Combine two big ideas

STAT 530: Generalized Linear Mixed Effect Models

Mar. 29, 2010

4 □ ト 4 億 ト 4 億 ト 4 億 ト 9 € 9 9 ()

Generalized linear model: natural extension of linear model to non-normal *Y* variable.

Hierarchical model: group-specific parameters (random effects), described by variance component which controls 'shrinkage.'

General set-up

$$p(y_j|x_j,\beta_j,\gamma) = \prod_{i=1}^{n_j} p(y_{ij}|\beta_j^T x_{ij},\gamma)$$
$$\beta_1,\ldots,\beta_m \stackrel{\text{iid}}{\sim} N_p(\theta,\Sigma)$$
$$p(\gamma,\theta,\Sigma) = p(\gamma)p(\theta)p(\Sigma)$$

Text Ex.: (Y,X) = (Test Score, SES)

$$Y_{ij} \sim N(\beta_{j1} + \beta_{j2}X_{ij}, \sigma^{2})$$

$$\begin{pmatrix} \beta_{j1} \\ \beta_{j2} \end{pmatrix} \sim N_{2} \begin{pmatrix} \theta_{1} \\ \theta_{2} \end{pmatrix}, \Sigma$$

$$p(\sigma^{2}, \theta, \Sigma) = p(\sigma^{2})p(\theta)p(\Sigma)$$

Text Ex.: $(Y,X) = (Tumour\ count,\ location)$

$$Y_{ij} \sim Poisson \left[\exp \left\{ \beta_{j1} + \beta_{j2}(i/20) + \ldots + \beta_{j5}(i/20)^4 \right\} \right]$$

 $\beta_1, \ldots, \beta_m \stackrel{\text{iid}}{\sim} N_p(\theta, \Sigma)$
 $p(\gamma, \theta, \Sigma) = p(\gamma)p(\theta)p(\Sigma)$

Sometimes 'structured' random effects make sense...

For instance, model 'smooth' dependence of Y on S

$$Y_{ij} \sim ??? \left(\sum_{k=1}^{p} \beta_{jk} b_{k}(S_{ij}) \right)$$

$$\beta_{j} \stackrel{\text{iid}}{\sim} N_{p} \left((\mu(\theta), \Sigma(\lambda^{2}, \tau^{2})) \right)$$

$$p(\theta, \lambda^{2}, \tau^{2}) = p(\theta) p(\lambda^{2}) p(\tau^{2})$$

Set up in such a way that τ^2 governs the smoothness of E(Y|S).

Or in a spatial context

If β_{jk} represents effect (in group j) at spatial location k, set up $\beta_j \sim N(\mu(\theta), \Sigma(\lambda^2, \tau^2))$ such that:

- $\Sigma(\lambda^2,0) = \lambda^2 I$
- whereas for large τ^2 , $\Sigma_{kl}(\lambda^2, \tau^2)$ is large if sites k and l are neighbours

Computation for GLMM

- 1 $(\theta | \beta, \Sigma, y, x)$
- $\Sigma (\Sigma | \theta, \beta, y, x)$
- $(\beta_j|\beta_{-j},\theta,\Sigma,y,x)$

INLA: a recent computational breakthrough for GLMM?

Integrated nested Laplace approximation, Rue and Martino (JRSS-B, 2009)

Combines Lapace approximation and numerical integration 'in a very efficient manner'

R package

Time will tell!

