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1. One can argue that (i) probability is the natural language for describing uncertainty and
belief, and (ii) the Bayesian approach is nothing more than the application of probability
to whatever problem is at hand, i.e. what is the probability distribution over what you
don’t know, conditioned on what you do know. Thus a Bayesian has first principles, and
always knows how to proceed with a problem (though the devil may be in the details). In
contrast, sometimes being a frequentist is like ordering breakfast in a restaurant: would you
like quasi-likelihood, pseudo-likelihood, penalized likelihood, restricted likelihood, profile
likelihood, or just regular old likelihood this morning?

2. Using MCMC, we can do inference in virtually any problem, without relying on asymp-
totic assumptions. A lot of frequentist techniques rely on asymptotic arguments to get
estimates of precision for point estimates, e.g., the asymptotic normality of ML estima-
tors. These are not universally reliable (think small n, estimates near/on boundary of
parameter space, number of variables nearly as big as number of subjects, etc.). Bear in
mind that at least in principle the error in MCMC approximations to posterior quantities
can be made arbitrarily small by increasing the Monte Carlo sample size (cheap). The
error incurred by asymptotic approximations can be made small by increasing the amount
of data (expensive).

3. The prior is a flexible tool. If we do have pre-experimental information, then it can be
incorporated naturally into a Bayesian analysis. If we don’t have any pre-experimental
information, then we can use some sort of “flat” prior. The latter approach will usually
produce sensible answers, though there are a few problematic issues lurking here. Finally,
if we have only vague or poorly-specified prior information, then we can use a robust
Bayes approach based on a whole class of priors. I am a particular fan of ‘ballpark’ priors
(which others have more formally termed weakly informative priors). In many scientific
contexts it is easy to identify implausible magnitudes of parameters without knowing very
much about the particular problem at hand. For instance, in virtually any biostatistical or
epidemiological situation involving binary observational data, odds ratios as big as say 6,
or as small as 1/6 aren’t very plausible. So a prior could put most (say 95%) of its weight
between these values.

4. Bayesian interpretations are clearer. The Bayesian talks about the probability that the
unknown parameter lies in a given interval. The frequentist talks about a procedure to
generate intervals. If the experiment is repeated over and over again, then a specified
percentage of the experiments produce intervals containing the parameter. The Bayesian
talks about the probability that a hypothesis is true, in light of the observed data. The
frequentist talks about the long-run probability (repeated experiments again) of observing
data which are “more extreme” than the data actually observed, given that the hypothesis
is true. Clarity here becomes very important. For instance, when comparing a simpler
(null) model to an encompassing (alternative) model, one could compute the posterior
probability that the null is true, and the classical P-value. Typically the former will be
considerably larger than the latter (over a large range of defensible prior distributions).
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5. Decision theory dictates that Bayes procedures have good frequentist properties. If we use
proper priors then our decisions will be based on admissible rules. We also have a long-
run calibration: if we repeatedly generate parameters from the prior and data from the
model, then in the long-run 95% of the 95% credible intervals will contain the parameter
of interest. This calibration property seems under-valued in the literature. Notably, it still
holds in scenarios where everything else goes crazy - such as partially identified problems.

6. We don’t care about data we don’t see! In everyday life, we are constantly conditioning
on the data we do see. And we revise our previous beliefs as a result. Though we probably
aren’t using Bayesian updating exactly, it may be a reasonable approximation. In contrast,
some frequentist procedures (think P-values in particular) seem overly concerned with data
we didn’t see.

7. It is impossible for a statistical analysis to be 100% ‘objective.’ At least Bayesians are
honest about this!

8. The Bayesian approach is natural whenever potential data are judged to be partially
exchangeable. In particular, there are lots of hierarchical models lurking in the real world
(think patients within hospitals within provinces, students within schools within districts,
etc.), where borrowing of strength is appropriate. These ideas extend to fitting smooth
curves and surfaces to noisy data.

9. The Bayesian approach is natural for problems involving unobserved ‘latent structure.’
Random effects, latent variables, true values of mismeasured covariates, missing data and
so on are simply treated as parameters under the posterior distribution. This is especially
convenient for MCMC analysis, where these quantities get updated like all the other
parameters. This can sometimes result in a Bayesian procedure which is computationally
simpler than a non-Bayesian analogue.

10. In many situations Bayesian analyses can be regarded at more honest than their classical
counterparts in that they take into account more of the uncertainty that is really at
play. A frequentist might maximize and subsequently treat the best guess as if it were
true in doing susbsequent calculations, which is so-called plug-in estimation. In contrast,
a Bayesian averages over a posteriori plausible values of all the unobservable quantities
involved.
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