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The plan for today

Module #1: Some Bayesian basics (35 minutes?)

Aside A: Bayesian computation (25 minutes?)

Module #2: Bayes for imperfect data (40 minutes?)

Module #3: Bayes for flexibility (30 minutes?)

Aside B: Bayesian model assessment (20 minutes?)

Module #4: Some Bayesian subtleties (30 minutes?)

Module #1

Some Bayesian Basics



Bayes Theorem

Knowledge about truth (T ) having observed data (D)?

Pr(T = t|D = d) =
Pr(D = d |T = t)Pr(T = t)∑

t∗ Pr(D = d |T = t∗)Pr(T = t∗)

Some explanations are more likely than others!

Or in more parametric (‘likelihood × prior’) terms:

π(parameters|data) ∝ π(data|parameters)π(parameters)

The textbook picture
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Prior distributions: Blessing or curse?

All inferences are reported in terms of state-of-knowledge after the
data are observed.

What do the data add beyond the prior distribution?

Some controversy still abounds.

Do the benefits of Bayes lie in:

the ability to infuse prior information?

the principled mechanism to update from prior to posterior?

Starting from a position of ignorance

‘Let the data speak for themselves’

Formally ‘flat’ priors

π(μ) ∝ 1

π(σ) ∝ σ−1 [or equivalently π(σ2) ∝ σ−2]

Or prior but diffuse priors

μ ∼ N(0, 106)

σ2 ∼ IG (10−4, 10−4)

Nice frequentist properties sometimes, but need to establish
properness and/or reasonableness on a case-by-case basis.



Actually infuse prior information

‘We don’t do science in a vacuum.’

Formal elicitation

underlying axioms, gambling connections,

generally regarded as difficult,

only yields ‘my’ prior.

Less formal: the ‘as strong as is generally defensible’ approach

For instance, say β is a (conditional) log odds-ratio between
exposure and disease in an epidemiological context.

β ∼ N{0, (0.5× log 8)2} generally defensible?

Prior sensitivity

Forwards: report inferences arising from a variety of prior
specifications.

Backwards: say the chosen prior distribution yields a 95% interval
estimate which exludes zero (i.e., a ‘significant’ finding).

Determine how much this prior would have to be perturbed in
order to lose this significance.

Comment on the plausibility of this perturbed prior.

Bayesian computation (come back to this later)

Ideal

(model specification, prior specification, data)
↓

‘black box’
↓

(exact representation of) posterior distribution

Computation, continued

2008 Reality

Markov chain Monte Carlo (MCMC) methods: represent the
posterior distribution approximately via an (arbitrarily large)
sample simulated (with caveats) from it.

Colour of box? Anywhere from white (C/Fortran) to
dark-grey (WinBUGS).

Will return to this.



Inferential summaries (and how obtained via MCMC)

π(θ|data): joint posterior distribution over all parameters.

π(β|data): marginal posterior distribution of scalar β = g(θ),
describing post-study knowledge of β.

(Histogram or kernel density estimate of MCMC-sampled β values.)

Point estimate of β - mean/median/mode of π(β|data).

(mean/median/mode of MCMC-sampled β values)

Decision-theory connection:
which loss function implies which point estimator.

Inferential summaries, continued

95% interval estimate:

Equal-tailed: (2.5, 97.5)-th percentiles of π(β|data).

(percentiles of MCMC-sampled β values)

Highest-posterior-density (HPD): - shortest interval containing
95% probability under π(β|data).

(search over (a, 95 + a)-th percentiles of MCMC-sampled β values)

Predictive distribution:

π(datumn+1|datan
1) =

∫
π(datumn+1|θ)π(θ|datan

1)dθ

(augment MCMC-sample with draws from [datumn+1|θ])

Illustration: Misclassified exposure

Variables

Y binary outcome

X actual binary exposure

X ∗ possibly misclassified binary exposure

Interested in (Y , X ) association, but have (Y , X ∗) data.

Misclassification parameters

Sensitivity: SN = Pr(X ∗ = 1|X = 1)
Specificity: SP = Pr(X ∗ = 0|X = 0).

Type of misclassification

Also important: whether the misclassification is nondifferential
(blind to outcome) or differential.

Do Pr(X ∗ = 1|X = 1, Y = y) and Pr(X ∗ = 0|X = 0, Y = y) vary
with y?

Often an issue in case-control designs, for instance, especially with
self-report of exposure status.

For the sake of a simple illustration right now, we assume
nondifferential misclassification.



Probability model (likelihood)

Consider case-control design.

Actual exposure prevalences: ri = Pr(X = 1|Y = i),
for i = 0 (controls) and i = 1 (cases).

