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Deceptively simple problem

X ∼ Bernoulli(r) in population.
Infer r from random sample.

Slight twist: X not measured well
(e.g. perhaps some subjects give wrong answer on questionnaire)

Measure X ∗ instead of X on sampled subjects, where
SN = Pr(X ∗ = 1|X = 1)
SP = Pr(X ∗ = 0|X = 0)

Still looks relatively simple, presuming some info. on
misclassification rates

X ∗ ∼ Bernoulli{rSN + (1− r)(1− SP)} in population.

Say decide on prior:

p(r , SN, SP) ∝ I(0,1)(r)I(a,1)(SN)I(b,1)(SP)

Two issues

MCMC and parameterization

Information flow

MCMC

Example

Data: 20/100 have X ∗ = 1

Prior information: a = 0.9, b = 0.7

1. Univariate RWMH in original parameterization (r , SN, SP),
tuned to have approx. 50% acceptance rate for each component.

2. Univariate RWMH in new parameterization (r̃ , SN, SP), tuned
to have approx. 50% acceptance rate for each component.

Intuition for why 2 might work better?
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Information flow:
Where does the ‘extra-prior’ info. about SP come from???
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Intuition

Whereas r and (SN, SP) are independent a priori,
r̃ and (SN, SP) are dependent a priori

Thus we learn about r̃ directly from the data,
and the prior dependence then implies something about (SN, SP)

[Also bear in mind that the quantity of most interest, r , can be
regarded as a function of (r̃ , SN, SP).]

More formally

As n →∞

p(r̃ |Data)→

p(SN, SP|Data)→



We have just seen a simple example of a partially
identified model

Arise somewhat generally when data are imperfect, but one isn’t
sure to what extent.

Characterized by the large-sample limit of the posterior distribution
on the parameter of interest being:

narrower than the prior

wider than a single point

Point estimators (e.g. posterior mean) are necessarily biased.

But interval estimators (e.g. credible interval) reflect this
appropriately.


