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March 26, 2015



Propensity scores - What is the high level idea?

Have (Y, X, Cy,..., Cp) data, interested in the association
between Y and X given C.

Direct route: study this via regression of Y on X and C.

Indirect route: consider Z = Pr(X = 1|C) = 7(C) (in theory), or
Z = #(C) (in practice). Then focus on the association between Y
and X given Z.

The underlying mathematics validates this approach.



Mongelluzzo et. al. - corticosteroids and mortality from

bacterial meningitis

Outcome Y is time-to-event (time from hospitalization for bacterial
meningitis to death, or time from hospitalization to discharge)

Binary exposure X is adjuvant use of corticosteroids

Potential confounders (C) include sex, race, vancomycin use within
24 hours, etc,...

Traditional analysis might involve proportional hazards regression
model for Y using X and (i, ..., C, as explanatory variables.

Instead, these authors use X and Z = #(C) as the explanatory
variables.



Some discussion points

Fitted propensity model for (X|C) model gives AUC=0.74 ...
“better than chance,’but “little concern about nonoverlapping
propensity score distributions” 777



Discussion points, continued

But then: “The propensity scores were not equally distributed.
When the propensity scores were stratified by quintiles, a greater
proportion of X=1 patients were in the highest quintile and a
greater proportion of X = 0 patients were in the lowest quintile.
To address this imbalance...”

PUZZLING!!



Discussion points, continued

‘Residual confounding by indication" concern.

Often plausible that sicker patients more likely to get the
intervention (X = 1) being studied. (So a crude two group
comparison would be ‘unfair’ on X = 1).

Not a problem if ‘sicker’ is completely captured by C.

Otherwise, can make an intervention appear less efficacious than it
really is. E.g., say that (C, C*) completely capture ‘sicker’, but C*
is unmeasured.



Results

Table 3: no evidence for a (Y, X) association given C - for either
Y.

Table 4: no evidence for a (Cost, X) association given C.
Suggestive of (or at least consistent with) C being ‘good enough.’

Plausible that if C wasn't fully capturing disease severity and

X =1 was being preferentially offered to those with more severe
disease, then we would see a positive association between X and
Cost given C.



Back to simpler framework of continuous outcome Y.

Where are we at?

Trying to estimate
A = E{E(Y|X=1,C)-E(Y|X=0,0C)}.

If we are confident in our ability to model Y given X and C:

Could fit a (Y|X, C) outcome model, to estimate
my(C) = E(Y|X = x, C), then
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is a consistent estimator, if the form of the outcome model is right.



Or the propensity route

If we are confident in our ability to model X given C:

Recall (last time) we can rewrite the target parameter as

X 1-X
A = ESY -
MECRE=C)
Could fit a (X|C) propensity model, to estimate
m(C) = Pr(X = 1|C), then
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is a consistent estimator if form of propensity model is right.



Back to nasty dataset from last time

### outcome model and fitted values
outmod <- lm(y~x+cnf)

m0 <- cbind(1,0,cnf)%*%coef (outmod)
ml <- cbind(1,1,cnf)%*%coef (outmod)

### propensity model and fitted values
promod <- glm(x~cnf, family=binomial)
prpns <- fitted(promod, response=T)

### regression estimate
mean (m1-m0)
[1] 1.23

### IPW estimate
mean (y*(x/prpns - (1-x)/(1-prpns)))
[1] 1.14

### Double-robust estimate
mean((y*x - (x-prpns)*ml)/prpns) - mean((y*(1-x) + (x-prpns)#*m0)/(1-prpns))
[1] 1.16



Standard errors for these estimates?

All three estimates are means of n values, but ...



So bootstrap...

ests.bb <- matrix(NA,200,3)
for (i in 1:200) {
smp <- sample(l:n, replace=T)

### outcome model
outmod <- 1m(y[smp]~x[smp]+cnf [smp,])

### propensity model
promod <- glm(x[smp]~cnf[smp,], family=binomial)

ééés.bb[i,] <- c(mean(m1-m0), ...)
}

sqrt (apply(ests.bb,2,var))
[1] 0.12 0.12 0.12