Summary statistics: Z0 out of n0 controls and Z1 out of n1 cases
are apparently exposed (X ∗ = 1).

Zi ∼ Bin{ni , riSN + (1− ri )(1− SP)},

for i = 0, 1.

Inferential target is log-odds-ratio: logit r1 − logit r0.

Some prior specifications

Aim for ‘epidemiologically defensible’ prior distribution for (r0, r1):(
logitr0
logitr1

)
∼ N

{(
μ
μ

)
, τ2

(
1 ρ
ρ 1

)}
.

For instance, choose (μ, τ, ρ) such that 95% prior probability of:

plo < ri < phi ,

log(1/k) < logitr1 − logitr0 < log(k).

E.g., investigator selects plo = 0.02, phi = 0.50, k = 8.

Some prior specifications, continued

Contrast three prior specifications for (SN, SP).

1 SN ≡ 1, SP ≡ 1:
pretend there is no misclassification.

2 SN ≡???, SP ≡???:
admit there is misclassification, but assume its magnitude is
known exactly.

3 SN ∼ Beta(???, ???), SP ∼ Beta(???, ???)
admit there is misclassification, with magnitude known only
approximately.

Helpful to think of all three as ‘priors,’ even though the first two
are not stochastic. In particular, 1 and 2 are not more objective
than 3.

A glimpse at the innards: WinBUGS model specification

model {
for (i in 1:2) {
  z[i] ~ dbin(p[i], n[i])
  p[i] <- sens*r[i] + (1-spec)*(1-r[i])
  logit(r[i]) <- rr[i]
  rr[i] ~ dnorm(rstr, r1prec)
}

sens ~ dbeta(a.sn, b.sn); spec ~ dbeta(a.sp,b.sp)

rstr ~ dnorm(mu, r2prec)
r1prec <- 1/((1-rho)*tau2); r2prec <- 1/(rho*tau2)

rho <- 1 - pow(log(k),2)/(8*tau2)
tau2 <- pow( (logit(p.hi)-logit(p.lo))/4, 2)
mu <- (logit(p.hi)+logit(p.lo))/2
}



Example

Data on maternal use of antibiotics during pregnancy and sudden
infant death syndrome (SIDS).

Apparent exposure is self-report of antibiotic use on
questionnaire.

101 of 580 controls and 122 of 564 cases apparently exposed.

Validation study suggests SN ≈ 0.6, SP ≈ 0.9.

In fact,
SN ∼ 0.60± 0.10 → Beta(57, 38) prior
SP ∼ 0.90± 0.03 → Beta(359, 40) prior

Estimated log-OR under the three specifications
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Admitting to misclassification pushes point estimate (but not lower
limit of 95% interval estimate) away from the null.

Admitting to uncertainty about the magnitude of misclassification
further increases uncertainty, albeit modestly.

Some details from third specification
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Some references

General Bayesian books

Gelman et. al. (2nd ed., 2004)

Carlin and Louis et. al. (3rd ed., 2008)

Berger (2nd. ed. 1985)

And many others: Gill, Congdon, Robert, Moyé,...

Misclassification ex.: Gustafson, Le, and Saskin (2001, Biometrics)



ASIDE A

Bayesian Computation

MCMC

Regardless of platform (C/R/WinBUGS), the cornerstone idea of
Markov Chain Monte Carlo (MCMC) is as follows.

Would like to ‘know’ the distribution having density proportional to
f (z), i.e., graphically represent its marginal distributions,
numerically represent its moments, quantiles, etc.

Obvious application: f () is unnormalized posterior density,
i.e., likelihood times prior.

A large computer-simulated sample of realizations from f () suffices
to ‘know’ f () to good approximation.

Note the nested use of statistical thinking!

MCMC, continued

Given the (unnormalized) target f (z), construct a Markov Chain
Z (0), Z (1), . . . having f (z) as its stationary distribution.

Metropolis-Hastings algorithm is a very general method of
constructing such a chain.

Theory indicates that for any choice of dist
{
Z (0)

}
, the chain

will converge to its stationary distribution.

Hope that the pleasantness of the target plus our clever
choice of particular chain construction is such that:

the convergence is quick,
i.e., dist(Z (b)) is very close to f () for relatively small b.
the chain mixes well,
i.e., dist(Z (i), Z (i+1)) not too small, on average.

Metropolis-Hastings algorithm

Have Z (i)

Generate Z ∗ according to t(Z (i) → Z ∗)
Compute

p = min

{
f (Z ∗)t(Z ∗ → Z (i))

f (Z (i))t(Z (i) → Z ∗)
, 1

}
.

Set

Z (i+1) ←
{

Z ∗ with probability p,

Z (i) with probability 1− p.



