STATISTICS 536B, Lecture #13

April 9, 2015



Causal inference and data over time - yikes!

Apologies for the notation switch - not my fault!
Consider five binary variables: X1, Z1, X5, Z5, Y
Say Z; = 1 indicates "on-drug” in month t

Say X; = 1 indicates some manifestation of "worse symptoms” in
month t

Say Y =1 indicates bad end-of-study outcome

Worry that maybe X; is both a confounder and a mediator?
How to untangle?



Toy dataset, 5000 subjects

Xv 4 Xo Z, Y=0 Y=1
0 0 0 0 1364 744
0 O 0 1 355 185
0 O 1 0 371 335
0 O 1 1 104 88
0 1 0 O 8 5
0 1 0 1 91 45
0 1 1 0 1 2
0 1 1 1 25 11
1 0 0 O 18 13
1 0 0 1 4 3
1 0 1 0 279 389
1 0 1 1 71 100
1 1 0 O 2 1
1 1 0 1 11 11
1 1 1 0 19 19
1 1 1 1 141 185




Start with a completely general factorization for the joint

pmf (for a given g)

f(x12, 219, 212, ¥1:2)
f(x)f(z1|x1)g (21l 21, x) f (x>, 21, 21)
f(z|x1:2, 21, 21)

g(z|z,x12, 21, 77)

)

(Y|X1 2, 21:2, 719

To help keep track: g() denotes (potentially probabilistic)
intervention. Distinguish between the exposure status that would
arise without any intervention (Z*, think ‘patient’s wish’) and Z
that arises from the intervention g being considered. Examples?



Example interventions

What intervention is this?

m g(z1]zf,x1) =05

m g(22|z3,x12,21,2]) = Hz2 = 23}
What about this one?

m g(z1lzf,x1) = 21

B g(2|z3,x1:0,21,2)) = 22



Fundamental assumptions one can/must make

Immediately after intervention, the ‘patient’s wish’ becomes
irrelevant. (knock out all the terms in red on the previous slide)

m Only what actually happens can influence the future

All the f() terms are unaffected by the choice of interventions g().
Really an assumption about controlling for confounding!

m For instance, the same f(y | x1.2, z1.2) describes randomized
trials and observational cohorts - usual idea that x controls for
confounding.



Data and estimation

We have in mind the situation that we only have observational
data, i.e., just following a cohort over time [data arise from
g(zilx, z{) = a1 = 71}, (2|23, x12,21) = {2 = 7 }].

That's OK, the data still gives us 7() for all the () terms. So for
any choice of interventions g of interest to us, we can, in principle,
estimate the joint distribution of (Xi.2, Z7'», Z1:2, Y).

For instance, we could use data collected under

g = no intervention to estimate Pr(Y = 1) under both

g = always treat and g = never treat.



In our simple set-up, the g-formula gives the following

"bridge”

101
'Dralways(y =1) = Z Z [Pr(X1 = x1)Pr(Xo = xo| X1 = x1, Z1 = 1) x

x1=0 x=0

Pr{Y =1[X = (x1,%),Z = (1, 1)}],

with an analogous expression for Prever(Y = 1).



Full disclosure, our toy dataset was simulated under very

specific conditions

At each timepoint, those who are sicker are more likely to start
treatment (hallmark of " counfounding by indication).

There is a dual benefit of treatment:

m Direct effect of Z; and Z> on Y

m Indirect effect whereby Z; = 1 induces lower chance of
undesirable transition from X; =0to Xo =1, in turn X; =1
raises risk of Y = 1.



Analysis of the toy data

Naive target: Pr(Y =1|Z = (1,1)) — Pr(Y =1|Z = (0,0))
Estimated via sample proportions as 0.06 (SE=0.02).
g-formula analysis for: Prajays(Y = 1) — Prpever(Y = 1)
Estimated as —0.043 (SE=0.028).



