2,8,1,1,1,1,1,1,1,

1,1,1,1,1,1,2,1,2,1,1,1,1,1,1,1,1,1,2,2,1,1,1,1,1,1)

> PrettyPoly(SMR,poly,nrepeats=nrepeats)#,lower=0,upper=10)
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Figure 32: SMRs for Scottish counties. 115
Figure: SMRs for Scottish counties.



The code below produces EB posterior mean estimates, the results
are plotted in Figure 9. Notice that the extremes have been
smoothed. It makes use of the function

eBayes <- function(Y,E,Xmat=NULL)

which takes as input, in addition to Y and E, an n× p matrix of
ecological covariates where n is the number of areas and p is the
number of covariates.



The outputs are:

I RR the ecological relative risk posterior mean estimates

I RRmed the ecological relative risk posterior median estimates

I beta the MLEs of the regression coefficients

I alpha the MLE of negative binomial dispersion parameter

I SMR the standardized moratility/morbifity ratio, Y/E.

> emp <- eBayes(z$Y,z$E,Xmat=cbind(z$X,z$X^2,z$X^3))

> postscript("Scotland_gamma.ps", horizontal=FALSE)

> PrettyPoly(emp$RR, poly, nrepeats=nrepeats,lower=0,upper=max(SMR))
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Figure 33: Empirical Bayes posterior mean estimates for Scottish counties. 118Figure: Empirical Bayes posterior mean estimates for Scottish counties.



As an alternative summary measure we plot the posterior medians
in Figure 10. Produced using:

> PrettyPoly(emp$RRmed, poly, nrepeats=nrepeats,lower=0,upper=max(SMR))

Compared with 9, the estimates are higher, because the median
exceeds the mean for a gamma distribution (for examples see
Figure 11). So, for example, the areas with SMRs greater than 1
terd to have median estimates closer to the SMRs than the
posterior means.
Figure 11 gives the empirical Bayes posterior densities for areas 1,
2, 55 and 56 – the vertical line denotes the SMR. Arguments to
the function EBpostdens are reasonably self-explanatory.

> xvals <- seq(0,15,.01)

> beta <- matrix(c(emp$beta),nrow=4,ncol=1)

> Xrow1 <- matrix(c(1,z$X[1],z$X[1]^2,z$X[1]^3),nrow=1,ncol=4)

> EBpostdens(z$Y[1],z$E[1],emp$alpha,emp$beta,Xrow1,

lower=0,upper=15,main="Area 1")
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Figure 34: Empirical Bayes posterior median estimates for Scottish coun-

ties
120Figure: Empirical Bayes posterior median estimates for Scottish counties.
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Figure 35: Empirical Bayes densities for 4 counties. 122Figure: Empirical Bayes densities for 4 counties.



Figure 12 gives the posterior probability that the relative risk
exceeds the value 3 in each area, given the gamma global
smoothing model.
Arguments to the function EBpostthresh are reasonably
self-explanatory.

> Xrow <- matrix(cbind(1,z$X,z$X^2,z$X^3),nrow=56,ncol=4)

> thresh3 <- EBpostthresh(z$Y,z$E,emp$alpha,emp$beta,Xrow,rrthresh=3)

> PrettyPoly(thresh3,poly,nrepeats,nlevels=11,lower=0,upper=1)

We see that the probabilities cover the full range of (0,1). Plots
such as these are a very useful accompaniment to the raw SMRs
and the smoothed estimates, since they reflect the uncertainty in
the estimates.
Code for posterior probability threshold function:

EBpostthresh <- function(Y,E,alpha,beta,Xrow=NULL,rrthresh){

if (is.null(Xrow)) Xrow <- matrix(rep(1,length(Y)),

nrow=length(Y),ncol=1)

mu <- as.numeric(exp(Xrow %*% beta))

thresh <- 1-pgamma(rrthresh,alpha+Y,(alpha+E*mu)/mu)

return(thresh=thresh)

}



2007 Jon Wakefield, Biostat 578

!!"" " !"" #"" $"" %"" &"" '""

'"
"

("
"

)"
"

*"
"

!"
""

!!
""

!#
""

+,-./01-23456

7
89
.:
/0
1-
234
5
6

"
";
!

";
#

";
$

";
%

";
&

";
'

";
(

";
)

";
*

!

Figure 36: Empirical Bayes posterior probabilities that relative risk ex-

ceeds 3 in each county
124Figure: Empirical Bayes posterior probabilities that relative risk exceeds 3

in each county.



Poisson-Gamma Model
We now carry out a fully Bayesian analysis of the model for which
empirical Bayes was used previously:

Yi|θi, β0 ∼ Poisson(Eieβ0θi)
θi ∼ Ga(α, α)

We require priors for β0 and α. For example:

β0 ∼ N(m, v)
α ∼ Ga(a, b)

with m, v, a, b picked to reflect beliefs about β0 and α.



Empirical Bayes for Scotland
We recap on the previous analyses – this involved maximum
likelihood estimation for β0 and α in a negative binomial model
and produced:

> emp0 <- eBayes(z$Y,z$E)

> emp0$beta

0.3521065

> emp0$alpha

[1] 1.87949

> emp0$RR

[1] 3.9973624 4.0791107 2.9802133 2.8467916 3.0025773 2.6545872 2.9590825

[8] 2.4517687 2.3721492 2.7619805 2.6005515 2.2037872 2.0149301 2.1376464

...

[43] 0.6900960 0.4948910 0.4013614 0.5124617 0.5604849 0.4593902 0.3319144

[50] 0.3766186 0.6098460 0.5850639 0.4100864 0.3460232 0.3403845 0.6020789

> emp0$RRmed

[1] 3.8755781 4.0458981 2.9034476 2.7600608 2.9434956 2.5655788 2.9237792

[8] 2.3603697 2.2725880 2.7200177 2.5425312 2.0979757 1.8790820 2.0659710

...