MCMC, continued

We can treat the ‘post-burn-in’ output Z (b+1), . . . ,Z (b+m) as a did
(dependent and identically distributed) sample from the target
distribution.

i.e., If we thinned this sample more and more aggressively, it would
look more and more like an iid sample from the target.

i.e., The did sample of size m is as good at summarizing the target
distribution as an iid sample of size m∗, where m∗ << m.

(But this is a conceptual argument – shouldn’t actually thin unless
storage issues demand it!)

MCMC: chain construction

Often the best strategy is to construct the chain from univariate
Metropolis-Hastings transitions:

update target density{
Z

(i+1)
1 |Z (i)

2 , Z
(i)
3

}
f (z1|z2, z3){

Z
(i+1)
2 |Z (i+1)

1 , Z
(i)
3

}
f (z2|z1, z3){

Z
(i+1)
3 |Z (i+1)

1 , Z
(i+1)
2

}
f (z3|z1, z2)

i.e., the j-th ‘full-conditional distribution’ under f () is the target
density when updating Zj .

Best case: each full conditional is a standard distribution.
Simply sample each full conditional in turn — the Gibbs sampler.

Typical case: at least some full conditionals are ‘messy.’
Turn to ‘random-walk’ Metropolis-Hastings and other algorithms.

Chain construction, continued

Generally, spend one’s time:

debugging,

waiting for the computer to finish,

assessing burn-in and convergence.

MCMC: traceplots

More formal assessment possible and desirable, but as a first step
look at traceplots.
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Dislike the top chain, like the bottom one - confident it is a
numerically accurate representation of the target distribution.



MCMC: traceplots, continued

Actually, a minor confession:

The second chain is a thinned version (every 100-th iteration) of
the first.

In the face of plentiful computing resources and some patience, it
may not be worth trying to devise a great sampler. A passable
sampler with long runs will look/be fine.

A few comments on WinBUGS ... from a recent convert ...

Learning curve: less than one day.

Unless the problem you face is hugely sophisticated, worth trying
WinBUGS first, because feasibilty or lack thereof will quickly
become apparent.

Can always later turn to:
R: to control which algorithm updates which parameter,
C: for fast/scalable code.

If (like me) you are less enamoured with GUIs and menus, consider
calling WinBUGS from within R using the R2WinBUGS package:
see Andrew Gelman’s homepage.

Some references

The general Bayes books cited earlier.

Many WinBUGS examples on web.

Specific MCMC books

Robert and Casella (2004, 2nd. ed.)

Liu (2001)

Chen, Shao and Ibrahim (2001)

Gilks et. al. (Eds.) (1996)

MODULE #2

Bayes for Imperfect Data Problems



Collapsed and Augmented Views

In the misclassification example, we analytically determined
(X ∗|Y ), proceeded with:

π(r0, r1|x∗
1:n, y1:n) ∝

n∏
i=1

π(x∗
i |yi , r0, r1, sn, sp) ×

π(r0, r1, sn, sp),

the collapsed view.

But, could also have thought in terms of:

π(r0, r1, sn, sp, x1:n|x∗
1:n, y1:n) ∝

n∏
i=1

π(x∗
i |xi , sn, sp)π(xi |yi , r0, r1) ×

π(r0, r1, sn, sp),

the augmented view.

Augmented view more generally

Ideal but unobservable data D(I ).

Imperfect but observable data D(O).

π(θ, D(I )|D(O)) ∝ π(D(O)|D(I ), θ)π(D(I )|θ)π(θ).

MCMC algorithms inherit the flavour of repeatedly:

imputing D(I ) given D(O) and θ,

imputing θ given D(I ) (and possibly D(O)).

Why take augmented view

PRO: applicable in many problems where D(O)|θ has no
analytical form with which to tackle θ|D(O) directly.

PRO: Very typically MCMC updates to θ are nicer when
conditioning on D(I ) than when conditioning on D(O).

for instance, Gibbs-sampling updates (no tuning) versus
RWMH updates (require tuning).

PRO: allows individual level inference on D(I ), if desired.

CON: turns a p-dimensional integration problem into a
(p + n)-dimensional integration problem.

Why take augmented view, continued

The augmented view tends to prevail, though the choice is not so
clear cut, in my view.

In at least one class of problems I’ve encountered:

D(O)|θ has no analytical form,

θ|D(I ) gives nice MCMC updates.

Yet:

the augmented approach doesn’t work
(poor MCMC convergence/mixing)

using numerical quadrature to evaluate the π(D(O)|θ) inside
an MCMC algorithm applied in the collapsed view works OK.

More thought needed?



