STAT 530: Ordinal Data Models

April 7, 2010

Instead, think of 'latent' continuous response Z
$Z \sim N\left(\beta^{T} X, 1^{2}\right)$
For $k=1, \ldots, K$:
$Y=k \leftrightarrow g_{k-1}<Z<g_{k}$.
Likelihood methods require $\operatorname{Pr}(Y=k \mid X)$ as a function of
$(\beta, g)=\left(\beta_{1}, \ldots, \beta_{p}, g_{1}, \ldots, g_{K-1}\right)$.
Bayesian analysis implemented via Gibbs sampling avoids this explicitly

Want to do regression, with a response variable such as:

$$
Y= \begin{cases}1 & \text { no high school completion } \\ 2 & \text { high school completion } \\ 3 & \text { 'associate' degree } \\ 4 & \text { bachelor's degree } \\ 5 & \text { graduate degree }\end{cases}
$$

Can't (or at least shouldn't) model as $Y=\beta^{T} X+$ noise

Regarding $x_{1: n}$ as fixed, joint density of everything looks like...

$$
\prod_{i=1}^{n}\left\{p\left(y_{i} \mid z_{i}, g\right) p\left(z_{i} \mid \beta\right)\right\} p(\beta) p(g)
$$

Nice full conditionals

What sort of inferences to report?

On β directly, so are infering the relationship between X and Z
E.g. text ex., with $Y=D E G, X=(C H I L D, P D E G, C H I L D \times P D E G)$. Interesting that $\hat{\beta}_{1}<0, \hat{\beta}_{1}+\hat{\beta}_{3}>0$.
Or could try to relate more directly to the (X, Y) relationship...

Pros and cons

Alternatively, can bypass g

A priori

$$
p(z, \beta)=\left\{\prod_{i=1}^{n} p\left(z_{i} \mid \beta\right)\right\} p(\beta)
$$

Equate observing $y=y_{1: n}$ with partial knowledge of $z=z_{1: n}$, expressed as $z \in R(y)$, i.e., (z, y) relationship must be monotone.
So a posteriori

$$
p(z, \beta \mid z \in R(y))=\left\{\prod_{i=1}^{n} p\left(z_{i} \mid \beta\right)\right\} p(\beta) l\{z \in R(y)\}
$$

Ammenable full conditionals again

These ideas extend from regression to multivariate analysis
$Y_{i, j}$ is the i-th observation on the j-th variable.
$Z_{i, j}$ is the corresponding latent variable with standard normal distribution.
$Z_{i, 1: p} \stackrel{i i d}{\sim} N_{p}(0, \Psi)$
$Y_{i, j}=g_{j}\left(Z_{i, j}\right)$
Again the rank likelihood method allows inference about Ψ without explicit modelling of $g_{j}(), j=1, \ldots, p$.
So can infer dependence amongst the p variables whilst ignorning the scale on which each variable lives...

