STAT 530: Partial Identification

Mar. 22, 2010

Deceptively simple problem

$X \sim$ Bernoulli (r) in population.
Infer r from random sample.
Slight twist: X not measured well
(e.g. perhaps some subjects give wrong answer on questionnaire)

Measure X^{*} instead of X on sampled subjects, where
$S N=\operatorname{Pr}\left(X^{*}=1 \mid X=1\right)$
$S P=\operatorname{Pr}\left(X^{*}=0 \mid X=0\right)$

Still looks relatively simple, presuming some info. on misclassification rates

MCMC

$$
X^{*} \sim \operatorname{Bernoulli}\{r S N+(1-r)(1-S P)\} \text { in population. }
$$

Say decide on prior:

$$
p(r, S N, S P) \propto I_{(0,1)}(r) I_{(a, 1)}(S N) I_{(b, 1)}(S P)
$$

Two issues

- MCMC and parameterization
- Information flow

Example

- Data: 20/100 have $X^{*}=1$
- Prior information: $a=0.9, b=0.7$

1. Univariate RWMH in original parameterization ($r, S N, S P$), tuned to have approx. 50% acceptance rate for each component. 2. Univariate RWMH in new parameterization ($\tilde{r}, S N, S P$), tuned to have approx. 50% acceptance rate for each component.
Intuition for why 2 might work better?

Intuition

More formally

\tilde{r} and $(S N, S P)$ are dependent a priori
Thus we learn about \tilde{r} directly from the data，
and the prior dependence then implies something about（SN，SP）
［Also bear in mind that the quantity of most interest，r ，can be regarded as a function of $(\tilde{r}, S N, S P)$ ．］

$$
\text { As } n \rightarrow \infty
$$

```
```

p(\tilde{r}|\mathrm{ Data })}

```
```

```
```

p(\tilde{r}|\mathrm{ Data })}

```
```

$p(S N, S P \mid$ Data $) \rightarrow$

```
We have just seen a simple example of a partially
identified model
```

Arise somewhat generally when data are imperfect, but one isn't sure to what extent.
Characterized by the large-sample limit of the posterior distribution on the parameter of interest being:

- narrower than the prior
- wider than a single point

Point estimators (e.g. posterior mean) are necessarily biased.
But interval estimators (e.g. credible interval) reflect this appropriately.