Illustration: Framingham heart study

Cohort 55 or younger at initial exam, n=4526

Y twenty-year mortality, all cause;
X (true) log serum-cholesterol (log mg/100ml);
X ∗

1 X as measured at initial exam;
X ∗

2 X as measured at first follow-up exam;
Z AGE and AGE2, GENDER, SMOKING, REL-WHT,

DBP, SBP.

Want to infer (Y |X , Z ) relationship from (Y , X ∗
1 , X ∗

2 , Z ) data.

Model Specification

π(X ∗
1 , X ∗

2 |Y , X , Z ) × π(Y |X , Z ) × π(X |Z )
measurement outcome exposure

model model model

Measurement model
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Try nondifferential measurement model for (X ∗
1 , X ∗

2 |X ) with:
• X ∗

1 , X ∗
2 conditionally independent given X ,

• (X ∗
i |X ) ∼ N(X , σ2

e ), i = 1, 2.

Corresponds to a multiplicative measurement error for CHOL.

Outcome and exposure models

Logistic regression outcome model for (Y |X , Z ).

Normal/linear regression exposure model for (X |Z ).

Evidence for this?
Damage done if wrong?
(parameters in this model are not of direct interest)

Bear in mind that all three models involve the unobservable X ,
hence residual plots etc., are not (easily) forthcoming.

Prior distributions:
• N(0, ‘big’) for regression coefficients,
• ‘Unit-information’ priors with conservative guesses for variances.
(So why bother with Bayes???)



MCMC approach

Cycle through updates to

(X1, . . . ,Xn),

measurement model parameters

outcome model parameters

exposure model parameters

Some Gibbs sampling updates, some random-walk MH (RWMH)
updates.

Outcome model coefficients:
• mix of fast/lousy updates (RWMH)
• slow/good updates (based on logistic regression ML fit)

Bayes-MCMC results

‘Examination of a posterior sample (of all params. in the three
models plus X values for each subject) of size 5000 reveals fast
convergence and good mixing’

Inferences for (Y |X , Z ) coefficients: posterior mean and SD (as
point estimate and ‘standard error’):

β̂ (PSD) exp
(
β̂
)

LOG-CHOL 0.131 (0.120) 1.14
AGE1 0.083 (0.008) 1.09
AGE2 -0.001 (0.001) 1.00
GENDER -0.475 (0.091) 0.62
SMOKING 0.756 (0.095) 2.13
... ... ... ...

Coded wrt a change of log 1.5 ≈ 0.4 in LOG-CHOL,
i.e., a 50% increase in CHOL.

Lessons learned

β̂ PSD
answer adjusting for measurement error: 0.131 (0.120)
ignoring (taking X = X ∗

1 ): 0.120 (0.093)

Yawn. We have ‘un-attenuated’ to a rather modest extent.

Okay. But hard to determine this without doing the analysis,
particularly given the measurement error magnitude.

Also interesting: evidence for a positive association between
cholesterol and mortality.

Ignoring measurement error: Pr(β > 0|Data) = 0.89
Adjusting Pr(β > 0|Data) = 0.86

Ignoring measurement error NOT conservative in this sense!

Illustration: Unmeasured confounding

Variables

Y disease outcome,

X exposure,

C potential confounders that are identified/available.

But concern about U, one (or more) confounders that we can’t
identify or isn’t available.

Regular analysis: Regression of Y on (X , C ).

Ideal but impossible analysis: Regression of Y on (X , C , U).

Doing the regular analysis and interpreting the X coefficient as ‘the
exposure effect’ effectively corresponds to using a very special prior
distribution: with 100% prior certainty, U is not a confounder.



Unmeasured confounder, continued

Recall U not a confounder if it doesn’t drive the outcome or isn’t
associated with exposure.

More precisely:

• Y and U conditionally independent given (X , C ),
and/or
• U and X conditionally independent given C .

Is this a realistic prior distribution in most applications?

More realistically:

Any dependence between Y and U given (X , C ) is likely to be
limited, as is dependence between U and X given C .

Can build a prior of this form.

Beta-blockers and mortality after heart failure

n=6969 BC residents discharged alive from hospital with primary
diagnosis of heart failure

X : dispensed beta-blocker within 30 days

Y : one-year all-cause mortality

C : 21 potential confounders (demographics, comorbidities,
hospitalization characteristics, HF meds)

Admin. data - concern disease severity (U?) not well captured

BB-MAHF, continued

Model Structure

logit(Y |X , U, C ) = α + θX + λ0U + λ1C1 + . . . + λpCp

logit(U|X , C ) = ω + γ0X

logit(X |C ) = ξ + γ1C1 + . . . + γpCp

describes ideal (i.e., including U) data in terms of parameters.