[43] 0.6317935 0.4741200 0.3949723 0.4779112 0.5131326 0.4284178 0.3282190

[50] 0.3608116 0.5408883 0.5189084 0.3637163 0.3068970 0.2822885 0.4993176



Bayesian Analysis and WinBUGS
Inference for models with a spatial component is often not reliable
using likelihood, and so Bayesian methods are commonly used.
Unfortunately, most Bayesian models are not conducive to
analytical analysis, and so are not available in standard software
packages.
WinBUGS is a package that allows very general Bayesian modeling;
the GeoBUGS module contains a number of useful spatial models,
and mapping facilities.
Dependent samples that are approximate draws from the posterior
distribution are produced and summarized within WinBUGS.
The algorithm that produces these samples require (a Markov
chain) a starting point for initialization. To lose dependence on
this starting point, initial iterations of the algorithm are discarded
(and not used for inference) – this is known as the burn in.



WinBUGS analysis of the Poisson-Gamma model
In the example that follows we specify a flat prior for β0, and a
Ga(1,1) prior for α.
The iterative algorithm is run for 10,000 iterations, with the first
4,000 discarded as “burn-in”.
We summarize the posteriors for the relative risks:

RRi = exp(β0)θi

and for β0 and α. The posterior mean for β0 is 0.36, compared to
0.35 under empirical Bayes, and the posterior mean for α is 1.79,
compared to 1.88 under empirical Bayes.
Similarly the posterior means and posterior medians agree very
closely.



model

{

for (i in 1 : N) {

Y[i] ~ dpois(mu[i])

mu[i] <- E[i]*exp(beta0)*theta[i]

RR[i] <- exp(beta0)*theta[i]

theta[i] ~ dgamma(alpha,alpha)

}

# Priors

alpha ~ dgamma(1,1)

beta0 ~ dflat()

# Functions of interest:

sigma.theta <- sqrt(1/alpha) # standard deviation of non-spatial

base <- exp(beta0)

}



DATA

list(N = 56,

Y = c( 9, 39, 11, 9, 15, 8, 26, 7, 6, 20, 13, 5, 3, 8, 17, 9, 2, 7,

9, 7, 16, 31, 11, 7, 19, 15, 7, 10, 16, 11, 5, 3, 7, 8, 11, 9, 11,

8, 6, 4, 10, 8, 2, 6, 19, 3, 2, 3, 28, 6, 1, 1, 1, 1, 0, 0), E = c(

1.4, 8.7, 3.0, 2.5, 4.3, 2.4, 8.1, 2.3, 2.0, 6.6, 4.4, 1.8, 1.1,

3.3, 7.8, 4.6, 1.1, 4.2, 5.5, 4.4, 10.5,22.7, 8.8, 5.6,15.5,12.5,

6.0, 9.0,14.4,10.2, 4.8, 2.9, 7.0, 8.5,12.3,10.1,12.7, 9.4, 7.2,

5.3, 18.8,15.8, 4.3,14.6,50.7, 8.2, 5.6, 9.3,88.7,19.6, 3.4, 3.6,

5.7, 7.0, 4.2, 1.8))

INTIAL ESTIMATES

list(alpha = 1, beta0 = 0,

theta=c(1,1,1,1,1,1,1,1,1,1,1,1,1,

1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,

1,1,1,1,1,1,1,1,1,1,1,1,1))



node mean sd MC error 2.5% median 97.5% start sample

RR[1] 4.07 1.297 0.01877 1.959 3.92 7.001 4000 6001

RR[2] 4.105 0.6469 0.00864 2.938 4.068 5.48 4000 6001

RR[3] 3.006 0.858 0.01159 1.607 2.915 4.937 4000 6001

RR[4] 2.875 0.8995 0.01019 1.391 2.773 4.886 4000 6001

RR[5] 3.016 0.7406 0.01114 1.754 2.955 4.668 4000 6001

RR[6] 2.68 0.8865 0.01325 1.227 2.568 4.696 4000 6001

RR[7] 2.975 0.5666 0.00830 1.994 2.929 4.236 4000 6001

RR[8] 2.476 0.8492 0.01224 1.082 2.379 4.412 4000 6001

....

RR[49] 0.3321 0.06051 7.88E-4 0.2261 0.3286 0.4612 4000 6001

RR[50] 0.3685 0.1334 0.00162 0.1603 0.3522 0.6725 4000 6001

RR[51] 0.6 0.3539 0.00424 0.1112 0.5327 1.45 4000 6001

RR[52] 0.5702 0.3425 0.00519 0.1034 0.5017 1.4 4000 6001

RR[53] 0.4021 0.2446 0.00316 0.07137 0.3546 0.9934 4000 6001

RR[54] 0.3327 0.2042 0.00227 0.05706 0.2924 0.8143 4000 6001

RR[55] 0.3259 0.2533 0.00345 0.02491 0.2646 0.9605 4000 6001

RR[56] 0.5814 0.4538 0.00636 0.04737 0.4723 1.745 4000 6001

alpha 1.79 0.3985 0.00792 1.129 1.753 2.682 4001 6000

beta0 0.3567 0.1188 0.00591 0.1315 0.353 0.5966 4000 6001



Summary of Smoothing Models for Disease Mapping

I The aim is to reduce the instability inherent in SMRs based
on small expected numbers.

I This is achieved by fitting a random effects model which
assumes that area-level deviations from the regression model
arise from a probability distribution (e.g. gamma or
lognormal).

