Model Choice

Say measure (Y, X1,..., X,,) for n subjects.

Data aquisition may have been “fishing expedition” - don’t
necessarily believe all m predictors are relevant.

May seek a final model including only m* of the predictors (or

equivalently, set m — m™* of the regression coefficients to zero).

First, a more focussed question. How to compare two models.




Likelihood Ratio Test (LRT)
Data D, Model M, (pg params) nested within M; (p; params).
If My true,

2{1(01;D) — lo(00; D)} X" X

P1—DPo

Usual hypothesis testing implementation and interpretation.




An Information Criterion (AIC)

No requirement that competing models be nested.

Choose the one maximizing

A

li(0:; D) — pi,
i.e., notion of complexity penalty.

Motivated as a measure of predictive performance.



Bayesian Information Criterion (BIC)

Again no nesting requirement.

Choose the model maximizing

1;(0;; D) — {(1/2) log n}p;,

i.e., bigger complexity penalty than AIC, especially for large

samples.

Rationale: Bayesian - somewhat crude approximation to choosing
the model for which Pr(Model ¢ is true|Data=D) is largest.




Practical Difference - YES

Say comparing M, and My, nested, with p; = pg + 1. Choose M if
2{11(01; D) — lo(6o; D)} > c.
LRT: ¢ = x? quantile, i.e.,

/

2.71 10% sig.,
3.84 5% sig.,
6.63 1% sig.

\

AIC: ¢ = 2.
BIC: c = logn, i.e.,

(4.6 if n =100,
6.2 if n = 500,
6.9 if n = 1000.

\




Comparing all possible models
?IC can compare any collection of models.

There are 2™ subsets of m predictor variables.

Fitting 2'° models may be tolerable.

Fitting 22 models may not be.

Situation worse if want to consider possibilities of ‘curved’ effects

and /or interactions.

e.g. interactions: m physical variables, but m + m(m — 1)/2

possible predictors for inclusion /exclusion.

Motivates stepwise procedures. Search for models with high
values of criterion function without evaluating all possible models.




stepAIC() in R (part of MASS library)

Iterative scheme.

From current model, consider all possible ‘one-term deletions'
(backward) AND/OR ‘one-term additions (forward).’

Of these, the new model is the one with the best improvement in

AIC (or BIC).
Iterate this scheme until no such changes improve AIC.

Practical, but no guarantee of global max.




Some Comments
Developing 7IC’s is an active research area: recently DIC, FIC.

Lack of agreement between methods more pronounced for model
choice than for within-model estimation. Reflection of an

inherently harder problem?

Partial insight: Criterion function over {0, 1} less well-behaved
than within-model likelihood function. Related idea that model

selection schemes can be unstable (recall boostrapping ex.).

What about removing the role of ‘theory’ and comparing

competing models on a more ‘empirical’ basis...