Specification completed with prior distributions for all parameters.

Plausible ranges for strengths of (U, X ) and (U, Y ) relationships
required.

Prior structure

Parameters:

γ’s describe association of exposure X with confounders
(U, C1, . . . ,Cp).

λ’s describe association of Y with (U, C1, . . . ,Cp), (given X ).

These parameters all conditional log-odds ratios.

For example, assign 0± log6 prior in each case.

Different styles of prior: independent versus exchangeable.



Different styles of prior

Prior on γ0, γ1, . . . , γp (similarly on λ0, λ1, . . . , λp)

Independent and identically distributed.

Conditionally independent with mean zero and unknown
variance (which itself is assigned a prior distribution), hence
exchangeable.

Either way, can assign each γj the same marginal distribution
(e.g., Student’s t, with df = 10, μ = 0, σ = 0.5× log6).

Differing implications:
knowledge of γj implies something about γk?

Exchangeable prior in action

Data directly inform values of γ1, . . . , γp -
how associated is X with C1, . . . ,Cp.

Thus some indirect information flow to γ0, describing the
(X , U) relationship.

Reflects notion that |γ0| is more likely to be small if
|γ1|, . . . , |γp| tend to be small.

Similarly for (λ0, λ1, . . . , λp) describing associations with Y .

Matches epidemiological folklore???
If adjusting for a series of potential confounders has little
impact, then adjusting for one more is less likely to have a
large impact?

BB-MAHF results

ÔR

Crude (Y |X ) 0.63 (0.55, 0.74)
Naive (Y |X , C ) 0.72 (0.62, 0.86)

Ind. Prior (Y |X , U, C ) 0.72 (0.45, 1.15)
Exch. Prior (Y |X , U, C ) 0.72 (0.56, 0.93)

Simultaneously acknowledge:

sampling variability (n = 6969 not n = ∞),

unknown relationship between U and (X , Y , C ).

Illustration: Viral load modelling

Viral load (HIV) over time, n = 44 treated patients.
Wu & Ding (1999), Ko & Davidian (2000), Wu (2002).
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Outcome model

Yit log10 viral load of patient i at time t;
Xi baseline (CD4 cell count) - poorly measured;
Zi baseline (log) viral load.

Complex nonlinear model to explain viral dynamics
(initial/decay phases, random effects):

Yit ∼ N
(
θ1ie

−λ1i t + θ2ie
−λ2i t , σ2

)
(λ1i > λ2i )

log θ1i = β1 + β2Zi + b1i

log θ2i = β3 + β4Zi + b2i

log λ1i = β5 + β6Xi + b3i

log λ2i = β7 + b4i

Modelling impact of baseline CD4 count on initial decline.

Exposure and measurement models

Normal, linear exposure model for (X |Z ).

Simplest possible (nondifferential) measurement model:

X ∗|X , Z , Y ∼ N(X , σ2
e ).

Knowledge of σe? No validation sub-sample, no replicates.

Ko & Davidian (2000), guided by subject-area knowledge,
sensitivity analysis: try fixed values σ2

e = 0, 0.12, 0.24, 0.36.

Or maybe one should use this guidance to form an ‘informative’
prior distribution for σ2

e ... one day ....

Priors and MCMC

Combination of ‘flat’ arguments, plus ‘best guess with lots of
uncertainty’ arguments to assign prior distributions.

MCMC in augmented view: unobserved x1:n, random effects bj ,1:n,
j = 1, . . . , 4, corresponding variance components, coefficients β1:7.

So cycle through 5n + 11 = 231 univariate updates to do one
overall MCMC update.

Slow-mixing, fiddly, hard-to-tune, but tolerable.

Results

Recall: β6 governs association between baseline CD4 count and
initial decline in viral load.

Recall: σ2
e describes measurement error in baseline CD4 count.

σ2
e 0 0.12 0.24 0.36

(posterior mean) β̂6 0.122 0.191 0.448 0.642
(posterior SD) “SE” 0.089 0.135 0.236 0.287

Typical: correcting for bias toward null, loss of info.

Why am I showing you this example?

Proof of concept: we can do hard problems, with some effort.



Some references

The three examples

Gustafson (2003, Ch. 4.3 and Ch. 4.5)

McCandless, Gustafson and Levy
(Stat. Med. 2007, J. Clin. Epi. 2008)

Recent book on Bayes-MCMC approaches to missing data:
Daniels and Hogan (2008)

Module #3

BAYES FOR FLEXIBILITY

Two (at least) kinds of flexibility

Flexible modelling in terms of:

1 ‘functional forms’ used,

2 ‘structural assumptions’ used.

‘Functional form’ flexibility

Avoiding restrictive distributional assumptions.