I Care should be exercised in the regression model that is used,
to make sure appropriate smoothing is being carried out
(recall the inadequate log-linear model in the Scottish data).

I Comparing SMRs with smoothed estimates is important – if
there are big changes, are they appropriate? i.e. Were the
expected numbers small? Did the regression model fit this
area well?

I Fitting can be carried out using empirical Bayes or full Bayes.



I Empirical Bayes – MLE used for regression parameters and
variance parameters of random effects distribution (α in the
gamma model).

I Advantage: ease of fitting.
I Disadvantages: cannot do spatial smoothing, not quite right

statistically.

I Full Bayes – requires a prior distribution on regression
parameters and variance parameters of random effects
distribution.

I Advantages: all uncertainties correctly accounted for, extends
to spatial models.

I Disadvantages: computation must be carried out with Markov
chain Monte Carlo, which requires some experience.

I Posterior distributions for each area relative risk can be
summarized in a number of ways, e.g. posterior mean,
posterior median, posterior quantiles, posterior probability of
exceedence of a threshold.



Poisson-Lognormal Model
The Poisson-gamma model offers analytic tractability, but does not
easily allow the incorporation of spatial random effects.
A Poisson-lognormal non-spatial random effect model is given by:

Yi|β, Vi ∼ind Poisson(EiµieVi) Vi ∼iid N(0, σ2
v) (9)

where Vi are area-specific random effects that capture the residual
or unexplained (log) relative risk of disease in area i, i = 1, ..., n.
Whereas in the Poisson-Gamma model we have θ ∼ Ga(α, α), here
we have θ = eVi ∼ LogNormal(0, σ2).
Model (9) does not give a marginal distribution of known form,
but does naturally lead to the addition of spatial random effects.
The marginal variance is of the same quadratic form as (3).
Empirical Bayes is not so convenient for this model, and so we
resort to a fully Bayesian approach for which we need to specify
prior distributions.



Prior Choice for Non-Spatial Model
We need to specify priors for:

I The regression coefficients β.

I The variance of the random effets σ2
v .

For a rare disease, a log-linear link is a natural choice:

logµ(xi, β) = β0 +
J∑

j=1

βjxij,

where xij is the value of the j-th covariate in area i.
For regression parameters β = (β0, β1, ..., βJ), an improper prior

p(β) ∝ 1

may often be used, but in very circumstances such a choice may
lead to an improper posterior.
If there are a large numbers of covariates, or high dependence
amongst the elements of x, then more informative priors will be
beneficial.



Lognormal Priors
It is convenient to specify lognormal priors for positive parameters
exp(βj), since one may specify two quantiles of the distribution,
and directly solve for the two parameters of the lognormal.
Denote by LN(µ, σ) the lognormal distribution for a generic
parameter θ with E[log θ] = µ and var(log θ) = σ2, and let θ1 and
θ2 be the q1 and q2 quantiles of this prior. Then it is
straightforward to show that

µ = log(θ1)
(

zq2
zq2 − zq1

)
−log(θ2)

(
zq1

zq2 − zq1

)
, σ =

log(θ1)− log(θ2)
zq1 − zq2

.

As an example, suppose that for the ecological relative risk eβ1 we
believe there is a 50% chance that the relative risk is less than 1
and a 95% chance that it is less than 5; with q1 = 0.5, θ1 = 1.0
and q2 = 0.95, θ2 = 5.0, we obtain lognormal parameters µ = 0
and σ = log 5/1.645 = 0.98.



Prior for σ2
v

Bottom line: the priors σ−2
v ∼ Ga(1, 0.0260) or

σ−2
v ∼ Ga(0.5, 0.0005) will often be suitable in a mapping context,

though sensitivity of the results to the specification should be
carried out, particularly if the number of areas is not large.
Prior for σ2

v †
It is not straightforward to specify a prior for σv, which represents
the standard deviation of the log residual relative risks, a difficult
parameter to interpret.
We specify a gamma prior Ga(a, b) for the precision τv = 1/σ2

v .
The choice of a gamma distribution is convenient since it produces
a marginal distribution for the residual relative risks in closed form.



Specifically the two-stage model

Vi|σv ∼iid N(0, σ2
v), τv = σ−2

v ∼ Ga(a, b)

produces a marginal distribution for Vi which is td(0, λ2), a
Student’s t distribution with d = 2a degrees of freedom, location
zero, and scale b/a; this is equivalent to the residual relative risks
following a log t distribution.
We specify the range exp(±R) within which the residual relative
risks lie with probability q, and use the relationship
±tdq/2

√
b/a = ±R, where tdq is the q-th quantile of a Student t

random variable with d degrees of freedom, to give a = d/2,
b = R2d/2(tdq/2)

2.
For example, if we assume a priori that the residual relative risks
follow a log Student t distribution with 2 degrees of freedom, with
95% of these risks falling in the interval (0.5,2.0), we obtain the
prior, τv ∼ Ga(1, 0.0260), an exponential distribution.
In terms of σv this results in (2.5%, 97.5%) quantiles of
(0.084,1.01) with posterior median 0.19.



Non-Spatial Analysis of the Scottish Lip Cancer Data
We now report a fully Bayesian version of the normal model, (9),
with log-linear cubic model.
The covariates are centered here in order to reduce dependence in
the parameter estimates, which reduces the computational burden;
this model was fitted using so-called Markov chain Monte Carlo via
the WinBUGS software.
Flat priors were placed on β0, β1, β2, β3 and the
previously-discussed gamma prior, Ga(1, 0.0260), was assumed for
σ−2
v .



