STAT 530: Metropolis-Hastings Algorithm

Mar. 22, 2010

E.g., π is posterior distribution (whole, or full conditional)

Limitation: Implementing T

- can't involve evaluating π
- but can involve evaluating π_i/π_i

Strategy: Start with any transition J, and 'fix it' to have π as the stationary distribution

・ロト・(型・・ヨ・・ヨ・ (日・・ロト

MH transition T defined by

Given $Z^{(t)} = a$:

- **1** Simulate *b* according to J_{a} .
- 2 Evaluate

$$k = \min\left\{\frac{\pi_b}{\pi_a}\frac{J_{ba}}{J_{ab}}, 1\right\}$$

3 Set

$$Z^{(t+1)} \leftarrow \left\{egin{array}{ll} b & ext{with probability } k \ a & ext{with probability } 1-k \end{array}
ight.$$

Prove it works

For any a, b need $\pi_a T_{ab} = \pi_b T_{ba}$

More 'continuous-looking' version

Given $z^{(t)}$:

1 Simulate
$$z^*$$
 according to $J(z^{(t)}; \cdot)$

2 Evaluate

$$k = \min\left\{\frac{\pi(z^*)}{\pi(z^{(t)})}\frac{J(z^*; z^{(t)})}{J(z^{(t)}; z^*)}, 1\right\}$$

3 Set

$$z^{(t+1)} \leftarrow \begin{cases} z^* & \text{with probability } k \\ z^{(t)} & \text{with probability } 1-k \end{cases}$$

When **won't** this work well?

High autocorrelations, i.e., $z^{(t)}$, $z^{(t+1)}$ typically close, because...

・ ロ ト ・ 母 ト ・ ヨ ト ・ ヨ ・ りへぐ

Random walk Metropolis-Hastings (RWMH)

 $J(z^{(t)}; \cdot) \equiv N(z^{(t)}, V)$ Convenient symmetry: $J(z^{(t)}; z^*) = J(z^*; z^{(t)})$ Simple interpretation: add noise to current state, then accept or reject. See demo... Mix and match...

For instance say going after $p(\theta|D) = p(\theta_1, \theta_2, \theta_3, \theta_4, \theta_5|D)$ Perhaps the particular form of the likelihood and prior plus experimentation leads you to: Update θ_1 using RWMH with 'jump variance' τ_1^2 Update θ_2 using Gibbs sampling Update (θ_3, θ_4) using RWMH with 'jump variance' diag (τ_3^2, τ_4^2) Update θ_5 using MH with some other choice of J

Independence sampler

In some cases it may be possible to come up with an approximation to the posterior (full conditional or whole) which can be directly sampled.

e.g. $p(\beta|D)$ arising in logistic regression, Poisson regression, etc. Take $J(\beta^{(t)}; \cdot) \equiv N(\hat{\beta}, \hat{V})$.

RWMH and parameterization

Say $z^* \sim N(z^{(t)}, \tau^2)$ doesn't work particularly well.

Might consider 'adding noise' in a different parameterization. E.g. $\log z^* \sim N(\log z^{(t)}, \tau^2)$

May well improve (or worsen) performance. But have to be careful...

◆□▶ ◆母▶ ◆臣▶ ◆臣▶ 臣 - のへぐ