Bayesian nonparametrics

Dirichlet processes, Polya trees, etc.
burdgeoning literature
amazing technical prowess
not immodest learning curve

Bayesian ‘mid-to-many’ parameters

parsimony-encouraging priors
hierarchical, extent of encouragement not fixed



Functional form flexibility, textbook example

Replace

E (Y |X ) = β0 + β1X

with

E (Y |X ) =

p∑
i=1

αiBi (X )

E.g., {B1(x), . . . ,Bp(x)} = {1, x , x2, x3, (x − c1)
3
+, . . . , (x − cp)

3
+}.

Hierarchical prior on α such that linearity encouraged,
to an unknown extent, e.g.,

α|τ2 ∼ Nk(μ, τ2M)

τ2 ∼ ???

where αTM−1α measures curvature of E (Y |X ).

(Partial) Illustration

‘Default’ and conservative prior distributions for τ2
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Conservative Prior

True curve, posterior mean, posterior draws

(Partial) Illustration, continued

True curves and posterior means under repeated data-generation.
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Philosophical note

To me, this example epitomizes some advantages of the Bayesian
approach.

Take advantage of prior knowledge at a meta-level,
i.e., a smoother curve is a more plausible than a rougher one for
most phenomena,
rather than at a detail-level,
i.e., the smoothness of the phenomenon in question is likely
between 5.6 and 17.2.

And the answer (posterior distribution of the regression function)
automatically incorporate uncertainty about the smoothing
parameter (τ2) - compare with ‘cross-validate and plug-in’
approaches which are common in smoothing problems.



A word more on the ”conservative” prior

General set-up of linear mixed model
(curve-fitting, spatial-data, multicentre-study data, etc.).

Set-up to guard against substantial overestimation of
random-effect variances.

Functional form of πCONS(τ2) somewhat involved in general,
depends on design matrix and covariance structure for the random
effects.

In simple problems, looks like

π(τ2|σ2) ∝ 1

σ2(1 + τ2/σ2)a+1
.

Another example: skew extensions of normal family

density
normal φ(z)

skew-normal φ(z)2Φ(ω1z)
generalized-skew-normal φ(z)2Φ(ω1z + ω3z

3)
generalized-skew-t scale mixture thereof

Also note that X ∼ GST (μ, σ2, ω1, ω2, df) can be expressed as:

X |S ∼ GSN(μ, σ2S2, ω1, ω2)

S2 ∼ Gamma(df/2, df/2)

Suggests ‘expanded-view’ MCMC strategy, applied to
(S1, . . . ,Sn, μ, σ, ω1, ω3).

Application to measurement error models

measurement model X ∗|Y , X , Z
outcome model Y |X , Z
exposure model X |Z

Use of N(α + βZ , σ2) exposure model often cited as a criticism.

Move to GST (α + βZ , σ2, ω1, ω3, df) exposure model.

Center prior at ω1 = 0, ω3 = 0, df =∞.

Hossain (2007 Ph.D. thesis): for all true exposure distributions
tested (including some non-GST), removes virtually all bias in
estimating outcome model regression coefficients.

Also performs well in comparison to so-called functional methods
which attempt to avoid any specification of an exposure model.

Flexibility about structural assumptions

Analysis of imperfect observational data can involve tension
surrounding conditional independence assumptions which are:

needed to ensure the data are informative about the quantity
of interest,

dubious, and empirically uncheckable due to data
imperfections.

Bayesian analysis allows the use of a compromise:
Specify a prior such that large departures from conditional
independence are unlikely.

Non-Bayesian alternatives to this?



Illustration

SIDS case-control study again:

unobserved X : maternal anemia during pregnancy
observed X ∗

1 : X measurement via questionnaire
observed X ∗

2 : X measurement via chart review

controls cases
X ∗

2 = 0 X ∗
2 = 1 X ∗

2 = 0 X ∗
2 = 1

X ∗
1 = 0 147 15 125 15

X ∗
1 = 1 34 20 49 24

Note: a saturated model would have six parameters.

Illustration, continued

Model for X |Y :

two independent binomial counts,

log-OR is target parameter.

Possible models for X ∗
1 , X ∗

2 |X , Y :

1 discard discordant pairs, take X to be common value,

2 conditional independence, (SNi , SPi ), i = 1, 2,

3 prior which relaxes conditional independence assumption

Note on Model 2:

saturated.

Notes on Model 3:

truncated exponential priors on Cov(X ∗
1 , X ∗

2 |X ),

downweight corr=0.25 by a factor of four relative to corr=0.

Illustration, continued: Posterior distribution of log-OR
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Some references

Bayesian curve-fitting (Dennison et. al. 2002).