WinBUGS code
Below we give code for fitting the cubic log-linear
Poisson-lognormal model.
We define the random variables exp(±1.96× σv) as the endpoints
of a 95% interval for the residual relative risks.
In Figure 5 we see that the estimates under the empirical Bayes
gamma and fully Bayesian normal model, at positions 3 and 4
respectively, each with cubic mean model, are very similar,
illustrating that the most important aspect is not the inferential
method or the choice of gamma or lognormal random effects, but
the judicious choice of the covariate model.



model {

for (i in 1 : N) {

Y[i] ~ dpois(mu[i])

X1c[i] <- X[i]-mean(X[1:N])

X2c[i] <- X1c[i]*X1c[i]

X3c[i] <- X1c[i]*X1c[i]*X1c[i]

log(mu[i]) <- log(E[i]) + beta0 +

beta1*X1c[i] + beta2*X2c[i] + beta3*X3c[i] + V[i]

RR[i] <- exp(beta0 + beta1*X1c[i] + beta2*X2c[i]+ beta3*X3c[i] + V[i])

V[i] ~ dnorm(0,tau.V)

}

# The gamma prior corresponds to df=2, q=0.95, R=log 2.

tau.V ~ dgamma(1,0.0260)

beta0 ~ dflat()

beta1 ~ dflat()

beta2 ~ dflat()

beta3 ~ dflat()

# Functions of interest:

sigma.V <- sqrt(1/tau.V) # standard deviation of non-spatial

RRRlo <- exp(-1.96*sigma.V)

RRRhi <- exp(1.96*sigma.V) }



I In general we might expect residual relative risks in areas that
are “close” to be more similar than in areas that are not
“close”.

I We would like to exploit this information in order to provide
more reliable relative risk estimates in each area.

I This is analogous to the use of a covariate x, in that areas
with similar x values are likely to have similar relative risks.

I Unfortunately the modelling of spatial dependence is much
more difficult since spatial location is acting as a surrogate for
unobserved covariates.

I We need to choose an appropriate spatial model, but do not
directly observe the covariates whose effect we are trying to
mimic.



We first consider the model

Yi|β, γ,Ui,Vi ∼ind Poisson(Eiµie
Ui+Vi)

with
logµi = g(Si, γ) + f(xi, β), (10)

where

I Si = (Si1, Si2) denotes spatial location, the centroid of area i,

I f(xi, β) is a regression model,

I g(Si, γ) is an expression that we may include to capture
large-scale spatial trend – the form

f(Si) = γ1Si1 + γ2Si2,

is a simple way of accommodating long-term spatial trend.

I The random effects Vi ∼iid N(0, σ2
v) represent non-spatial

overdispersion,

I Ui are random effects with spatial structure. We describe two
forms.



A Joint Model

I Assume that U = (U1, ..., Un) arise from a zero mean
multivariate normal distribution with variances var(Ui) = σ2

u

and correlations corr(Ui, Uj) = exp(−φdij) = ρdij where dij is
the distance between the centroids of areas i and j, and ρ > 0
is a parameter that determines the extent of the correlation.

I This model is isotropic since it assumes that the correlation is
the same in all spatial directions. We refer to this as the joint
model, since we have specified the joint distribution for U.

I More generally the correlations can be modeled as
corr(Ui, Uj) = exp(−(φdij)κ).



WinBUGS representation

The above model with

cov(Ui, Uj) = τ−1
u exp(−(φd)κ)

and φ > 0, 0 < κ < 2 can be specified via the function:

U[1:N] ∼ spatial.exp(mu[],x[],y[],tau,phi,kappa)

where:

I mu[]: A vector giving the mean for each area.

I x[] and y[]: Vectors of length n (the number of areas)
giving the x and y coordinates of the centroid of each area.

I phi = φ.

I kappa = κ.

I This model can be very slow for even moderate sized datasets
(because a matrix inversion is required at each iteration).



A Conditional Model

I An alternative approach is to specify the distribution of each
Ui as if we knew the values of the spatial random effects Uj in
“neighboring areas”

I We need to specify a rule for determining the “neighbours” of
each area.

I Spatial models that start with the n area-specific residual
spatial random effects all suffer from a level of arbitrariness in
their specification – in an epidemiological context the areas
are not regular in shape (as opposed to images for example,
which are on a regular grid).

I To define neighbors, a number of authors have taken the
neighborhood scheme to be such that areas i and j are taken
to be neighbors if they share a common boundary. This is
reasonable if all regions are of similar size and arranged in a
regular pattern (as is the case for pixels in image analysis
where these models originated), but is not particularly
attractive otherwise.



I Various other neighborhood/weighting schemes are possible.

I We could take the neighborhood structure to depend on the
distance between area centroids and determine the extent of
the spatial correlation (i.e. the distance within which regions
are considered neighbors).

I In typical applications it is difficult to assess whether the
spatial model chosen is appropriate, which argues for a simple
form, and to assess the sensitivity of conclusions to different
choices.

I In Figure 13 we show a close-up of a portion of the
Birmingham study. One of the wards in the center of the
Birmingham region is such that it ‘just’ shares a common
boundary with a number of close-by wards. In terms of the
common-boundary prior, it could be considered to have
between four and ten neighbors.
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Figure 37: Close-up of a region of the Birmingham study.
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Figure: Close-up of a region of the Birmingham study.



The ICAR model†
I A common model is to assign the spatial random effects an

intrinsic conditional autorgressive (ICAR) prior.

I Under this specification it is assumed that

Ui|Uj , j ∈ ∂i ∼ N
(
U i,

ω2
u

mi

)
,

where ∂i is the set of neighbors of area i, mi is the number of
neighbours, and U i is the mean of the spatial random effects
of these neighbors.

I The parameter ω2
u is a conditional variance and its magnitude

determines the amount of spatial variation.

