

wordle from the previous assignment I reflections

STAT 545A Class meeting #2 Monday, September 10, 2012

Dr. Jennifer (Jenny) Bryan

Department of Statistics and Michael Smith Laboratories

Two inter-related goals for course

- Foster your development of a personal philosophy on data analysis.
- Strengthen your data analysis skills.

Two main goals for statistical graphics

- To facilitate comparisons.
- To identify trends.

Two key plot elements of data analytical stories

- Build trust by showing stuff that people expect.
- Generate excitement by showing stuff that they don't.

Admin & communication

Collaborative web space set up here:

http://www.bryanlab.msl.ubc.ca/stat545a2012/

I must add you as user, so contact me if you are not set up yet.

Excellent source of relevant eBooks: SpringerLink. Access via this UBC Library page

The <u>Use R series</u> is especially relevant for this course. Also look at <u>books listed under Statistics Computing and</u> <u>Software</u>.

Another good repository of CRC Press books: STATSnetBASE. Access via this <u>UBC Library page</u>. Check out the <u>Computer</u> <u>Science & Data Analysis</u> series.

If accessing from a UBC network, you should automatically be recognized as a valid user.

If accessing from off campus, read UBC Library's page about "<u>Connect from Home</u>". Personal recommendations:

Phil Spector's book "Data Manipulation with R" <u>author's webpage</u> (lots of great material here) on SpringerLink:

- Look Inside view (read book online)
- <u>Contents view</u> (facilitates downloading chapters as PDFs) <u>Google books search</u> inside of it

Deepayan Sarkar's book "Lattice: Multivariate Data Visualization with R"

webpage w/ all book's figures and associated code on SpringerLink:

- <u>Look Inside view</u>
 - <u>Contents view</u>

<u>Google books search</u> inside of it

Different views of Springer eBooks.

Personal recommendations:

Paul Murrell's book "R Graphics" author's webpages for <u>Ist edition</u> and <u>2nd edition</u> (gives R code to produce all figures) <u>STATSnetBASE</u> (read Ist edition online; JB owns both in hard copy if want to borrow) <u>Google books search</u>

Venables and Ripley "Modern applied statistics with S" <u>authors' webpage</u>

Springer 4th edition 2002

sadly not available via SpringerLink; getting a little old; JB owns hard copy if want to borrow

Also look promising

- Zuur, Ieno, Meesters (2009) A Beginner's Guide to R.
 Springer. Available via <u>SpringerLink</u>.
- Wickham, H (2009) ggplot2 Elegant Graphics for Data Analysis. Springer. Available via <u>SpringerLink</u>.

More sources & books of interest

- Cleveland, William S (1993). Visualizing Data. AT&T Bell Laboratories.
- <u>STATSnetBASE</u> (CRC Press)
 - <u>A Handbook of Statistical Analyses Using R</u> by Brian Everitt and Torsten Hothorn.
 - Handbook of Statistical Analyses using S-Plus, Second Edition by Brian Everitt.
 - <u>R Programming for Bioinformatics</u> by R Gentleman.

Andrew Wade VA Challenge Program

https://sites.google.com/site/challengeva/

O O UBC Visual Analytics Group Student Opportunities — Inbox								
O S Co	Renix All Forward Print To Do							
Delete Junk Reply Reply All Forward Print To Do From: Kyle Melnick Subject: UBC Visual Analytics Group Student Opportunities Date: 4 September 2011 8:56:38 PM PDT To: Jennifer Bryan								
Hi Jenny, My name is Kyle Melnick and I'm the manager of the UBC VA Challenge Group. The group is designed to give students experience in visual analytics by collaborating on various VA projects, directed studies courses and internships with academic and industry partners. A large part of this involves exploratory data analysis with a variety of data types and analytic tools. The group meets every week to discuss the current analysis projects, have data workshops and general VA discussions. There is more information on this at our website https://sites.google.com/site/challengeva/home . I thought that some of your students in your Stat 545a class (Exploratory Data Analysis) might be interested in getting involved with the group. If you think it would be worthwhile it would be great if you could let your students know about the group in whatever format you think is best (class announcement, wiki post, etc).								
Thanks,								

Kyle M.

