
STAT 545 - Data Analysis (Term 1, 2005-06)

ASSIGNMENT

NOTE: More questions will be added as we cover material.

NOTE: Most of the problems are delibrately open-ended, and give you the opportunity to
investigate as you best see fit. One tradeoff is as follows. I will not assign a large number
of problems, but in return I will be looking for well-documented solutions. At a minimum,
you should be reporting your findings in complete sentences/paragraphs (not computer-code
fragments!), and using tables and/or figures to summarize empirical work as appropriate. One
guideline that cuts across all scientific work is that you should provide enough detail so that an
interested reader could replicate what you have done. In terms of using mathematical notation
versus words, I’m not fussed. That is, some of you will be more comfortable using less/more
mathematical notation than others, and that’s fine. Clarity can be achieved either way!

1. We discussed kernel density estimation (KDE) in class. One situation where kernel density
estimation may not be so straightforward is when the datapoints y1, . . . , yn are measurements
of an inherently positive quantity, but some of the measured values are very close to zero. Three
strategies for such a situation are

• (i) Do nothing out of the ordinary. Apply KDE to y1, . . . , yn in the usual way.

• (ii) Apply usual KDE to the sample of size 2n consisting of −y1, . . . ,−yn as well as
y1, . . . , yn. Then take only the postive half of the density estimate, suitably rescaled.

• (iii) Apply a transformation (log is the obvious candidate) to the data. Apply KDE to the
transformed data. Take the density estimate and transform it back to the original scale.

Briefy investigate the performance of these three strategies. Construct some datasets where the
values are inherently positive but some are close to zero (for instance, simulate from some appro-
priate distributions). Display the density estimates arising from the three strategies. Comment
briefly on what you find, particularly in terms of which strategies seems to work well or poorly.

2. In the linear regression context we discussed the informal classification of a data point as
having ‘high leverage’ if the corresponding diagonal element of the ‘hat’ matrix exceeded 3(p/n),
where the design matrix is n× p. One might also use an informal classification of a data point
being an ‘outlier’ if the magnitude of its studentized or standardized residual exceeds some value.

Carry out a small simulation study to study the proportion of points which are classified as
high-leverage, outliers, or both. In particular, assess how these proportions vary with (i) the
shape of the distribution of the (one or more) predictor variables, and (ii), the shape of the
distribution of the error terms (i.e., the distribution of Y |X). Are your results in accord with
your intuition?

Please be clear in the description of how you conducted your simulations. A rule-of-thumb
is to give enough detail that an interested reader could reproduce your simulations from your
descriptions.
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3. Take a look at the “Scottish hill races” example in Sec. 6.3 of the text. The authors use
weighting to reflect the fact that the times for shorter races ought to be more predictable, but
they comment that transformations might also be used to acheive this end. Fit an appropriate
linear model that uses transformations (but not weighting) to relate time to dist and climb.
Does your model seem to fit the data better or worse than the author’s model?

4. [Oct. 3] Consider simulating data consisting of n realizations of (Y,X1, . . . , Xp) from a logistic
regression model, where Y is binary and each Xj is either binary or categorical. As we discussed
in class, we could also view such a dataset as comprised of m binomial responses, where m is the
number of distinct X patterns manifested in the data. Set-up your data-generating mechanism
such that m is (likely to be) much smaller than n.

(a) Try fitting this glm to your simulated dataset, first as n binary responses and then as m
binomial responses. Check that you get exactly the same estimated regression coefficients and
standard errors, but that the deviance, and the degrees of freedom for the deviance, are different.

(b) Which approximation is better, the χ2
n−p approximation to the deviance based on binary

responses or the χ2
m−p approximation to the deviance based on binomial responses? Carry out

a simulation study (i.e., repeatedly generate datasets as above) to address this question.

NOTE: STAT students must do 5a and omit 5b. NON-STAT students may elect to
do 5a or 5b (but not both!).

5a. [Oct. 5]

(i) Verify that if we have an exponential family distribution and a link function, and proceed to
use the Newton-Raphson algorithm (with the Fisher scoring modification discussed in class) to
find the MLE, that the algorithm is actually equivalent to a sequence of weighted least-squares
fits. Make it clear what the form of the weights and the form of the “response” is at each
iteration of the algorithm. Make it clear that the algorithm depends only on the data, the
choice of link function, and the variance function (up to a constant of proportionality).

(ii) Verify (as mentioned in class) that if random variable X takes values in {0, . . . , n} and has
mean np, then its variance cannot exceed n2p(1− p).

5b. [Oct. 5] Find an application of generalized linear modelling in your subject-area literature.
Briefly describe the application and the modelling carried out. Comment on (i) the advantages
(if any) of using GLM rather than LM in this particular problem, (ii) what features of GLM are
used (what estimation, testing, and/or residual analysis is carried out), and (iii) whether the
modelling and fitting seems to be statistically sound, and (iv) anything you find particularly
interesting about the statistical modelling and fitting.

THIS IS CUTOFF #1. Problems 1-5 are due by Wednesday Oct. 19 at the latest. By the
way, this is not an invitation to rest on your laurels! New problems will continue to be posted
as we cover material.

6. [Oct. 27] Consider the log-linear modelling example in the text (and discussed in class) with
the Copenhagen housing data. Recall that interest focusses on how satisfaction (a categorical
variable with levels low, medium, high) depends on three other categorical variables. Recall
that the Poisson modelling of frequencies implicitly fits a model for satisfaction as a trinomial
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(trinary?) response.

As an alternative analysis, try creating a binary reponse variable by combining the low and
medium levels of satisfaction together, and then use logistic regression to explain this response in
terms of the three explanatory variables. Do the results of this analysis seem to be qualitatively
consistent with that of the trinomial analysis. Do the estimated effects from the binary reponse
model seem to match those from the trinary response model in an intuitively sensible way?

