\square

STAT 530

Bayesian hypothesis testing

or

How good are the drugs on the pharmacy shelf?

April 7, 2010

What proportion of drugs on the market are ineffective?

Say in the population of tested drugs,
$\theta \sim p N(0,0)+(1-p) N^{+}\left(0, \tau^{2}\right)$

$$
\operatorname{Pr}(\text { ineffective|approved })=\operatorname{Pr}\left(\theta_{i}=0 \mid Z_{i}>1.65\right)
$$

$$
=
$$

$\operatorname{Pr}($ ineffective|approved)

$$
\begin{array}{ll}
\theta_{i}=0 & i \text {-th drug innefective } \\
\theta_{i}>0 & i \text {-th drug effective }
\end{array}
$$

Data: $\bar{X}_{i} \sim N\left(\theta_{i}, \sigma^{2} / n\right)$

Test statistic: $Z_{i}=\bar{X}_{i} /(\sigma / \sqrt{n})$
$Z_{i} \leq 1.65 \quad i$-th drug not approved $Z_{i}>1.65 \quad i$-th drug approved
ved)

$$
p=0.5, \sigma=2
$$

$$
n=20 \quad n=200 \quad n=\infty
$$

$$
\tau=0.5
$$

$$
\tau=0.2
$$

Alternate approval strategy

Be Bayesian, and use a prior. Say
$\theta \sim p^{*} N(0,0)+\left(1-p^{*}\right) N^{+}\left(0, \tau^{* 2}\right)$.

Approve i-th drug $\leftrightarrow \operatorname{Pr}\left(\theta_{i}>0 \mid \bar{x}_{i}\right)>0.95$

How does this work under 'right prior' conditions?

```
set.seed(13); NREP <- 50000
th <- rep(0,NREP) + rbinom(NREP,size=1,prob=.5)*
    abs(rnorm(NREP,0,0.2))
xbar <- rnorm(NREP, th, sqrt(4/200))
pstprb <- rep(NA, NREP)
for (i in 1:NREP) {
    pstprb[i] <- prnull(xbar[i], sqrt(4/200), 0.5, 0.2)
}
```

> table(pstprb<.05, th>0)

FALSE TRUE
FALSE 2483122799 TRUE 452325

```
Compute }\operatorname{Pr}(\mp@subsup{0}{i}{}=0|\mp@subsup{\overline{X}}{i}{}=\mp@subsup{\overline{x}}{i}{}
prnull <- function(xbar, sgbar, p, tau) {
    ### model xbarlsgbar ~ N(theta, sgbar^2)
    ### prior theta ~ sim p*N(0,0)+(1-p)*N+(0,tau^2)
    ### return Pr(theta=0|X=x)
    num <- p*dnorm(xbar,0,sgbar)
    tmp.sd <- sqrt(1/(1/sgbar^2 + 1/tau^2))
    tmp.mn <- (xbar/sgbar^2) / (1/sgbar^2 + 1/tau^2)
    den <- (1-p)*2*dnorm(xbar, 0, sqrt(sgbar^2+tau^2))*
        (1-pnorm(0,tmp.mn,tmp.sd))
    bf <- num/den
    pstprb <- bf/(1+bf) ### post prob of null
}
```


Operating characteristics

$>\operatorname{table}((x b a r / \operatorname{sqrt}(4 / 200))>1.65, \quad$ th $>0)$

FALSE TRUE
FALSE 2363016963 TRUE 12468161

