THE EXPECTATION-MAXIMIZATION (EM) ALGORITHM

Common theme: turn a harder fitting problem into an iterative

sequence of easlier problems.
Fit GLM via iterative sequence of weighted linear regression fits.

Fit nonlinear regression model via iterative sequence of linear

regression fits.

Fit model to actual data via iterative sequence of fits to

enhanced (completed) data.

Basic Framework

Let D be the observable data.
Want to maximize log-likelihood: log f(D|0).
Let C be the complete data.

What does this mean? There is actually a probability model for
(C'|0) |which induces the model for (D|#)]. But we don’t get to see
C, only observe D = g(C'), where g() is ‘many-to-one’.

Very commonly, g(C1,Cs) = C; (i.e, Cy is ‘missing’).

Maybe one is trying to fit a model for Y given X; and X5, but for
some subjects the X4 value is ‘missing.’

Also very commonly, log f(C|0) easy to maximize, log f(D|f) hard.
Take advantage of this structure?

Basic EM algorithm

[terative sequence of estimates (1) 62 ..

(k+1) argmax, h(0;0%)

h(0;67) = Eg-{log f(C|0)|D} .

Here the averaging (expectation) is with respect to the conditional
distribution of the complete data given the observed data,
assuming 6* is the parameter value.

Note: one iteration involves an E-step (evaluate expectation)
followed by an M-step (maximize).

Intuition?

What can be proved about this algorithm?

Example: Normal Mixture

X1,..., X, udfrom a mizture of N(uy1,0%) (weight p) and

N(p2,03) (weight 1 — p).
So the density of a single X is

p¢(x|ﬁ51701) + (]‘ o p)¢(w‘ﬂ270’2)‘

Digression: Two distinct rationales/scenarios for using mixture
models. Flexibility of distributional form versus belief in latent

structure.

Have 0 = (1,01, 2,02, p). No closed form ML estimator

(log of sum complicates things).

What would make data ‘complete’?

Knowledge of which components generated which observations!
Have C' = (X;, J;)?_,, but D = (X;),.
Model for C' = (X, J) given 67

- J € {1,2} (probs p and 1 — p)
- X|J ~ N(py,03)

Clear that complete data model for (X, J|#) implies the desired
model for observable data (X|6).

E-Step
Boils down to computing

w; = Eg(k) (I{JZ = 1}‘Xz = ZL’Z}
P'r'g(k)(g]z' = 1|X = 5[3@)

k
p(k)¢($z\ﬂ1 70-5))
k
p® (i |l o) + (1 =) (i |, o8P

the ‘weight’ or ‘responsibility’ of component 1 for the i-th

datapoint, assuming 6 = (%),

Just Bayes theorem!

Then have a closed-form M-step. Standard (weighted)

normal-linear ‘stuff’. For instance

pFD ol Zwi
1

k+1
D

(k+1)
2

0§k+1)

O_ék—|—1)

Easy to code!

normmix_function(x, numits=50) {

starting vals

mul <- mean(x)-sqrt(var(x)); mu2 <- mean(x)+sqrt(var(x))
sigl <- sig2 <- sqrt(var(x)/2); p <- 0.5

for (mnlp in 1:numits) {
E-step
wht <- p*dnorm(x, mul, sigl) /

(p*dnorm(x, mul, sigl)+(1-p)*dnorm(x, mu2, sig2))
M-step
mul <- sum(wht*x)/sum(wht)
mu2 <- sum((1-wht)*x)/sum(1-wht)
sigl <- sqrt(sum(wht*((x-mul) ~2))/sum(wht))
sig2 <- sqrt(sum((1-wht)*((x-mu2)~2))/sum((1-wht)))
p <- mean(wht) } }

Try it out!

> x <= ¢(rnorm(75), rnorm(25, 2, 2))
> hist(x)

Histogram of x

First 10 iterations

mu?2
.10
.75
.67
.63
.62
.62
.62
.64
.66
.67

n
[
0Q
[—
n
[
0]
N

o
ol
O
ol

\]
w
W
00

\]
TN
o~
O

ﬂ
(@)
a1
N

O
—_

0
O
o
N

(00)
l—L
(@)
N

0
N

ﬂ
00
R e = = T = T = T = S ST O
(@)
ol

T = T = N e e S N
a1
00

o)}
ol
O O O O O O O o o o

1

0.
0.

0

0.
0.79
0

0

0

0.

00
w

Iterations 41-50,

0
0
0
0
0
0
0
0
0
0

.05
.05
.05
.05
.06
.06
.06
.06
.06
.06

.07

O O O O O O O O o o

.89
.89
.89
.89
.90
.90
.90
.90
.90
.90

.90

N N DN DN DN DN DD DD NN

e e i i e T T SN S =

O O O O O O O O o o

What Else to Discuss?

What about standard errors?

Why does this work?

What other applications does it have?

What if the expectation in the E-step does not have a closed-form?