I The variance parameters σ2
v and ω2

u are on different scales, σv
is on the log odds scale while ωu is on the log odds scale,
conditional on Uj , j ∈ ∂i; hence they are not comparable (in
contrast to the joint model in which σu is on the same scale
as σv).



I Notice that if ω2
u is “small” then although the residual is

strongly dependent on the neighboring value the overall
contribution to the residual relative risk is small.

I This is a little counterintuitive but stems from spatial models
having two aspects, strength of dependence and total amount
of spatial dependence, and in the ICAR model there is only a
single parameter which controls both aspects.

I In the joint model the strength is determined by ρ and the
total amount by σ2

u. A non-spatial random effect should
always be included along with the ICAR random effect since
this model cannot take a limiting form that allows non-spatial
variability; in the joint model with Ui only, this is achieved as
ρ→ 0. If the majority of the variability is non-spatial,
inference for this model might incorrectly suggest that spatial
dependence was present.



WinBUGS representation
The ICAR model can be specified via the function:

U[1:N] ∼ car.normal(adj[],weights[],num[],tau)

where:

I adj[]: A vector listing the ID numbers of the adjacent areas
for each area (this can be generated using the Adjacency Tool
from the Map menu in GeoBUGS).

I weights[]: A vector the same length as adj[] giving
unnormalized weights associated with each pair of areas.

I num[]: A vector of length N (the total number of areas)
giving the number of neighbors ni for each area.

I The car.normal distribution is parameterized to include a
sum-to-zero constraint on the random effects. A separate
intercept term must be used in the model and this must be
assigned an improper uniform prior using the dflat()
distribution (see full code below).



Bottom line: For the joint model we can specify σ−2
u as having the

same prior as σ−2
v . For φ the choice of prior depends on the scale

of the study region (examples below).
For the ICAR model, the choice depends on the neighborhood
structure assumed, but sometimes one may be able to specify the
same prior for ω−2

u as for σ−2
v .



Previously, priors have been specified for each of the variance
components separately, but it is more natural to represent beliefs
about the total variability.
Proper priors are required for the parameters of the spatial model.
For the joint model in which a multivariate normal distribution is
assigned to U, we have Vi ∼iid N(0, σ2

v) and, independently,
Ui ∼iid N(0, σ2

u) so that the residual relative risk eVi+Ui is
lognormal with parameters 0 and σ2

v + σ2
u.

We write the total precision as τT = (σ2
v + σ2

u)
−1, and specify

τT ∼ Ga(a, b) so that marginally we have a log Student’s t
distribution for the total residual relative risks.



We let p = σ2
u/(σ

2
u + σ2

v) represent the proportion of the total
residual variation that is attributable to the spatial component,
and assign a beta prior, Be(c, d), to p, and transform from (σ2

T , p)
to (σ2

v , σ
2
u) via

σ2
v = (1− p)τ−1

T = (1− p)(σ2
v + σ2

u)
σ2
u = pτ−1

T = p(σ2
v + σ2

u).

This prior allows us to control the amount of total residual
variability, and induces positive dependence in the joint prior for
(σ2
v , σ

2
u).

Rather than consider the parameter ρ, we specify a lognormal prior
for the distance at which the correlations fall to a half,

d1/2 = log 2/ log ρ

in the manner summarised in equations (10). For example, if we
believe there is a 5% chance that the correlation falls to a half in
less than 5km, and a 95% chance that it falls to a half in less than
100km we obtain d1/2 ∼ LN(3.107, 0.9106).



Given its conditional interpretation it is not straightforward to
specify a prior for the ICAR parameter ω2

u. Specifying an ICAR
model for the spatial effects does not define a proper
n-dimensional joint distribution, rather

p(U|ω2
u) ∝ (ω2

u)
−(n−1)/2 exp

[
−1

2
UTQU

]

= (ω2
u)
−(n−1)/2 exp

− 1
2ω2

u

∑
i<j

(Ui − Uj)2
 , (11)

where Q is the n× n matrix with, for i 6= j, Qij = −1/ω2
u, if areas

i and j are neighbours and Qij = 0 otherwise, and Qii = mi/ω
2
u.

The form (11) does not provide a well defined joint distribution,
and the marginal distributions for Ui do not exist.



For prior specification we follow an approximate strategy and
consider the n− 1, random variables Z = (Z1, ..., Zn−1) where
Zi = Ui − Un, i = 1, ..., n− 1.
Hence Z = AU, where A = [I|−1], −1 is the (n− 1)× (n− 1)
identity matrix, and −1 is an (n− 1)× 1 vector of -1’s.
The joint distribution of Z exists, and is an (n− 1)-dimensional
normal distribution with mean zero and precision matrix ATQA
with
A = [I|0]T a generalized inverse of A, where 0 is the (n− 1)× 1
vector of 0’s.
The marginal variance for Zi is var(Zi) = aiω

2
u, where the

constants
ai are determined by the neighbourhood structure, and are given
by the diagonal elements of (ATQA)−1.



We let σ2
z = aω2

u represent the average marginal variance, and
specify a prior for σ2

z, which induces a prior for ω2
u.

Once the calibration between ω2
u and σ2

z has been carried out we
specify priors for τT = (1/σ2

v + 1/σ2
z) and p, as described for the

joint model, and then take σ2
v = (1− p)τ−1

T and ω2
u = pτ−1

T /a.
This procedure is approximate in a number of ways; we have
considered Z rather than U, and Ui is not marginally normally
distributed.
Since the joint distribution for U is not well-defined, we do not
have a parameter to describe the marginal variance (which would
be useful to compare with σ2

v to see the spatial contribution), but
we can examine the empirical variance via 1

n−1

∑n
i=1 U

2
i .



