STATISTICS 538, Lecture #2

Logistic Regression

October 27, 2010



Space shuttle data: on i-th launch, y; out of n; =6

‘O-Rings' sustained some damage, i =1,...,n =23
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Figure 2.1 Damage to O-rings in 23 space shuttle missions as a function of launch tempera-
ture. Least squares fit tine is shown.



Two equivalent data representations: R happy with either!

‘Bernoulli’ ‘Binomial’
OUTCOME TEMP | ‘'S ‘F TEMP



Logistic regression based on logit (actually log-odds!)

function: logit(p) = log{p/(1 — p)} = log p — log(1 — p)

(yI.|X(")) ~ Binomial(n;, p;),

where
|Ogltp, = /BO —+ /lefl) + ...+ ,Bq—]_XéQ]_

Note - completely specified - no variance to worry about.
Interpretation?
LM: B; describes change in E(Y|X) w.r.t. Xj, with X_; held fixed.

Logistic regression?



Very natural if willing to think in terms of odds

e.g., Bernoulli data, X; also binary:

Odds(Y = 11X, = 1,X_;)
Odds(Y = 1]X; = 0, X_;)

= exp(f)),

provided X; not involved in interactions...

Continuous X;?

This is the basis for interpreting logistic regression models, and
explains the popularity of the logit function, rather than some other
‘appropriate’ function, for setting up a binary regression model.



Interpretation gets pushed a bit further, particularly in

health sciences...

Mathematically, if p,, pp close to zero,

Pa/(l - Pa)

YT Pa/Pb



Mechanics of fitting:

simple as 5 = (X7 X)1XTY for LM?

Not quite ...
Newton-Raphson to get MLE /3 (more later...)

Usual ML asymptotics to get Var (BA)
hence standard errors and confidence intervals.

R syntax: Im(y x, ...) — glm(y x, family=binomial, ...)



Shuttle data again

> logitmod <- glm(cbind(damage, 6-damage) ~ temp, family=binomial, orings
> summary (logitmod)
Deviance Residuals:
Min 10 Median 30 Max
-0.953 -0.735 -0.439 -0.208 1.957

Coefficients:

Estimate Std. Error z value Pr(>|z])
(Intercept) 11.6630 3.2963 3.54 4e-04
temp -0.2162 0.0532 -4.07 4.8e-05

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 38.898 on 22 degrees of freedom
Pesidual deviance: 16.912 on 21 degrees of freedom
AIC: 33.67



Goodness-of-fit (GOF) - easier than for LM!

Recall data structure Y; ~ Binomial(n;, p;), i=1,...,n.
Have (somehow) chosen regressors (1, X,..., Xg—1).
Do likelihood ratio test:

Hoy:

Hy:



Recall in general for a pair of nested models with

likelihood functions Ls(6s) and L;(6,):

Look at D =2 {Iog L (A) — log Ls(és)}.

If the smaller model is correct then
D approx?



More on GOF

Shuttle data:

m no evidence of lack of fit for logitp = By + 51 TEMP
m evidence of lack of fit for logitp = 5

Very important caveat: conditions for the x? approximation to
the sampling distribution of the the deviance to be good?

Conceptual question: why can’t the same approach to GOF work
in the LM setting?



