STAT 530: Regression, Continued

Mar. 15, 2010

Model comparison in general, continued

Need 'marginal probability' for each model: $p(D|z) = \int p(D|\theta_z, z)p(\theta_z|z)d\theta_z$

Then 'Bayes as usual'

$$p(z|D) = \frac{p(D|z)p(z)}{\sum_{\tilde{z}} p(D|\tilde{z})p(\tilde{z})}$$

Note (recall?) Bayes factor interpretation:

$$\frac{p(z_i|D)}{p(z_j|D)} = \frac{p(D|z_i)}{p(D|z_j)} \frac{p(z_i)}{p(z_j)}$$

Model comparison in general

z indicates which model, θ_z are the parameters within this model. Must specify both 'across' and 'within' priors, p(z) and $p(\theta_z|z)$ Both prior and posterior are of a mixture form:

$$p(z, \theta_z) = \sum_z p(z)p(\theta_z|z)$$

$$p(z, \theta_z|D) = \sum_z p(z|D)p(\theta_z|D, z)$$

Second term: posterior formed within model, as usual First term?

・ロト・日本・モート・ロークへの

Back to regression

 2^p possible models indexed by z

e.g. if p = 4 and regressors are (1,PRG,AGE,PRG*AGE), what model does z = (1, 0, 1, 0) represent?

g-prior (with mean zero) convenient for 'within' model, so hyperparameters: g, ν_0 , σ_{0z}^2 Much algebra... (but also much intuition)

$$p(D|z) = c(1+g)^{-p_z/2} rac{(
u_0 \sigma_{0z}^2)^{
u_0/2}}{(
u_0 \sigma_{0z}^2 + SSR_g^2)^{(
u_0+n)/2}}$$

where $SSR_g^z = y^T (I - \frac{g}{g+1}H_z)y$, with H_z being the 'hat matrix' for model z.

◆□>
◆□>
● = ◆ ●
● ●

$$\beta | z, D \sim N_{p_z} \left(\frac{g}{g+1} \hat{\beta}_{z,OLS}, \ldots \right)$$

p(D|z) readily computed Hence p(z|D) readily computed well, as long as the number of possible models isn't too large...

Smaller *p*

- exhaustive evaluation of p(z|D) for all z
- conjugate representation for $(\theta_z | z, D)$

What to report as estimated coefficients??? $E(\beta|z=z^*, D)$, where $z^* = \operatorname{argmax}_z p(z|D)$ $E(\beta|D)$ $E(\beta|z=z^{**},D)$ where

$$z_j^{**} = \left\{ egin{array}{cc} 1 & ext{if } p(z_j=1|D) > 0.5 \ 0 & ext{otherwise} \end{array}
ight.$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - のへで

estimates

Oxyge	en U	ptake	e Ex.: Po	osterior dist	tribution over models	Ex., contin	ued: mc	del-sp	ecific ar	nd averaged estimates	
										()=>	
1 1	PRG	AGE	PRG*AGE	p(z D)		1	PRG	AGE	P*A	p(z D)	
1	1	1	0	0.395		-46.457	5.443	1.886	0.000	0.395	
1	0	1	1	0.335		-43.374	0.000	1.756	0.218	0.335	
1	1	1	1	0.121		-51.294	13.107	2.095	-0.318	0.121	
1	0	1	0	0.114		-53.346	0.000	2.278	0.000	0.114	
0	1	0	1	0.009		0.000	-38.187	0.000	1.776	0.009	
1	1	0	1	0.007		-2.767	-35.420	0.000	1.776	0.007	
0	1	1	1	0.005		0.000	-38.187	-0.098	1.875	0.005	
0	0	0	1	0.004		0.000	0.000	0.000	0.320	0.004	
1	0	0	1	0.003		-3.272	0.000	0.000	0.444	0.003	
0	1	0	0	0.002		0.000	7.705	0.000	0.000	0.002	
0	0	1	1	0.002		0.000	0.000	-0.098	0.418	0.002	
inclusion probs						model av	model averaged				
0.98 0.54 0.97 0.49						-45.191	2.983	1.845	0.076		
					◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 少へで					(日) (四) (日) (日) (日) (日) (日) (日) (日) (日) (日) (日	≡

|▲□▶|▲圖▶|▲圖▶|▲圖▶||| 置 || 釣�?

 $p(z, \beta_z, \sigma_z^2 | D)$ not readily Gibbs sampled. Why? p(z|D) readily Gibbs sampled. Why? **Aside:** General Monte Carlo strategy. Always looking for simplifications via either higher-D or lower-D! Gibbs sampling output readily augmented by $(\beta_z, \sigma_z \text{ draws.})$

What to do with Gibbs sampling output

Have $z^{(1)}, ..., z^{(S)}$.

Say M is the set of all possible models, i.e., 2^p elements. M^* is the subset that are visited at least once by the sampler. For $z \in M^*$, two possible estimates of p(z|D).

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - ∽��?

ふちゃくゆゃくほやくほか (日本)