(Choice of prior: Daniels 1999, Gustafson, Hossain and MacNab
2006, CJS).

Bayesian nonparametrics: many people, look at David Dunson’s
work in particular for leading-edge methods applied to biostatistical
problems.

FGST in measurement error models:
Hossain, 2007 Ph.D. thesis, UBC.

Relaxing conditional independence assumptions:
Gustafson (2003, Ch. 5.3, 2005 Stat. Sci., Stat. Med., 2007
JRSS-B).



Aside B

MODEL SELECTION / COMPARISON / AVERAGING

Some passing thoughts from a non-expert.

Principled Bayesian model assessment
choice or averaging!)

A single model-prior specification yields a joint distribution of data
and parameters.

Competing model-prior pairs: πa(data, θa) and πb(data, θb).

Indicator M of true model - just another parameter under the
Bayesian lens - requires a prior.

Pr(M = a|data) =
Pr(data|M = a)Pr(M = a)∑

m∈{a,b} Pr(data|M = m)Pr(M = m)

=
πa(data)Pr(M = a)∑

m∈{a,b} πm(data)Pr(M = m)

where ‘the marginal’ for a given model is:

πm(data) =
∫

πm(data, θm)dθm =

∫
πm(data|θm)πm(θm)dθm.

Purported ‘three strikes’ against principled Bayesian model
assessment

1 Hard to compute - doesn’t ‘fall out’ of MCMC output for
individual models, while MCMC for the ‘uber-model’ can be
challenging.

2 Answers can be sensitive to choices of within-model priors
πa(θa), πb(θb).

3 Seemingly amorphous sense of ‘best model’ compared to very
empirical criteria based on cross-validation, penalized
likelihood, etc.

Strike #1: Computation

Indeed a big issue. Many years of research on:

Add-ons to compute πm(data) given MCMC output on
πm(θm|data),

some promise (see, for instance, work of Chib), but not yet
black-box-ized, i.e., not in WinBUGS.

Schemes to do MCMC directly on (M, θa, θb|data), e.g.,
reversible-jump MCMC (Green, 1995).

some successes,
some tuning angst,
also not yet black-box-ized.



Strike #2: Sensitivity to within-model priors

In many situations, the posterior over the model space, π(M|data)
is indeed quite sensitive to the choice of within-model priors,
πa(θa) and πb(θb), even for fixed across-model prior π(M).

Regard as weakness of formal Bayesian model assessment?

I regard it as a statement of ‘fundamental sensitivity’ whenever
model assessment/selection is found.

flatish objective functions when choosing smoothing
parameters via cross-validation,

big variation when most selection techniques (e.g. stepwise
regression) are applied to repeated bootstrap samples,

arguments, and different answers, concerning ?IC
(AIC, BIC, FIC, GAIC, etc.).

Strike #3: Preference for something more empirical

Some are happy with very empirically motivated schemes to select
models, i.e., explicitly based on how well the model does when
parts of the data are used to predict other parts of the data.

For instance, pick the model maximizing
∑

i log π(xi |x−i ).

Or, instead of emphasizing (n − 1) → 1 predictions, aggregate
predictions of all sizes. For instance, pick the model maximizing∑

i log f (xi |x1:(i−1)).

Wait a minute - this is formal Bayesian model assessment —
choosing the model-prior pair yielding the largest marginal density
evaluated at the observed data. Pretty empirical after all!

Deviance Information Criterion (DIC)

Becoming popular, presumably on the basis of ease-of-computation
and intuitive appeal.

As usual, take deviance to be D(θ) = −2 log π(data|θ).
Reflect infidelity of model to data by posterior mean deviance,
E{D(θ)|data}.
Reflect complexity of model, by effective dimension,
pD = E{D(θ)|data} − D{E (θ|data)}.
Choose model minimizing infidelity plus complexity.

black-box-ized (WinBUGS),

‘effective’ dimension very appropriate in many problems,

still much active discussion of pros/cons,

rapidly taking over the market - but for the right reasons?

Some references

General discussion of principled Bayes model comparison:
Berger, Kass, Raftery, others

Separate-model approach to computation:
Various papers by Sid Chib (Washington U.)

Uber-model approach:
Reversible-jump MCMC - Green (1995, Biometrika)

DIC paper: Spiegelhalter et. al. (2002, JRSS-B).



Module #4

Further topics

Identification

Performance of interval estimates

Identification

In general a statistical model is nonidentified if multiple sets of
parameter values correspond to the same distribution of
observables.

Identification is often regarded as a minimal condition for a model
to be ‘sensible’.

On the other hand, realistic models for imperfect data are
sometimes nonidentified, and simplifications to fix this are dubious.

