Binary Regression

Say have BINARY (0/1) response variable Y and predictors
X1, X,

Can still fit a linear model, but does
E(Y|,X17 e ,Xp) = Bo+/X1+...+ 5po
still make sense.

Transform one side?

Logistic regression model based on “logit” function:
logit(p) = log(p/(1 — p))

Transform LHS of LM expression to get:
logit {Pr(Y =1|X1,...,X,)} = Bo+bXi+...+ 06X,
Note that this a fully-specified model.

Mismatch problem solved. Other properties?

With LM, f; interpretable via change in E(Y|X) wrt X;, when
X_j=(X1,..., X;j-1, Xj41, -, X,) held fixed.

Corresponding story for logistic regression?

Say X is also binary (0/1). A little algebra yields

Odds(Y =1|X; =1,X_;)
Odds(Y =1|X; =0,X_;)

= exp(f;),

provided there are no interaction terms involving X; in the model.
Or, for continuous X;:

Odd?(Y = 1‘XJ =a + A,X_j)
Odds(Y = 1|X; = a,X_;)

= exp(B;A).

This is the basis for interpreting the parameters in a logistic
regression, and the reason that the logit function, rather than some
other function, is the most popular choice for setting up a binary
regression model.

Pushing the interpretation a bit further...

Sometimes (in health research particularly), Y =1 is a ‘rare’
outcome.

Mathematically, if p, ¢ close to zero,

p/(L—p) _
al-q) ~ Ple

That is, odds ratio approximates relative risk.
Hence an approximate interpretation for logistic regression is

Pr(Y =1X; =1,X_))

PrY =1X,=0,x, ~ @)

A cornerstone of Epidemiology!

Mechanics of fitting a logistic regression model?
As simple as = (XTX)"1XTY for LM?

Not quite. No closed-form expression for the value of f maximizing

the logistic regression log-likelihood.

Interestingly though, if we apply the iterative Newton-Raphson
algorithm to maximize the log-likelihood function, at each iteration
we end up doing a weighted least-squares fit with a

psuedo-response vector (more on this later).

So the computation is not bad. The logistic regression analogue to

Im(y~x) is glm(y~x, family=binomial).

One thing that’s easier with logistic regression than LM -
Goodness-of-fit test.

Say you have chosen some variables to include as predictors in a
logistic regression model. You would like to test whether this model
is appropriate for the data, without explicitly constructing
alternative models.

Consider the saturated model having one parameter for every
datapoint, i.e., p; = Pr(Y; = 1). Compare maximized
log-likelihoods for the saturated model and your model:

Deviance = 2 {maxl(pl7 ey D3 Y, T) — mﬁaxl(ﬂl, e Bosys z)} .
)

If you generate data from your model, then, approximately,
Deviance ~ Xi—p

So an observed deviance in the right-tail of the x2_, distribution
suggests a poor-fitting model, (i.e., can report a P-value).
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Aside: this is not usual LR test asymptotics. Slightly more
delicate/iffy when the number of parameters grows with sample

size.

Other aside: why can’t this be done with linear models?

Linear models involve unknown o2 describing magnitude of error
term, as estimated by RSS. Can test a smaller model versus a
bigger model by looking at a relative reduction in RSS (per number
of new parameters introduced). But there is no ‘magic’ absolute
size of RSS that is expected when the fitted model is correct.

One thing that’s harder with logistic regression than LM -
Graphical Diagnostics

There are schemes for defining residuals for logistic regression
(and other GLMs).

For instance, deviance residuals are defined by analogy. Deviance
for logistic regression plays role of RSS for LM. In particular,
deviance is a sum of n terms for the n datapoints. So define

residuals as signed square-roots of these terms.

> x <- rnorm(100)
> y <- rbinom(100, size=1, prob=1/(1+exp(-(0+.7%x))))
> tmp <- glm(y~x, family=binomial)

> summary (tmp)
Call: glm(formula = y ~ x, family = binomial)

Deviance Residuals:
Min 1Q Median 3Q Max
-1.94557 -1.05909 0.00772 1.03679 1.97291

Coefficients:

Estimate Std. Error z value Pr(>|z|)
(Intercept) 0.06058 0.21836 0.277 0.781451
b4 0.95606 0.26012 3.675 0.000237 **x*

Null deviance: 138.63 on 99 degrees of freedom
Residual deviance: 122.06 on 98 degrees of freedom

Number of Fisher Scoring iterations: 4

> plot(x, resid(tmp))

resid(imp)
0
L

Useful?
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