STATISTICS 538, Lecture #2

Logistic Regression

October 27, 2010

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Space shuttle data: on *i*-th launch, y_i out of $n_i = 6$ 'O-Rings' sustained some damage, i = 1, ..., n = 23

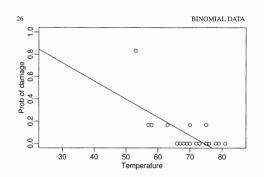


Figure 2.1 Damage to O-rings in 23 space shuttle missions as a function of launch temperature. Least squares fit line is shown.

- 日本 - 4 日本 - 4 日本 - 日本

Two equivalent data representations: R happy with either!

'Bernoulli' 'Binomial' OUTCOME TEMP 'S' 'F' TEMP

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Logistic regression based on **logit** (actually log-odds!) function: $logit(p) = log\{p/(1-p)\} = log p - log(1-p)$

$$(Y_i|X^{(i)}) \sim \mathsf{Binomial}(n_i, p_i),$$

where

logit
$$p_i = \beta_0 + \beta_1 X_1^{(i)} + \ldots + \beta_{q-1} X_{q-1}^{(i)}$$

Note - completely specified - no variance to worry about. Interpretation?

LM: β_j describes change in E(Y|X) w.r.t. X_j , with X_{-j} held fixed. Logistic regression?

e.g., Bernoulli data, X_j also binary:

$$rac{\mathrm{Odds}(Y=1|X_j=1,X_{-j})}{\mathrm{Odds}(Y=1|X_j=0,X_{-j})} = \exp(eta_j),$$

provided X_j not involved in interactions... Continuous X_j ?

This is the basis for interpreting logistic regression models, and explains the popularity of the logit function, rather than some other 'appropriate' function, for setting up a binary regression model.

Interpretation gets pushed a bit further, particularly in health sciences...

Mathematically, if p_a, p_b close to zero,

$$rac{
ho_{a}/(1-
ho_{a})}{
ho_{b}/(1-
ho_{b})}~pprox~
ho_{a}/
ho_{b}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Mechanics of fitting: simple as $\hat{\beta} = (X^T X)^{-1} X^T Y$ for LM?

Not quite ...

Newton-Raphson to get MLE $\hat{\beta}$ (more later...) Usual ML asymptotics to get $\hat{Var}(\hat{\beta})$, hence standard errors and confidence intervals.

R syntax: $lm(y x, ...) \rightarrow glm(y x, family=binomial, ...)$

◆□ → ◆昼 → ◆臣 → ◆臣 → ◆ ● ◆ ◆ ● ◆

Shuttle data again

<pre>> logitmod <- glm(cbind(damage,6-damage) ~ temp, family=binomial, orings) > summary(logitmod)</pre>
Deviance Residuals:
Min 1Q Median 3Q Max
-0.953 -0.735 -0.439 -0.208 1.957
Coefficients: Estimate Std. Error z value Pr(> z)
(Intercept) 11.6630 3.2963 3.54 4e-04
temp -0.2162 0.0532 -4.07 4.8e-05
(Dispersion parameter for binomial family taken to be 1)
Null deviance: 38.898 on 22 degrees of freedom
Residual deviance: 16.912 on 21 degrees of freedom
AIC: 33.67

Recall data structure $Y_i \sim \text{Binomial}(n_i, p_i)$, i = 1, ..., n. Have (somehow) chosen regressors $(1, X_1, ..., X_{q-1})$. Do likelihood ratio test:

 H_0 :

 H_1 :

Recall in general for a pair of **nested** models with likelihood functions $L_S(\theta_S)$ and $L_L(\theta_L)$:

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Look at
$$D=2\left\{\log L_L(\hat{ heta}_L)-\log L_S(\hat{ heta}_S)
ight\}.$$

If the smaller model is correct then D^{approx} ?

More on GOF

Shuttle data:

- no evidence of lack of fit for $logit p = \beta_0 + \beta_1 TEMP$
- evidence of lack of fit for $logit p = \beta_0$

Very important caveat: conditions for the χ^2 approximation to the sampling distribution of the the deviance to be good?

Conceptual question: why can't the same approach to GOF work in the LM setting?