STATISTICS 538, Lecture \#9

Ordinal Regression Models

November 22, 2010

Order suggests underlying continuous latent variable

Response $Y_{i} \in\{1,2, \ldots, J\}$
e.g., strongly disagree, disagree, neutral, agree, strongly agree. scale e.g., no recovery, partial recovery, full recovery

For thresholds $\theta_{1}, \ldots, \theta_{J-1}$, think:

Then model continuous variable with linear model

$$
\begin{aligned}
& Z_{i}=\beta^{T} x_{i}+\epsilon_{i} \quad \text { So } \operatorname{Pr}\left(Y_{i}\right.=j)=\operatorname{Pr}\left(\theta_{j-1}<Z_{i}<\theta_{j}\right) \\
& \epsilon_{i} \sim F_{0} \\
& \begin{array}{l}
t \\
\text { cumulative dit function } \\
\text { of the error term }
\end{array}=\operatorname{Pr}\left(\theta_{j-1}-\beta^{\top} x_{i}<\left(Z_{i}-B^{\top} x_{i}\right) \frac{r}{\left.\theta_{j}-\beta^{\top} x_{j}\right)} \varepsilon_{i}\right. \\
&=F_{0}\left(\theta_{j}-\beta^{\top} x\right)-F_{0}\left(\theta_{j-1}-\beta^{\top} x\right)
\end{aligned}
$$

- Note: no intercept, no unknown scale parameter in F_{0}.
- Choice of F_{0} like choice of link function.

$$
F_{0}=\text { Normal may not be most interpretable! }
$$

since $\underset{\sim}{\theta}$ describes the dist of
scale addressed via θ 's y when predictors are zero being concentrated or spread out

Logistic dist: $F_{0}(s)=1 /\{1+\exp (-s)\}$

$$
\begin{aligned}
& \operatorname{Odds}(y>j \mid \underset{\sim}{x})=\frac{\operatorname{Pr}\left(Z>\theta_{j} \mid \underset{\sim}{x}\right)}{\operatorname{Pr}\left(Z \leq \theta_{j} \mid \underset{\sim}{x}\right)}=\frac{\operatorname{Pr}\left(\varepsilon>\theta_{j}-\underset{\sim}{\beta_{\sim}^{\top}} \underset{\sim}{x}\right)}{\operatorname{Pr}\left(\varepsilon \leq \theta_{j}-{\underset{\sim}{B}}_{\sim}^{x} \underset{\sim}{x}\right)} \\
&=\frac{1-F_{0}\left(\theta_{j} B_{\sim}^{\top} \underset{\sim}{x}\right)}{F_{0}\left(\theta_{j}-{\underset{\sim}{B}}^{\top} \underset{\sim}{x}\right)}=e^{-\left[\theta_{j}-{\underset{\sim}{s}}^{\top} \underset{\sim}{x}\right]} \\
& \frac{\operatorname{Odds}(y>j \mid \underset{\sim}{x}=\underset{\sim}{a})}{\operatorname{Odds}(y>j(\underset{\sim}{x}=\underset{\sim}{b})}=e^{\stackrel{B^{\top}}{a}(\underset{\sim}{a}-\underset{\sim}{b})} \text { Sume for }
\end{aligned}
$$

fawilior_regresion "PROPORTIONAL ODDS nice logistic-regression MODEC" intespretation

Extreme value dist: $F_{0}(s)=1-\exp (-\exp (s)) \quad \mathscr{G} d f$

$$
\begin{aligned}
& \operatorname{Pr}(y>j \mid \underset{\sim}{x})=\operatorname{Pr}\left(z>\theta_{j} \mid \underset{\sim}{x}\right) \\
& =1-F_{0}\left(\theta_{j}-\beta_{\sim}^{\top} x\right) \\
& =e^{-e^{\theta_{j}-\stackrel{B^{7} x}{\sim}} \underset{\sim}{\theta_{j}}} \\
& \begin{array}{l}
=e^{-e} \\
=\left\{e^{-e^{\theta_{j}}}\right\}^{e^{-\Delta_{n}^{\prime} x}}
\end{array} \\
& \begin{array}{l}
=\{e \\
=\{\operatorname{Pr}(y \leq j \mid \underset{\sim}{x}=0)]^{-\hat{\beta}_{\sim}^{\top} x}
\end{array}
\end{aligned}
$$

"proportional hazards model"

Copenhagen Housing Conditions Survey

> library(MASS); help(housing)

- of 1681 renters

Sat: Satisfaction of householders with their present housing circumstances, (High, Medium or Low). (J=3
$\stackrel{x}{\sim}$ (Infl: Perceived degree of influence householders have on the management of the property (High, Medium, Low).

Type: Type of rental accommodation, (Tower, Atrium, Apartment, Terrace).

Cont: Contact residents are afforded with other residents, (Low, High).

Freq: the numbers of residents in each class.

Copenhagen Housing Conditions Survey

Fit using polr(), default 'link' is logistic
prop.odds model

\#\#\# or equivalently
housing.new <- housing[rep(1:72, times=housing\$Freq), -5]
ft2 <- polr (Sat ~ Infl + Type + Cont, data=housing.new)
SAT INFL TYPE CONT
datu frome
with 1681 rows
1681

summary $(f t 2)$

Or try proportional hazards:
$\mathrm{ft} 3 \leftarrow \operatorname{polr}\left(\right.$ Sat $\sim \ldots$, method $={ }^{\prime \prime}$ clog log" $)$