We assign improper flat priors to each element of β, and for the
joint spatial model assume initially that

τT ∼ Ga(1, 0.0260)
p ∼ Be(1, 1)

d1/2 ∼ LN(3.107, 0.9106)

Figure 14 shows smoothed marginal densities based on samples
from these priors for the joint model, including induced quantities
of interest such as ρ10, the correlation at a distance of 10km, and
the residual relative risk exp(Ui + Vi).
The induced dependence between σv and σu is apparent.
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Figure 38: Priors for the joint spatial model. First row: univariate and

joint marginals for σv and σu. Second row: the residual relative risk

exp(Vi +Ui) margin, the distance at which correlations fall to a half, d1/2,

and the correlation between areas whose centroids are 10km apart, ρ10.
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Figure: Priors for the joint spatial model. First row: univariate and joint
marginals for σv and σu. Second row: the residual relative risk
exp(Vi + Ui) margin, the distance at which correlations fall to a half,
d1/2, and the correlation between areas whose centroids are 10km apart,
ρ10.



For the ICAR model the same priors were assumed and we set
ω2
u = pτ−1

T /a where a = 1.164 for the Scottish geography with a
common boundary neighbourhood scheme.
This neighbourhood scheme is not particularly appealing for the
Scottish geography because of the irregularity of the areas.
We initially assumed that the three islands, which have no common
boundary neighbours, only had a non-spatial random effect.



WinBUGS code for the joint model

model {

for (i in 1 : N) {

Y[i] ~ dpois(mu[i])

X1c[i] <- X[i]-mean(X[1:N])

X2c[i] <- X1c[i]*X1c[i]

X3c[i] <- X1c[i]*X1c[i]*X1c[i]

log(mu[i]) <- log(E[i]) + beta0 + beta1*X1c[i] + beta2*X2c[i] +

beta3*X3c[i] + V[i] + U[i]

RR[i] <- exp(beta0 + beta1*X1c[i] + beta2*X2c[i]+

beta3*X3c[i] + V[i] + U[i])

V[i] ~ dnorm(0,tau.V)

mean[i] <- 0

}

U[1:N] ~ spatial.exp(mean[], xm[], ym[], tau.U, phi, 1)

tau.T ~ dgamma(1,0.0260)

p ~ dbeta(1,1) # p is the proportion of the variance that is spatial

sigma.U <- sqrt(p/tau.T)

sigma.V <- sqrt((1-p)/tau.T)

tau.V <- 1/(sigma.V*sigma.V)

tau.U <- 1/(sigma.U*sigma.U)

dhalf ~ dlnorm(3.107,0.9106)

phi <- 0.6931/dhalf

beta0 ~ dflat()

beta1 ~ dflat()

beta2 ~ dflat()

beta3 ~ dflat()

}



DATA

list(N = 56, Y = c( 9, 39, 11, 9, 15, 8, 26, 7, 6, 20, 13, 5, 3,

8, 17, 9, 2, 7, 9, 7, 16, 31, 11, 7, 19, 15, 7, 10, 16, 11, 5, 3, 7,

8, 11, 9, 11, 8, 6, 4, 10, 8, 2, 6, 19, 3, 2, 3, 28, 6, 1, 1, 1, 1, 0,

0), E = c( 1.4, 8.7, 3.0, 2.5, 4.3, 2.4, 8.1, 2.3, 2.0, 6.6, 4.4, 1.8,

1.1, 3.3, 7.8, 4.6, 1.1, 4.2, 5.5, 4.4, 10.5,22.7, 8.8, 5.6,15.5,12.5,

6.0, 9.0,14.4,10.2, 4.8, 2.9, 7.0, 8.5,12.3,10.1,12.7, 9.4, 7.2, 5.3,

18.8,15.8, 4.3,14.6,50.7, 8.2, 5.6, 9.3,88.7,19.6, 3.4, 3.6, 5.7, 7.0,

4.2, 1.8), X = c(0.16,0.16,0.10,0.24,0.10,0.24,0.10, 0.07, 0.07,0.16,

0.07,0.16,0.10,0.24, 0.07,0.16,0.10, 0.07, 0.07,0.10, 0.07,0.16,0.10,

0.07, 0.01, 0.01, 0.07, 0.07,0.10,0.10, 0.07,0.24,0.10, 0.07, 0.07,

0,0.10, 0.01,0.16, 0, 0.01,0.16,0.16, 0, 0.01, 0.07, 0.01, 0.01, 0,

0.01, 0.01, 0, 0.01, 0.01,0.16,0.10), xm = c( 162.1894, 385.7761,

293.9555, 377.9338, 220.6786, 340.1739, 324.9915, 442.2445, 194.5176,

367.6924, 112.8916, 247.7566, 289.5922, 227.9563, 342.3574, 351.3505,

280.4916, 341.6081, 249.6855, 359.5902, 348.7138, 388.7655, 180.4228,

295.4908, 333.1159, 312.0605, 290.1701, 359.4153, 291.3727, 303.4219,

257.4402, 264.9711, 336.4464, 258.0319, 227.1801, 234.5294, 218.3428,

279.1010, 235.0805, 254.1736, 250.8301, 287.1202, 292.3773, 288.0333,

320.5682, 257.8758, 276.9737, 281.9644, 267.8444, 342.226, 274.8713,

257.8069, 265.5934, 267.8921, 321.4991, 322.1780), ym =c(834.7496,

852.3782, 946.0722, 650501, 870.9356, 1015.154, 842.0317, 1168904,

781.3746, 828.219, 903.1592, 924.9536, 842.3052, 561.1628, 713.0808,

792.1617, 801.0356, 628.6406, 825.8545, 610.6554, 760.2982, 812.7655,

699.6693, 635.7658, 701.8189, 691.102, 586.6673, 669.4746, 746.2605,

670.1395, 605.9585, 568.3428, 658.671, 716.452, 598.2521, 668.0481,

641.4785, 670.285, 697.044, 677.589, 657.4675, 680.7535, 699.3761,

665.2905, 671.6064, 631.046, 640.8285, 654.6629, 666.7073, 736.4561,

678.8585, 683.7104, 646.5754, 682.2943, 640.1429, 589.9408))



