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Causal inference and data over time - yikes!

Apologies for the notation switch - not my fault!

Consider five binary variables: X1, Z1, X2, Z2, Y

Say Zt = 1 indicates ”on-drug” in month t

Say Xt = 1 indicates some manifestation of ”worse symptoms” in
month t

Say Y = 1 indicates bad end-of-study outcome

Worry that maybe Xt is both a confounder and a mediator?
How to untangle?



Toy dataset, 5000 subjects

X1 Z1 X2 Z2 Y = 0 Y = 1
0 0 0 0 1364 744
0 0 0 1 355 185
0 0 1 0 371 335
0 0 1 1 104 88
0 1 0 0 8 5
0 1 0 1 91 45
0 1 1 0 1 2
0 1 1 1 25 11
1 0 0 0 18 13
1 0 0 1 4 3
1 0 1 0 279 389
1 0 1 1 71 100
1 1 0 0 2 1
1 1 0 1 11 11
1 1 1 0 19 19
1 1 1 1 141 185



Start with a completely general factorization for the joint
pmf (for a given g)

f (x1:2, z
∗
1:2, z1:2, y1:2) =

f (x1)f (z∗1 |x1)g(z1|z∗1 , x1)f (x2|x1, z1, z∗1 )

f (z∗2 |x1:2, z1, z∗1 )

g(z2|z∗2 , x1:2, z1, z∗1 )

f (y |x1:2, z1:2, z∗1:2)

To help keep track: g() denotes (potentially probabilistic)
intervention. Distinguish between the exposure status that would
arise without any intervention (Z ∗, think ‘patient’s wish’) and Z
that arises from the intervention g being considered. Examples?



Example interventions

What intervention is this?

g(z1|z∗1 , x1) = 0.5

g(z2|z∗2 , x1:2, z1, z∗1 ) = I{z2 = z∗2}

What about this one?

g(z1|z∗1 , x1) = z1

g(z2|z∗2 , x1:2, z1, z∗1 ) = z2



Fundamental assumptions one can/must make

Immediately after intervention, the ‘patient’s wish’ becomes
irrelevant. (knock out all the terms in red on the previous slide)

Only what actually happens can influence the future

All the f () terms are unaffected by the choice of interventions g().
Really an assumption about controlling for confounding!

For instance, the same f (y | x1:2, z1:2) describes randomized
trials and observational cohorts - usual idea that x controls for
confounding.



Data and estimation

We have in mind the situation that we only have observational
data, i.e., just following a cohort over time [data arise from
g(z1|x1, z∗1 ) = I{z1 = z∗1}, g(z2|z∗2 , x1:2, z1) = I{z2 = z∗2}].
That’s OK, the data still gives us f̂ () for all the f () terms. So for
any choice of interventions g of interest to us, we can, in principle,
estimate the joint distribution of (X1:2,Z

∗
1:2,Z1:2,Y ).

For instance, we could use data collected under
g ≡ no intervention to estimate Pr(Y = 1) under both
g ≡ always treat and g ≡ never treat.



In our simple set-up, the g-formula gives the following
”bridge”

Pralways(Y = 1) =
1∑

x1=0

1∑
x2=0

[Pr(X1 = x1)Pr(X2 = x2|X1 = x1,Z1 = 1) ×

Pr{Y = 1|X = (x1, x2),Z = (1, 1)}] ,

with an analogous expression for Prnever(Y = 1).



Full disclosure, our toy dataset was simulated under very
specific conditions

At each timepoint, those who are sicker are more likely to start
treatment (hallmark of ”counfounding by indication).

There is a dual benefit of treatment:

Direct effect of Z1 and Z2 on Y

Indirect effect whereby Z1 = 1 induces lower chance of
undesirable transition from X1 = 0 to X2 = 1, in turn X2 = 1
raises risk of Y = 1.



Analysis of the toy data

Naive target: Pr(Y = 1|Z = (1, 1))− Pr(Y = 1|Z = (0, 0))

Estimated via sample proportions as 0.06 (SE=0.02).

g-formula analysis for: Pralways(Y = 1)− Prnever (Y = 1)

Estimated as −0.043 (SE=0.028).


