STATISTICS 536B, Lecture #4

March 5, 2015

Recap: Interested in population-level association between (X, Y).

Various study designs:

- \blacksquare prospective, sample (Y|X)
- \blacksquare retrospective, sample (X|Y)
- \blacksquare cross-sectional, sample (X, Y)

Same analysis:

$$\widehat{\log OR} = \log q + \log t - \log r - \log s$$

$$SE\left[\widehat{\log OR}\right] = \sqrt{1/q + 1/r + 1/s + 1/t}$$

And with confounders

Logistic regression of Y on (1,X,C) [or more generally basis functions of (X,C)] is appropriate, whether the actual data acquisition is prospective [sampling $(Y\mid X,C)$], cross-sectional [sampling (Y,X,C)], or retrospective [sampling $(X,C\mid Y)$] Caveat about estimating intercept - intuitively sensible - case-control data cannot tell you how common the disease is in the population.

Matched Case-Control Data with binary exposure: Cross-Classify the *n* **PAIRS** of subjects

				Case				
			Not	exposed	Exposed			
Control: 1	Not (exposed		a	b	- 1		
]	Exposed		С	d	.		
						- 1	n	ı

Think about the source population having a distribution over disease status, exposure, and matching factors (confounders) jointly: f(y, x, m)

Think about sampling a pair of individuals yielding: $\{(Y_0, X_0, M_0), (Y_1, X_1, M_1)\}$ but with the **constraints** $Y_0 + Y_1 = 1$ and $M_0 = M_1$.

A likelihood for parameters describing the source population based on how the data were actually sampled??? Activity.

So we have a likelihood function for β , the (Y, X|M) log-OR

$$L(\beta) = (1/2)^{a} (1/2)^{d} \{1/(1 + \exp(-\beta))\}^{b} \{1/(1 + \exp(\beta))\}^{c},$$

$$I(\beta) = -b \log(1 + \exp(-\beta)) - c \log(1 + \exp(\beta)) + \text{constant}$$

And we can apply our usual tools to the log-likelihood, to get inference procedures

Also a score test - mentioned in reading

General idea of score test. Have log-likelihood $I(\beta)$ for scalar parameter β .

Under the hypothesis $\beta = 0$,

$$rac{l'(0)}{\sqrt{-l''(0)}} \stackrel{\mathsf{approx}}{\sim} \mathsf{N}(0,1)$$

Matching is inefficient/efficient when the matching factor(s) is a weak/strong confounder???

Sample some cases and controls

```
n <- 400
cs <- sample((1:t)[y.pop==1], size=n)

### one possible way to complete the study - unmatched controls
cn.unmt <- sample((1:t)[y.pop==0], size=n)

### another possible way to complete the study - matched controls
cn.mtch <- rep(NA,n)
for (i in 1:n) {
    cn.mtch[i] <- sample((1:t)[(y.pop==0)&(m.pop==m.pop[cs[i]])], size=1)
}</pre>
```

Do the matched study analysis

Do the unmatched study analysis

```
y <- y.pop[c(cs, cn.unmt)]
x <- x.pop[c(cs, cn.unmt)]
m <- m.pop[c(cs, cn.unmt)]
ft <- glm(y~x+as.factor(m), family=binomial)
> c(coef(ft)[2], sqrt(vcov(ft)[2,2]))
0.260 0.191
```

And repeat...