Some of us UBC Stat faculty met with folks from VIVA (Vancouver Institute for Visual Analytics) this summer -this program is affiliated with VIVA.

Great resource for inspiration, project ideas, etc. in this area. I'd like to hear about it if you get involved.

Software Carpentry workshop at UBC Oct 18 - 19 first (?) use of R, in addition to python, for the programming bits <u>http://software-carpentry.org</u>

Sept		Oct			
	5 course intro		3		
Gapminder 10 shock therapy	12	Thanksgiving	10		
17	19	15	17		
24	26				

12 class meetings

Breakdown of methods

- univariate data (single quantitative variable) and, optionally, a categorical variable
- bivariate data (two quantitative variables) and, optionally, a categorical variable
- multivariate data (3 or more quantitative variables)
- multiway data (single quantitative variable, two or more categorical variables)

STAT 545A Assignment #1

Spend two hours trying to replicate this sequence of graphs from Gapminder, using R:

Go to Gapminder World.

Using the pull-down menu, set the x-axis for "Income per person (GDP/capita)". Set the y-axis for "Life expectancy at birth". Set the circle size (look in lower right corner) for "Population, total". Hit Play.

www.gapminder.org (via YouTube)

A JB base R graphics 'solution' (but I took longer than 2 hours!)

A JB lattice 'solution' (but I took longer than 2 hours!)

Notebook

→ a01-gapminder

- Allan(Hao Luo)'s Assignment-01
- Carl Falk's assignment 01
- Conneely-a01
- Daoyan Wang's assignment 01
- Davor Cubranic assignment 1
- Dodo Assignment 1
- Hind Assignment01
- Li Xing's Assignment 1
- Liu's Assignment #1
- Saeedi-a01
- bryan-example1
- bryan-example2
- giuliany-a01
 hongbin-a01
 tan-a01
 yu-a01

Please name the pages like so. Start practicing eliminating spaces, apostrophes, etc. from your directory and filenames. You will be a happier person.

2012 students doing well here so far!

Please post/link to graphics files that are easily clicked & viewed. No Word documents.

8

2

#pulled colour codes from a a handy chart:

Gapminder Replica (1950)

Nice job by Adri re: using the mark up and recording what she did, why, how it went. These sorts of notes are a great practice, even just for yourself!

http://www.bryanlab.msl.ubc.ca/stat545a2012/node/603

Please do post your prose in the body text. Live links, formatting, etc. are greatly appreciated by your readers. If you're not already comfortable with mark up, this is a good time to start.

wordle from the previous assignment I reflections

wordle from the previous assignment I reflections

We discussed student work and approaches by browsing around the <u>wiki</u>.>

A JB 'solution' (but I took longer than 2 hours!)

A JB lattice 'solution' (but I took longer than 2 hours!)

Let's put out some fires.

First, some informal quick tips to help people solve some very common, very frustrating problems

Problem: Working directory, paths, etc.

"However, my problem is that, usually some small problems which are not about the programming itself bothered me much. For example, changing the directory of workspace, etc."

You will generally bring data into R from a file.

You will often bring information -- numerical or graphical -- out of R to a file.

You will need to communicate where these files live on your computer. How to handle?

"working directory"

See the working directory of an R session:

> getwd()

[1] "/Users/jenny/teaching/2012-2013/STAT545A/classMeet/cm02"

One could set the working directory like so

- > setwd("/Users/jenny/tmp/")
- > getwd()
- [1] "/Users/jenny/tmp"

.... and then provide only filenames when reading / writing.

This will work BUT I take a different approach.

Alternative approach I prefer: I always provide the specific, full path when I read or write a file.

I'll justify and demonstrate this more in a later lecture.

