

What sort of inferences to report?

Pros and cons

On β directly, so are infering the relationship between X and Z E.g. text ex., with Y=DEG, X=(CHILD, PDEG, CHILD×PDEG). Interesting that $\hat{\beta}_1 < 0$, $\hat{\beta}_1 + \hat{\beta}_3 > 0$.

Or could try to relate more directly to the (X, Y) relationship...

Alternatively, can bypass g

A priori

$$p(z,\beta) = \left\{\prod_{i=1}^n p(z_i|\beta)\right\} p(\beta)$$

Equate observing $y = y_{1:n}$ with partial knowledge of $z = z_{1:n}$, expressed as $z \in R(y)$, i.e., (z, y) relationship must be monotone. So a posteriori

$$p(z,\beta|z\in R(y)) = \left\{\prod_{i=1}^n p(z_i|\beta)\right\}p(\beta)I\{z\in R(y)\}$$

Ammenable full conditionals again

<ロ> 4個> 4目> 4目> 目 のQの

These ideas extend from regression to multivariate analysis

- Rank likelihood method frees one from choosing a prior on g
- Rank likelihood method simplifies Gibbs sampling (no update to g)
- Rank likelihood method only leads to inference on (X, Z) relationship, can't extend to (X, Y) relationship.

Text ex: virtually the same inferences on $\beta = (\beta_1, \beta_2, \beta_3)$ from either approach

 $Y_{i,j}$ is the *i*-th observation on the *j*-th variable.

 $Z_{i,j}$ is the corresponding latent variable with standard normal distribution.

 $Z_{i,1:p} \stackrel{iid}{\sim} N_p(0, \Psi)$

$$Y_{i,j} = g_j(Z_{i,j})$$

Again the rank likelihood method allows inference about Ψ without explicit modelling of $g_j(), j = 1, ..., p$.

So can infer dependence amongst the p variables whilst ignorning the scale on which each variable lives...