INITIAL ESTIMATES

list(tau.T = 1, p=0.5,beta0 = 0, beta1 = 0, beta2 = 0, beta3 =0, dhalf =1,

V=c(0,0,0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0,0,0,

0,0,0,0,0,0),

U=c(0,0,0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0,0,0,

0,0,0,0,0,0))



The WinBUGS code for the ICAR model

model {

for (i in 1 : N) {

Y[i] ~ dpois(mu[i])

X1c[i] <- X[i]-mean(X[1:N])

X2c[i] <- X1c[i]*X1c[i]

X3c[i] <- X1c[i]*X1c[i]*X1c[i]

log(mu[i]) <- log(E[i]) + beta0 + beta1*X1c[i] +

beta2*X2c[i] + beta3*X3c[i] + V[i] + U[i]

RR[i] <- exp(beta0 + beta1*X1c[i] +

beta2*X2c[i] + beta3*X3c[i] + V[i] + U[i])

V[i] ~ dnorm(0,tau.V)

}

# ICAR prior distribution for spatial random effects:

U[1:N] ~ car.normal(adj[], weights[], num[], tauomega.U)

for(k in 1:sumNumNeigh) {

weights[k] <- 1

}

tau.T ~ dgamma(1,0.0260)

p ~ dbeta(1,1)

sigma.Z <- sqrt(p/tau.T)

omega.U <- sigma.Z/sqrt(1.164)

sigma.V <- sqrt((1-p)/tau.T)

tau.V <- 1/(sigma.V*sigma.V)

tauomega.U <- 1/(omega.U*omega.U)

beta0 ~ dflat()

beta1 ~ dflat()

beta2 ~ dflat()

beta3 ~ dflat()

sd.U <- sd(U[1:N])

vratio <- sd.U*sd.U/(sd.U*sd.U+sigma.V*sigma.V)

}



DATA

list(N = 56, Y = c( 9, 39, 11, 9, 15, 8, 26, 7, 6, 20, 13, 5, 3, 8,

17, 9, 2, 7, 9, 7, 16, 31, 11, 7, 19, 15, 7, 10, 16, 11, 5, 3, 7, 8,

11, 9, 11, 8, 6, 4, 10, 8, 2, 6, 19, 3, 2, 3, 28, 6, 1, 1, 1, 1, 0,

0), E = c( 1.4, 8.7, 3.0, 2.5, 4.3, 2.4, 8.1, 2.3, 2.0, 6.6, 4.4, 1.8,

1.1, 3.3, 7.8, 4.6, 1.1, 4.2, 5.5, 4.4, 10.5,22.7, 8.8, 5.6,15.5,12.5,

6.0, 9.0,14.4,10.2, 4.8, 2.9, 7.0, 8.5,12.3,10.1,12.7, 9.4, 7.2, 5.3,

18.8,15.8, 4.3,14.6,50.7, 8.2, 5.6, 9.3,88.7,19.6, 3.4, 3.6, 5.7, 7.0,

4.2, 1.8), X = c(0.16,0.16,0.10,0.24,0.10,0.24,0.10, 0.07, 0.07,0.16,

0.07,0.16,0.10,0.24, 0.07,0.16,0.10, 0.07, 0.07,0.10, 0.07,0.16,0.10,

0.07, 0.01, 0.01, 0.07, 0.07,0.10,0.10, 0.07,0.24,0.10, 0.07, 0.07,

0,0.10, 0.01,0.16, 0, 0.01,0.16,0.16, 0, 0.01, 0.07, 0.01, 0.01, 0,

0.01, 0.01, 0, 0.01, 0.01,0.16,0.10),

num = c(3, 2, 2, 3, 4, 2, 5, 1, 5, 4, 1, 2, 3, 3, 2, 6, 6, 6, 5, 3,

3, 2, 4, 8, 3, 3, 4, 4, 11, 6, 7, 3, 4, 9, 4, 2, 4, 6, 3, 4,

5, 5, 4, 5, 4, 6, 6, 4, 9, 2, 4, 4, 4, 5, 6, 5),

adj = c(

19, 9, 5,

10, 7,

12, 6,

28, 20, 18,

19, 12, 11, 1,

3,8,

17, 16, 13, 10, 2,

6,

29, 23, 19, 17, 1,

22, 16, 7, 2,

5,

5, 3,

19, 17, 7,

35, 32, 31,

29, 25,

...



53, 49, 48, 46, 31, 24,

49, 47, 44, 24,

54, 53, 52, 48, 47, 44, 41, 40, 38,

29, 21,

54, 42, 38, 34,

54, 49, 40, 34,

49, 47, 46, 41,

52, 51, 49, 38, 34,

56, 45, 33, 30, 24, 18,

55, 27, 24, 20, 18

),

sumNumNeigh = 240))

INITIAL ESTIMATES

list(tau.T = 1, p=0.5, beta0 = 0, beta1 = 0, beta2 = 0, beta3 = 0,

V=c(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0),

U=c(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0))

Figure 16 shows the centroids for each area, allowing us to confirm
the number and labels of the neighbors of each area.
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Figure details: Relative risk estimates for Scottish lip cancer data:

0 denote the SMRs;

1 the empirical Bayes estimates without the use of AFF;

2 the empirical Bayes estimates with log link and a linear model
in AFF;

3 the empirical Bayes estimates with a log-linear cubic model in
AFF;

4 the fully Bayes non-spatial estimates with a log-linear cubic
model in AFF;

5 estimates under the joint model;

6 estimates under the initial ICAR model;

7 estimates under the refined ICAR model. Estimates 5–7 are
based upon a log-linear cubic covariate model.