For now, here's an example of what I mean:

```
gDat <-
```

read.delim(file = "/Users/jenny/teaching/2012-2013/STAT545A/ examples/gapminder/data/gapminderData.txt")

(though I achieve this differently in real life for obvious reasons ... above is ugly and cumbersome)

getting data back out of R ...

will cover later but if you are desperate, read up on 'write.table' for rectangular, spreadsheet-y objects and 'save' for other things

'read.table' & 'write.table' are related, as are 'save' and 'load'

Problem: Getting data into R

*. at first, when I encounted that R could not read-in the data file, I tried to go to Gapminder website to download its data; however, I could not read the .xlsx formated file as I have only MS Office 2003 installed; I then downloaded a convertor; but after I see the converted data file, it is actully not usable.

My first roadblock came while attempting the load the data; many of the entries were missing a continent. At first, I decided to try to go through, line by line, and fill in the missing data. Having spent 15 minutes and not completed a tenth of the work, I decided that there was no way that anyone else went through this trouble.

I used the data supplied in the text file on the website by pasting it into an excel document and saving it as a .csv file. I was able to read my data and create a simple plot with little problems.

Later on I found that the data in the table are not complete. I know there are some command to run R with incomplete data, but I don not know how to use it. Finally I am happy to know read.delim() works.

some countries have a missing value for the "continent" variable,

Getting data into R

> whereAmI <+ "/Users/jenny/teaching/2012-2013/STAT545A/examples/gapminder/"
> gDat <- read.delim/paste0(whereAmI, "data/gapminderData.txt"))</pre>

- read.table() -- and friends read.csv() and read.delim() -are the functions you will use most often
- Worth reading the documentation! Educate yourself about the arguments -- with careful use of arguments, can often get the data.frame you want on *import*, eliminating lots of post-import fussing around or ill-advised hand-editing of the input data.

* Caveat: I have recently discovered file.path(), which may be the more correct way to build paths, especially when writing for multiple platforms, e.g. in a package for distribution. Good to know.

> gDat <- read.table(paste0(whereAmI, "data/gapminderData.txt"))
Error in scan(file, what, nmax, sep, dec, quote, skip, nlines, na.strings, :
 line 62 did not have 6 elements</pre>

Let's look at line 62 and its neighborhood

	I	2)	3	Z	ŀ	5	6
55	Argentir	na 197	77 26	983828	3 Ame	ricas	68.481	10079.02674
56	Argentir	na 198	32 29	341374	1 Ame	ricas	69.942	8997.897412
57	Argentir	na 198	37 31	620918	3 Ame	ricas	70.774	9139.671389
58	Argentir	na 199	33	958947	7 Ame	ricas	71.868	9308.41871
59	Argentir	na 199	97 362	203463	3 Ame	ricas	73.275	10967.28195
60	Argentir	na 200)2 38	331121	l Ame	ricas	74.34	8797.640716
61	Argentir	na 200	07 40	301927	7 Ame	ricas	75.32	12779.37964
62	Armenia	1992	337833	1	68.663	1442.9	37796	
63	Armenia	1997	305900	0	70.377	1791.3	4719	
64	Armenia	2002	301381	8	71.403	2692.3	04039	
65	Armenia	2007	297165	0	71.965	4942.5	43911	
66	Aruba	1972	59461		70.941	4939.7	58007	
67	Aruba	1977	59412		71.83	7390.3	59942	
68	Aruba	1982	61569		74.116	10874.	91495	
	I	2	3		4	5		

From the help file on read.table()

```
read.table(file, header = FALSE, sep = "", quote = "\"'",
    dec = ".", row.names, col.names,
    as.is = !stringsAsFactors,
    na.strings = "NA", colClasses = NA, nrows = -1,
    skip = 0, check.names = TRUE, fill = !blank.lines.skip,
    strip.white = FALSE, blank.lines.skip = TRUE,
    comment.char = "#",
    allowEscapes = FALSE, flush = FALSE,
    stringsAsFactors = default.stringsAsFactors(),
    fileEncoding = "", encoding = "unknown")
```

```
<snip, snip>
```