7. [Oct. 27] Consider the in-class example on bootstrapping to acknowledge the uncertainty
in selecting a subset of explanatory variables. There we suggested that (i) applying a model
selection scheme to remove some predictors and (ii) refitting to the remaining predictors only
gives standard errors [from the “refit”] which are too small.

Check this out empirically and see if the SEs really are too small. That is, repeatedly simulate
datasets, apply some model selection scheme, re-fit to included predictors only, and form simple
(β̂ ± 1.96SE[β̂]) confidence intervals from the re-fit. (To be clear here, I’m talking about the
regular old likelihood-based SE that the computer spits out - no bootstrapping or anything
fancy.) What percentage of the simulated datasets give an interval containing the true parameter
value. Is it close to the desired 95%?

NOTE: you will likely want to try several sets of true parameter values. In particular, look at
the behaviour of an interval when (i) the true parameter value is zero, and (ii) when it is not
zero.

NOTE: you will need to decide what to do when the predictor in question is not selected.
Presumably if the true value of βj is non-zero, but Xj is not selected, then that counts as an
instance of the confidence interval (a single point at zero) missing the true parameter value.

NOTE: the following problems are not in the same order as the corresponding material was
covered in class.

8. [Nov. 17] Consider the Sitka data (in the “MASS” library and discussed in V & R) that
was used in an in-class example (recall this is data on the size of 79 trees at five timepoints).
Consider fitting models of the form

Sizeit = αi + βit + γit
2 + εit

where i indexes tree and t indexes timepoint (because the timepoints are evenly spaced and
common across trees, without loss of generality we can ‘code’ t as 0, 1, . . . , 4).

To see if there is a very demonstrable benefit to “borrowing strength” try fitting such a model
using only the data for the first four timepoints. Do this both in a separate model manner
where (αi, βi, γi) are fixed effects associated with the i-th tree, and in a hierarchical / mixed /
random coefficient manner where (αi, βi, γi) are random effects associated with the i-th tree.

For the two fitted models, compare predictions of tree sizes at the fifth timepoint to the actual
sizes. Is there evidence of a tangible benefit of “borrowing strength”? In addition to giving
a numerical comparison of predictive performance for the two models, give some graphical
summaries, such as plots of predicted versus actual values, and perhaps fitted size versus time
relationships for a few selected trees. Also, comment on where most of the “borrowing” seems
to be going on - in estimating α’s or β’s or γ’s?
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9. [Nov. 28] Consider the South African Heart Disease data available from
www-stat.stanford.edu/∼tibs/ElemStatLearn

There is a binary response (congestive heart disease) and nine potential explanatory variables.
(As an aside, these data were actually collected via a case-control design, but there is a theoretical
justification for fiting a model for Y given X, despite the sampling scheme involving X give Y.)
As a couple of R hints to get started, read.csv() is better than read.table() for getting a comma-
seperated data file into a data frame. Also, you may have to remove the case index (1:462) as
a variable from the data frame.

Randomly break the 462 cases into equal-sized training and validation samples. In an attempt
to keep us all in sync, let’s all use the same split. That is, use

set.seed(13)

splt <- sample(c(rep(F, 231), rep(T, 231)))

and then let TRUE indicate training set cases, FALSE indicate validation set.

In a somewhat similar spirit to the low-birth-weight example discussed in the text/class, use
stepAIC() to select a model for the training data. In particular, start with the model having all
nine predictors, then use the stepwise procedure to (perhaps) remove some predictors. Then use
the stepwise procedure a second time to see if any interactions between the selected variables
should be added. Summarize the fit of the final model to the training data by giving a 2×2 table
describing the fitted versus actual Y . Also in the spirit of cross-validation give a comparable
table describing how well the fitted model predicts Y from X in the validation data.

Now do the same fitting and prediction but using BIC rather than AIC as the model selection
criterion (recall from our earlier example that stepAIC can be adapted to use BIC). Again give
2 × 2 tables summarizing the fit of the selected model to the training data, and the predictive
ability of the fitted model on the validation data.

Comment on your findings, i.e., performance on training data versus validation data, use of AIC
versus BIC.

10. [Nov. 28] Consider kernel smoothing of the “motorcycle” data, as we discussed in class.
Presuming we have chosen a bandwidth, we might ask the question how precise is the fitted
curve as an estimate of the ‘real’ curve f(x) = E(Y |X = x). The purpose of this question is to
check if the bootstrap can help with this. [I confess I haven’t tried this, so I will be curious to
get your impression of how well this works!]

(a) Try fitting a kernel smooth to these data with different bandwidths, until you get a tradeoff
between fit and smoothness that you are happy with, at least ‘by eye’.

(b) Generate a bootstrap (X,Y) sample, using an idea for bootstrapping with regression data
that we discussed – keep the original X values fixed but resample the residuals to generate new
Y values. One can then apply the kernel smoother to the bootstap sample, to get a replicated
curve.

(c) Generate a number of such replicated curves and plot them on the same set of axes, to give
a visual description of the precision in the original estimate.
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(d) If you are feeling ambitious, also try to use this approach to compute and display ‘pointwise’
confidence intervals for f(x), i.e., separate confidence intervals for f(x) at different values of x.

11. [Nov. 30] Find a dataset for which you can try fitting both an additive model and a tree
model. Do both techniques lead to a similar qualitative impression of the relationship between
the response variable and the predictor variables? Is one of the techniques more ‘satisfying’ than
the other in any sense? Comment as you see fit.

THE END!

Problems 6-11 are due by noon on Monday December 19. I have no further wiggle-room
than this - the registrar’s office will want grades submitted very soon thereafter.
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