Plotting symbol is county number.
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Figure 1: Labels for 56 counties of Scotland.
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Figure: Labels for 56 counties of Scotland.



Results

I Positions 5–7 of Figure 15 show estimates from spatial
models, each with a cubic model in AFF.

I In the non-spatial model we have shrinkage to the overall
regression prediction but in the spatial model we have local
and global smoothing so that estimates can move away from
the regression model prediction.

I A striking aspect in Figure 15 is the differences in the
estimates for areas 8 and 11 under the joint spatial model
(position 5) and the ICAR model (position 6).

I For the three islands without neighbours under our ICAR
formulation, there are only non-spatial contributions to the
relative risk.

I Table 1 reports posterior summaries for the parameters of the
random effects distributions, and shows that the majority of
the total variability is spatial for these data.



I We see large shrinkage for the three islands since we are
assuming a common non-spatial model across islands and
non-islands, resulting in too much shrinkage for the islands.

I There are a number of possibilities for refining this model.
One is to assume V ∼iid N(0, τ−1

T ) for the islands so that we
have the same total variability as non-islands, but with all of
this variability assumed to be non-spatial. Given our
parameterization of the prior it is straightforward to fit this
model for the three islands.

I The resultant estimates are shown in position 7, and differ
little from those in position 6, which is reassuring.

I Further possibilities include defining neighbours for the islands
as the nearest points of the mainland (or the nearest island),
or assuming a distinct non-spatial distribution for the islands
(with only three islands this option is not feasible here).



I Figure 18(b) shows relative risk estimates under the joint
model; the smoothness compared to the SMRs in Figure 18(a)
is apparent.

I Under a Bayesian sampling-based approach it is
straightforward to carry out inference for functions of interest.

I As an illustration, Figure 17(a)–(c) shows the posterior
probabilities that the relative risk in each area exceeds the
values 2, 3 and 4.

I We see a number of areas with high probabilities, suggesting
that, in a serious investigation, these be examined more
closely to discover the characteristics of the individuals, or
health hazards that are present, in these areas.

I Such plots are also useful for reflecting the uncertainties
inherent in smoothed maps.
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(a) Threshold = 2
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(b) Threshold = 3

!"" #"" $"" %"" &""

&"
"

'"
"

("
"

)"
"

*"
"

!"
""

!!
""

+,-./01-23456

7
89
.:
/0
1-
234
5
6

"
";
!

";
#

";
$

";
%

";
&

";
'

";
(

";
)

";
*

!

(c) Threshold = 4

Figure 41: Posterior probabilities of exceedance of different thresholds

under the joint model.

173

Figure: Posterior probabilities of exceedance of different thresholds under
the joint model.



Table: Sensitivity of spatial model parameters to prior choice,
τT = (σ2

u + σ2
v)−1 and p is the proportion of the total variability that is

spatial.

Spatial Posterior median
Model

Prior Specification
σv σu p d1/2 (km)

Joint τT ∼ Ga(1, 0.0260) d1/2 ∼ LN(3.107, 0.9106) 0.23 0.48 0.82 78.8

Joint τT ∼ Ga(1, 0.1399) d1/2 ∼ LN(3.107, 0.9106) 0.24 0.49 0.82 79.6

Joint τT ∼ Ga(1, 0.0260) d1/2 ∼ LN(2.303, 0.4214) 0.23 0.48 0.79 85.9

ICAR τT ∼ Ga(1, 0.0260) – 0.23 0.53 0.85 –
ICAR τT ∼ Ga(1, 0.1399) – 0.22 0.54 0.86 –

I In Table 1 we examine the sensitivity of estimates of the
non-spatial and spatial contributions of residual relative risk,
to the prior choices for σv, σu, ω2

u and d1/2.

I The prior τT ∼ Ga(1, 0.1399) gives relative risks that follow a
log student t distribution with 2 degrees of freedom, and fall
within the range (0.2,5) with probability 0.95. The choice
d1/2 ∼ LN(2.303, 0.4214) assumes that there is a 5% chance
that the correlations die to 0.5 in less that 5km, and a 95%
chance that they die to 0.5 in less than 20km.



I We see that the majority of the residual variability is explained
by the spatial component; under the various models,
79%–86% of the total variability is spatial in nature.

I Overall there is little sensitivity of these parameters to the
priors though, as we saw, the joint and ICAR models can give
quite different estimates in particular areas. Interval estimates
for d1/2 are very wide, reflecting the lack of information on
the strength of the residual spatial variability.

I For example, for the prior choices in row 1 of Table 1, a 95%
interval for d1/2 is 32km to 243km.
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(a) SMR estimates
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(b) Smoothed estimates

Figure 42: Raw and smoothed estimates in 56 counties of Scotland.
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Figure: Raw and smoothed estimates in 56 counties of Scotland.



Conclusions

I The preferred model here would be that which includes a
cubic model in AFF and a spatial component, since the
association with AFF is strong and there is significant residual
spatial dependence.

I A full analysis would examine the sensitivity of the relative
risk estimates to the prior specifications. There is a large
amount of residual variability for these data, which suggests
unobserved risk factors, and is not surprising since we have no
information on lifestyle variables such as smoking, alcohol and
diet.

I Although it is important to consider models that include
residual spatial dependence for small-area studies, empirical
Bayes models are very useful for exploratory purposes,
particularly for choosing an appropriate mean model.
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