sep: the field separator character. Values on each line of the
file are separated by this character. If 'sep = ""' (the
default for 'read.table') the separator is 'white space',
that is one or more spaces, tabs, newlines or carriage
returns.
read.delim() is a wrapper around read.table() ... mostly just read.table() with the separator set to tab

read.delim(file, header = TRUE, sep = "\t" quote="\"", dec=".", fill = TRUE, comment.char="", ...)

```
read.table(file, header = FALSE, sep = "", quote = "\"'",
    dec = ".", row.names, col.names,
    as.is = !stringsAsFactors,
    na.strings = "NA", colClasses = NA, nrows = -1,
    skip = 0, check.names = TRUE, fill = !blank.lines.skip
    strip.white = FALSE, blank.lines.skip = TRUE,
    comment.char = "#",
    allowEscapes = FALSE, flush = FALSE,
    stringsAsFactors = default.stringsAsFactors(),
    fileEncoding = "", encoding = "unknown")
```

> gDat <- read.table(paste0(whereAmI, "data/gapminderData.txt"))
Error in scan(file, what, nmax, sep, dec, quote, skip, nlines, na.strings, :
 line 62 did not have 6 elements</pre>

> gDat <- read.table(paste0(whereAmI, "data/gapminderData.txt"), sep = "\t")</pre>

> gDat <- read.delim(paste0(whereAmI, "data/gapminderData.txt"))</pre>

Case in point:

With the Gapminder data, simply specifying tab as the delimiter is all it takes to go from a fatal error to perfect success. This happens a lot. Read error messages and try to work the problem. Don't shut down, freak out, guess wildly.

Great quote clip from Apollo 13 movie. Disaster begins to unfold on the space craft. After a few minutes of blaming each other, leadership emerged. Ed Harris, portraying NASA flight director Gene Krantz, said: "Let's work the problem people. Let's not make things worse by guessing."

When in doubt, choose data.frame

- read.table returns your data as a certain kind of R object: a data.frame
- kind of like an Excel spreadsheet (but not really)
- data.frame > matrix, because can handle variables of different modes (use as.data.frame, as.matrix to convert)
- data.frame > separate vectors/variables
 - data.frames prevent parallel variables from becoming 'out of sync' in terms of ordering or length
- data.frame is accepted by many functions for modeling and graphing via a 'data' argument
- data.frame is a very special <u>list</u> (in the technical R sense) that also quacks like a matrix ... offers the best of both worlds

Many data analyses revolve around the idea of a dataset, a collection of related values which can be treated as a single unit. For example, you might collect information about different companies; for each company you would have a name, an industry type, the number of employees, type of health care plans offered, etc. For each of the companies you study you would have values for each of these variables. If we store the data in a matrix, with rows representing observations and columns representing variables, it would be easy to access the data, but since the modes of the variables in a dataset will often not be the same, a matrix would force, say, numeric variables to be stored as character variables. To allow the ease of indexing that a matrix would provide while accommodating different modes, R provides the data frame. A data frame is a list with the restriction that each element of the list (the variables) <u>must be of the same length as every other element of the list.</u> Thus, the mode of a data frame is list, and its class is data.frame.While there is some overhead for storing data in a data frame as opposed to a matrix, data frames are the preferred method for working with "observations and variables"-style datasets

from Chapter I of <u>Spector (2008)</u>.

after a (seemingly?) successful data import, top priority is to inspect the new object

ideally ... without printing the whole thing to screen

Type an object's name at the command line to have it print to screen

Tempting to do this all the time because, unlike a spreadsheet, R objects aren't staring you in the face.

> gDat					
	country year	pop c	ontinent	lifeExp	gdpPercap
1	Afghanistan 1952	8425333	Asia	28.80100	779.4453
2	Afghanistan 1957	9240934	Asia	30.33200	820.8530
3	Afghanistan 1962	10267083	Asia	31.99700	853.1007
4	Afghanistan 1967	11537966	Asia	34.02000	836.1971
3000 lines of	data scrolled by	waiting	, waiting	yaw	'n
3309	Zimbabwe 1992	10704340	Africa	60.37700	693.4208
3310	Zimbabwe 1997	11404948	Africa	46.80900	792.4500
3311	Zimbabwe 2002	11926563	Africa	39.98900	672.0386
3312	Zimbabwe 2007	12311143	Africa	43.48700	469.7093

BUT, except in ridiculously small examples, listing the entire object isn't a great idea.

