STATISTICS 200, Section 102 YET MORE PROBABILITY

September 28, 2009 (Week \#4, Monday)

Multiplication Rules

Recall our definition of conditional probability:

$$
P(B \mid A)=\frac{P(A \text { and } B)}{P(A)}
$$

Rearrange as:
$P(A$ and $B)=P(A) P(B \mid A)$
A general way to compute probability of two events happening together ('intersection').
Three or more events together?

Multiplication rules, continued

$P(A$ and B and $C)=$

Multiplication rules, continued

$$
\begin{aligned}
P(A \text { and } B \text { and } C) & =P(A \text { and } B) P(C \mid A \text { and } B) \\
& =
\end{aligned}
$$

Multiplication rules, continued

$$
\begin{aligned}
P(A \text { and } B \text { and } C) & =P(A \text { and } B) P(C \mid A \text { and } B) \\
& =P(A) P(B \mid A) P(C \mid A \text { and } B)
\end{aligned}
$$

Multiplication rules, examples

Seven tickets in hat -3 winners, 4 losers. Will select three at random (no replacement!).
$P($ all three are winners $)=$

Subtle distinction

What if replaced pulled ticket before selecting next one? Or the number of tickets in the hat is enormous (but still $3 / 7$-ths of them are winners), so that pulling one out has a negligible impact on the proportion of winners amongst those remaining.
Then
$P($ all three are winners $)=$

Also a more general rule for 'or'

For any two events A and B,

$$
P(A \text { or } B)=P(A)+P(B)-P(A \text { and } B)
$$

Intuition - Venn diagram
'Proof' - can be deduced from our existing rules

Conditional probability and the law

Let the event S be occurence of incriminating evidence.
For instance,
$S=\{$ two apparent SIDS deaths in same family $\}$.
$S=\{$ sells shares moments before company announces bad news $\}$.
Let $/$ be the event that the person in question is innocent. Judge and jury might be swayed if $P(S \mid I)$ is really small. For instance, there was a (flawed) claim in the Sally Clark case that $P(S \mid I)=1$ in 72 million.

Which way around for conditioning?

Consider using $P(S \mid I)$ as a starting point to determining $P(I \mid S)$, which is arguably the relevant quantity - evidence for innocence/guilt.

$$
P(I \mid S)=\frac{P(S \text { and } I)}{P(S)}
$$

Which way around for conditioning?

Consider using $P(S \mid I)$ as a starting point to determining $P(I \mid S)$, which is arguably the relevant quantity - evidence for innocence/guilt.

$$
\begin{aligned}
P(I \mid S) & =\frac{P(S \text { and } I)}{P(S)} \\
& =\frac{P(S \text { and } I)}{P(S \text { and } I)+P\left(S \text { and } I^{C}\right)}
\end{aligned}
$$

Which way around for conditioning?

Consider using $P(S \mid I)$ as a starting point to determining $P(I \mid S)$, which is arguably the relevant quantity - evidence for innocence/guilt.

$$
\begin{aligned}
P(I \mid S) & =\frac{P(S \text { and } I)}{P(S)} \\
& =\frac{P(S \text { and } I)}{P(S \text { and } I)+P\left(S \text { and } I^{C}\right)} \\
& =\frac{P(S \mid I) P(I)}{P(S \mid I) P(I)+P\left(S \mid I^{C}\right) P\left(I I^{C}\right)}
\end{aligned}
$$

Which way around for conditioning?

Consider using $P(S \mid I)$ as a starting point to determining $P(I \mid S)$, which is arguably the relevant quantity - evidence for innocence/guilt.

$$
\begin{aligned}
P(I \mid S) & =\frac{P(S \text { and } I)}{P(S)} \\
& =\frac{P(S \text { and } I)}{P(S \text { and } I)+P\left(S \text { and } I^{C}\right)} \\
& =\frac{P(S \mid I) P(I)}{P(S \mid I) P(I)+P\left(S \mid I^{C}\right) P(I C)} \\
& =\frac{P(S \mid I) P(I)}{P(S \mid I) P(I)+P\left(S \mid I^{C}\right)\{1-P(I)\}}
\end{aligned}
$$

Have developed an 'evidence processor'

Inputs

- $P(S \mid I)$ - chance that an innocent person triggers the suspicious event
- $P\left(S \mid I^{C}\right)$ - chance that a guilty person triggers the suspicious event - equal one?
- $P(I)$ - chance that a randomly selected person is innocent close to one?

Outputs

■ $P(I \mid S)$ - describes strength of evidence for/against accused!

Evidence processor, continued

Say, for example, $P\left(S \mid I^{C}\right)=1$. Then:

$$
\begin{array}{ccc}
P(S \mid I) & P(I) & P(I \mid S) \\
10^{-8} & 1-10^{-7} & 0.09 \\
10^{-8} & 1-10^{-6} & 0.01 \\
10^{-7} & 1-10^{-6} & 0.09 \\
10^{-6} & 1-10^{-6} & 0.50 \\
10^{-5} & 1-10^{-5} & 0.50
\end{array}
$$

Need $P(S \mid I)$ several orders of magnitude smaller than $P\left(I^{C}\right)$ which is the proportion guilty in the population - in order to be convinced of guilt by seeing S occur.
Prosecutor's fallacy: interpreting small $P(S \mid I)$ as evidence of guilt, without considering $P(I)$.

Final thought

Going from conditioning one way around to the other, for instance, from $P(S \mid I)$ to $P(I \mid S)$, or more generally from data given parameters to parameters given data, is known as Bayes theorem.

Very general idea, and ongoing research area!

