STAT 530

Bayesian hypothesis testing

or

How good are the drugs on the pharmacy shelf?

Consider testing/approving a steady stream of candidate pharmaceutical drugs...

Data:
$$\bar{X}_i \sim N(\theta_i, \sigma^2/n)$$

Test statistic:
$$Z_i = \bar{X}_i/(\sigma/\sqrt{n})$$
. $Z_i \leq 1.65$ *i*-th drug not approved $Z_i > 1.65$ *i*-th drug approved

What proportion of drugs on the market are ineffective?

Say in the population of tested drugs, $\theta \sim pN(0,0) + (1-p)N^+(0,\tau^2)$

$$Pr(\text{ineffective}|\text{approved}) = Pr(\theta_i = 0|Z_i > 1.65)$$

=

Pr(ineffective|approved)

$$p=0.5$$
, $\sigma=2$

$$n = 20 \quad n = 200 \quad n = \infty$$

$$\tau = 0.5$$

$$\tau = 0.2$$

Alternate approval strategy

```
Be Bayesian, and use a prior. Say \theta \sim p^*N(0,0) + (1-p^*)N^+(0,\tau^{*2}).
```

```
Approve i-th drug \leftrightarrow Pr(\theta_i > 0|\bar{x}_i) > 0.95
```


How does this work under 'right prior' conditions?

Compute $Pr(\theta_i = 0 | \bar{X}_i = \bar{x}_i)$

Operating characteristics

```
> table(pstprb<.05, th>0)

FALSE TRUE
FALSE 24831 22799
TRUE 45 2325
```


Compared to frequentist approach

Generally, P-value $<< P(H_0|Data)$

> table((xbar/sqrt(4/200))>1.65, th>0)

FALSE TRUE FALSE 23630 16963 TRUE 1246 8161

