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Recap: given π seek T such that πT = π

E.g., π is posterior distribution
(whole, or full conditional)

Limitation: Implementing T

can’t involve evaluating π

but can involve evaluating πi/πj

Strategy: Start with any transition J, and ‘fix it’ to have π as the
stationary distribution

MH transition T defined by

Given Z (t) = a:

1 Simulate b according to Ja·
2 Evaluate

k = min

{
πb

πa

Jba

Jab
, 1

}

3 Set

Z (t+1) ←
{

b with probability k
a with probability 1− k

Prove it works

For any a, b need πaTab = πbTba



More ‘continuous-looking’ version

Given z(t):

1 Simulate z∗ according to J(z(t); ·)
2 Evaluate

k = min

{
π(z∗)
π(z(t))

J(z∗; z(t))

J(z(t); z∗)
, 1

}

3 Set

z(t+1) ←
{

z∗ with probability k

z(t) with probability 1− k

When won’t this work well?

High autocorrelations, i.e., z(t), z(t+1) typically close, because...

Random walk Metropolis-Hastings (RWMH)

J(z(t); ·) ≡ N(z(t), V )

Convenient symmetry: J(z(t); z∗) = J(z∗; z(t))

Simple interpretation:
add noise to current state, then accept or reject.

See demo...

Mix and match...

For instance say going after p(θ|D) = p(θ1, θ2, θ3, θ4, θ5|D)

Perhaps the particular form of the likelihood and prior plus
experimentation leads you to:

Update θ1 using RWMH with ‘jump variance’ τ2
1

Update θ2 using Gibbs sampling

Update (θ3, θ4) using RWMH with ‘jump variance’ diag(τ2
3 , τ2

4 )

Update θ5 using MH with some other choice of J



Independence sampler

In some cases it may be possible to come up with an
approximation to the posterior (full conditional or whole) which
can be directly sampled.

e.g. p(β|D) arising in logistic regression, Poisson regression, etc.
Take J(β(t); ·) ≡ N(β̂, V̂ ).

(t)

RWMH and parameterization

Say z∗ ∼ N(z(t), τ2) doesn’t work particularly well.

Might consider ‘adding noise’ in a different parameterization.
E.g. log z∗ ∼ N(log z(t), τ2)

May well improve (or worsen) performance. But have to be
careful...