E.g., take (SN, SP) as known exactly rather than approximately.

E.g., assume X ∗
1 , X ∗

2 conditionally independent given X .

Choices may be:

1 Work with a nonidentified but realistic model

2 Work with an identified but unrealistic model

3 Give up

Compare 1 and 2:

Which point estimator is more biased?

Which interval estimator is more misleading?

Working with a nonidentified model

No basis for computing or reporting ML inferences.

Bayesian inference: the math and computing involved in
determining a posterior distribution is blind to whether or not the
model is identified.

However, we expect the lack of identification to have an impact on
the shape (particularly the concentration) of the posterior.

Intuition???

posterior doesn’t narrow to a single point as n →∞?

posterior as wide as prior?



Bayesian inference under nonidentified model

Have original model parameterization θ and prior π.

Sometimes, can find special parameterization φ = (φI , φN)
isolating which terms do / don’t appear in likelihood.

Often a sensible/weak prior in the original parameterization
induces a strong dependence in the special parametrization.

Even support of φN depending on φI in some cases!

Let g(φ) be target parameter of interest.

Let g̃(φI ) = Eπ{g(φ)|φI}.
Point estimation of target?

E{g(φ)|Data} = E{g̃(φI )|data}
where RHS is a ‘regular’ estimator of g̃(φI ),
i.e., get consistent estimation of wrong target!

Inference under nonidentified model, continued

Let ∗ denote true values. As n →∞:

E{g(φ)|Data} → g̃(φ∗
I ) �= g(φ∗)

[may be far from prior mode of g(φ)],

Var{g(φ)|Data} → Varπ{g(φ)|φI = φ∗
I }

[≤ Varπ{g(φ)}on average].

Bayesian inference under a nonidentified model not (necessarily)
useless.

Posterior variance not (necessarily) misleadingly narrow.

Bias tradeoffs

Smaller model: identified but involves dubious assumptions.
Bigger model: more realistic but nonidentified.

Think of parameter governing departure from smaller model.
As this moves away from ‘zero’ look at:

bias due to nonidentification when using bigger model

bias due to misspecification when using smaller model

Often the latter will quickly dominate!

Example in brief

X ∗|Y , X , S ∼ N(X , τ2)

Y |X , S ∼ N(β0 + βxX + βsS , σ2)

X |S ∼ N(α0 + αsS , λ2)

Want to infer βx , but only get to observe (X ∗, Y , S).

Aided by S being either exactly or approximately an instrumental
variable.

respsective priors

1 βs ≡ 0: identified, risk of misspecified

2 βs ∼ small: nonidentified, perhaps better specified.



As the true value of β3 moves away from zero...

How quickly does bias from misspecified model 1 become bigger
than the bias using nonidentified model 2?

Log-absolute-bias-ratio:
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Interval coverage

Valid frequentist confidence interval:
For any fixed value of θ, draw data from π(data|θ),
95% chance of generating a ‘good’ interval.

Typically requires a model that is both correct and identified.

Valid Bayesian credible interval:
Randomly draw (θ, data) from π(θ)π(data|θ),
95% chance of generating a ‘good’ interval.

A weaker notion of correct coverage,
can be achieved with a correct model and the ‘right’ prior.

Interval coverage, continued

Think of nature’s prior πNAT (θ) and investigator’s prior πINV (θ).

Look at coverage when data are:

generated from πNAT (θ)π(data|θ),
analyzed using πINV (θ), π(data|θ).

How fast does coverage deviate from nominal as πNAT deviates
from πINV ?

Expect very minor deviations in the identified-model, large-sample
setting.

Concerned about very substantial deviations in nonidentified-model
setting.

Example

Case-control with exposure misclassification - again!

Consider different priors on SN, SP

πNAT is solid curve (mode at 0.85).
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Example, continued

Coverage of nominal 95% interval estimates for log-OR,
under πNAT (θ)π(data|θ) data generation.

credible interval with πINV = πNAT 95%
with πINV �= πNAT 95%

94%
95%
87%

frequentist CI assuming SN = SP = 1.00: 44%
assuming SN = SP = 0.85: 81% (with caveat)

Some references

Various papers of Greenland and/or Gustafson,
also Lawrence Joseph.

Neath and Samaniego (1997 Am. Stat.)
Poirier (1998, Econometric. Th.)
Xie and Carlin (2006, JSPI)

Wrap-up

Bayes is delightfully simple (conceptually if not computationally)
and intuitive.

Seems tailor-made for some problems.

Perhaps with more (Bayesian) acknowledgment of uncertainty we
can progress away from the perceptions expressed in the following
(old!) cartoon...

Can Bayes save us from this???



Thanks for attending!


