STATISTICS 200, Section 102

YET MORE PROBABILITY

September 28, 2009 (Week #4, Monday)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

Recall our definition of conditional probability:

$$P(B|A) = rac{P(A ext{ and } B)}{P(A)}$$

Rearrange as:

P(A and B) = P(A)P(B|A)

A general way to compute probability of two events happening together ('intersection').

Three or more events together?

Multiplication rules, continued

P(A and B and C) =

Multiplication rules, continued

P(A and B and C) = P(A and B)P(C|A and B)=

Multiplication rules, continued

P(A and B and C) = P(A and B)P(C|A and B)= P(A)P(B|A)P(C|A and B)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶

Seven tickets in hat - 3 winners, 4 losers. Will select three at random (no replacement!).

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶

P(all three are winners) =

Subtle distinction

What if replaced pulled ticket before selecting next one? Or the number of tickets in the hat is enormous (but still 3/7-ths of them are winners), so that pulling one out has a negligible impact on the proportion of winners amongst those remaining.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Then

P(all three are winners) =

For **any** two events A and B,

$$P(A \text{ or } B) = P(A) + P(B) - P(A \text{ and } B)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Intuition - Venn diagram 'Proof' - can be deduced from our existing rules Let the event S be occurrence of incriminating evidence.

For instance,

- $S = \{$ two apparent SIDS deaths in same family $\}$.
- $S = \{$ sells shares moments before company announces bad news $\}$.

Let I be the event that the person in question is innocent.

Judge and jury might be swayed if P(S|I) is really small. For instance, there was a (flawed) claim in the Sally Clark case that P(S|I) = 1 in 72 million.

$$P(I|S) = \frac{P(S \text{ and } I)}{P(S)}$$

$$P(I|S) = \frac{P(S \text{ and } I)}{P(S)}$$
$$= \frac{P(S \text{ and } I)}{P(S \text{ and } I) + P(S \text{ and } I^{C})}$$

$$P(I|S) = \frac{P(S \text{ and } I)}{P(S)}$$

=
$$\frac{P(S \text{ and } I)}{P(S \text{ and } I) + P(S \text{ and } I^{C})}$$

=
$$\frac{P(S|I)P(I)}{P(S|I)P(I) + P(S|I^{C})P(I^{C})}$$

・ロト ・ 日 ・ モ ト ・ モ ・ うへぐ

$$P(I|S) = \frac{P(S \text{ and } I)}{P(S)}$$

= $\frac{P(S \text{ and } I)}{P(S \text{ and } I) + P(S \text{ and } I^{C})}$
= $\frac{P(S|I)P(I)}{P(S|I)P(I) + P(S|I^{C})P(I^{C})}$
= $\frac{P(S|I)P(I)}{P(S|I)P(I) + P(S|I^{C})\{1 - P(I)\}}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Have developed an 'evidence processor'

Inputs

- P(S|I) chance that an innocent person triggers the suspicious event
- P(S|I^C) chance that a guilty person triggers the suspicious event - equal one?
- P(1) chance that a randomly selected person is innocent close to one?

Outputs

■ *P*(*I*|*S*) - describes strength of evidence for/against accused!

Say, for example, $P(S|I^{C}) = 1$. Then:

P(S I)	P(I)	P(I S)
10^{-8}	$1 - 10^{-7}$	0.09
10^{-8}	$1 - 10^{-6}$	0.01
10^{-7}	$1 - 10^{-6}$	0.09
10^{-6}	$1 - 10^{-6}$	0.50
10^{-5}	$1 - 10^{-5}$	0.50

Need P(S|I) several orders of magnitude smaller than $P(I^{C})$ - which is the proportion guilty in the population - in order to be convinced of guilt by seeing S occur.

Prosecutor's fallacy: interpreting small P(S|I) as evidence of guilt, without considering P(I).

Going from conditioning one way around to the other, for instance, from P(S|I) to P(I|S), or more generally from **data given parameters** to **parameters given data**, is known as **Bayes theorem**.

Very general idea, and ongoing research area!