STATISTICS 536B, Lecture #6

March 12, 2015

Selected comments prompted by the Algra and Rothwell paper What's going on with statements like that in the abstract:

In case control studies, regular use of aspirin was associated with reduced risk of colorectal cancer (pooled odds ratio [OR] 0.62, 95% Cl 0.58-0.67, $p_{sig} < 0.0001$, 17 studies), with little heterogeneity ($p_{het} = 0.13$) in effect between studies ...

Relates to estimating τ^2 in random effect meta-analysis (Recall $Y_i | \theta_i \sim N(\theta_i, \sigma_i^2), \ \theta_i \sim N(\mu, \tau^2)$)

More thoughts from Algra and Rothwell

- Search strategy and selection criteria important (e.g., see Fig. 1)
- Note distinction between case-control studies, standard cohort studies, and nested case-control studies.
- Note emphasis on different *definitions* of exposure (e.g., Fig. 2). [And number of available studies depends on which definition is adopted.]

- Thoughtful discussion/analysis of aspirin vs. colorectal cancer compared to aspirin vs. other cancers (Figs. 3, 4)
- Nicely aligned evidence:
 - association between aspirin and cancer incidence
 - association between aspirin and metastasis, given incidence (Fig. 5)
 - (lack of) association between aspirin and local spread, given incidence but no metastasis (Fig. 6)

Congratulations: You've 'invented' a famous estimator!

- Think of a prospective cohort study
- T = time from "baseline" to bad outcome
- X = exposure (at baseline)

Could fit a survival analysis model for (T|X). Or...

Visualize the data

For simplicity, think 1:1 matching as we considered before For each case, randomly choose the control from amongst those subjects who:

- have matching covariate values
- are observed to be at risk at the case's failure time

So end up with matched case-control data with pairs in a 2 by 2 table, as before (recall, all the action is the discordant on X pairs, basically throw away the concordant on X pairs)

Say X is a binary genotype, say Y is time to incident cancer

Maybe it's is cheap to freeze/store every subject's baseline blood sample

Maybe it's expensive to test the sample to determine if $X=\mathbf{0}$ or $X=\mathbf{1}$

Maybe reaching the disease outcome is quite rare

So if we only have to test the samples for the cases and their matched controls...