STATISTICS 536B, Lecture #11

April 2, 2015

Thinking about causal inference as a missing data problem

	C_1	C_2	X	Y	
	1.2	3.7	1	18.3	_
Instead of	1.8	2.5	0	20.6	
	1.3	4.2	0	10.9	
			•••		
	C_1	<i>C</i> ₂	X	$Y^{(0)}$	$Y^{(1)}$
_	1.2	3.7	1	?	18.3
Think of	1.8	2.5	0	20.6	?
	1.3	4.2	0	10.9	?

. . .

Everybody has a pair of outcomes $(Y^{(0)}, Y^{(1)})$.

But we only get to observe one of them: $Y = Y^{(X)} = (1 - X)Y^{(0)} + XY^{(1)}.$

But would like to estimate targets such as $E(Y^{(1)} - Y^{(0)}) = E(Y^{(1)}) - E(Y^{(0)}).$

Think of comparing two counterfactual worlds, one where everybody is exposed, and one where everybody is unexposed.

This framework lets us be precise about 'adjusting for confounders'.

Variables *C* completely control for confounding if $(Y^{(0)}, Y^{(1)}) \perp X | C$.

Within each stratum of people with the same C value, the potential outcomes and the exposed/unexposed choice/assignment are 'blind' to one another. (think within C, like a randomized trial).

Confounding, continued

Clear how condition can fail?

For example, say that:

- Being older is associated with worse outcomes (whether exposed or not)
- Being male is associated with worse outcomes (whether exposed or not)
- Males are more likely to choose X = 1 than females

Say C = AGE only. The requisite condition $X \perp (Y^{(0)}, Y^{(1)}) | AGE$ will not hold.

Largely based on intuition, we've eschewed unadjusted comparisons like

$$E(Y|X = 1) - E(Y|X = 0)$$

in favour of adjusted comparisons like

$$E\{E(Y|X=1, C) - E(Y|X=0, C)\}$$

Reminder: We have multiple strategies for going after this target. Tie-in with counterfactuals?

Counterfactuals can bring clarity to assumptions and to targets of inference

Example - revisit noncompliance in randomized study story, comparing active treatment to control.

Observe for everybody: binary Z, X, Y.

But think everybody has (latent) $(M, Y^{(0)}, Y^{(1)})$

M is compliance type. To keep things simple, say our population contains only two types of people:

Never-takers (M = 0): will not take active treatment, regardless of what they are told to do.

Compliers (M = 1): will do what they are told to do.

Then study investigator randomly generates treatment assignment Z. Hence Z is independent of $(M, Y^{(0)}, Y^{(1)})$.

And the treatment *received*, X, is a deterministic function of (Z, M).

Observed data tells you some things about the latent variables

Ζ	Х	Y	Μ	$Y^{(0)}$	$Y^{(1)}$
0	0	1	?	1	?
0	0	0	?	0	?
1	1	1	1	?	1
1	0	1	0	?	1

. . .

Interpreting E(Y|Z = 1) - E(Y|Z = 0)

Interpreting
$$E(X|Z=1) - E(X|Z=0)$$

So what exactly are we estimating via the instrumental variable technique?

So some targets are identified by the data, others are not

Revisit Vitamin A study

Z X Y 1 0 34/2419 1 1 12/9675 0 0 74/11588 0 1 ---