Reach out and touch your data

>	str(gDat)	>		
'a	ata.frame	:	3312 obs. of 6 variables:	
\$	country	:	Factor w/ 187 levels "Afghanistan",: 1 1 1 1 1 1 1 1 1	
\$	year	:	int 1952 1957 1962 1967 1972 1977 1982 1987 1992 1997	
\$	рор	:	int 8425333 9240934 10267083 11537966 13079460 14880372 1288181	,
\$	continent	::	Factor w/ 7 levels "", "Africa", "Americas",: 4 4 4 4 4 4 4 4 4	,
\$	lifeExp	:	num 28.8 30.3 32 34 36.1	
\$	gdpPercap):	num 779 821 853 836 740	

- 'str' gives a concise overview of an object
 - so named because it aims to reveal internal *str*ucture of an object
- What to look for
 - Are the mode and size what I expect?
 - For data.frames, are the constituent variables what I expect / want?
 - Are the first few observations plausible?

Reach out and touch your data

6	head(gDat)					
	country	year	рор	continent	lifeExp	gdpPercap
1	Afghanistan	1952	8425333	Asia	28.801	779.4453
2	Afghanistan	1957	9240934	Asia	30.332	820.8530
3	Afghanistan	1962	10267083	Asia	31.997	853.1007
4	Afghanistan	1967	11537966	Asia	34.020	836.1971
5	Afghanistan	1972	13079460	Asia	36.088	739.9811
6	Afghanistan	1977	14880372	Asia	38.438	786.1134

- 'head' shows the first bits of an object
 - so named because it's like the Unix command

• 'tail' exists too and shows the last bits

<pre>> tail(gDat)</pre>									
	country	year	рор	continent	lifeExp	gdpPercap			
3307	Zimbabwe	1982	7636524	Africa	60.363	788.8550			
3308	Zimbabwe	1987	9216418	Africa	62.351	706.1573			
3309	Zimbabwe	1992	10704340	Africa	60.377	693.4208			
3310	Zimbabwe	1997	11404948	Africa	46.809	792.4500			
3311	Zimbabwe	2002	11926563	Africa	39.989	672.0386			
3312	Zimbabwe	2007	12311143	Africa	43.487	469.7093			

I wrote peek(), inspired by head() and tail(), because the funny stuff never seems to happen in the first or last 5 observations. Better to look at some randomly drawn observations.

```
> peek(gDat)
                              pop continent lifeExp gdpPercap
           country year
70
             Aruba 1997
                            68341
                                             73.011 26483.6686
           Bahamas 1997
                           281577
                                             68.472 20990.8325
197
         Lithuania 2001
                                             71.740 10272.3655
                        3645747
1767
                                        FSU
1866
         Maldives 1972
                           122681
                                             51.440 719.3214
           Nigeria 1962
                        41871351
                                             39.360 1150.9275
2187
                                     Africa
         Sri Lanka 1997
                         18698655
                                             70.457 2664.4773
2794
                                       Asia
3214 United States 2003 290342554
                                   Americas
                                             77.470 39747.3764
```

```
peek <- function(x, n = 7) {
    if(is.matrix(x) | is.data.frame(x)) {
        nX <- nrow(x)
        print(x[sort(sample(nX, size = n)),])
    } else {
        cat("'peek' only anticipates matrices and data.frames.\n")
    }
}</pre>
```

... the funny stuff ...

Case in point: this peek happened to alert me to the fact that the continent data is missing sometimes.

If I hadn't learned that earlier at import, I would learn that now.

Practice Defensive Coding.

> peek(gDat)

	country	year	рор	continent	lifeExp	gdpPercap
70	Aruba	1997	68341		73.011	26483.6686
197	Bahamas	1997	281577		68.472	20990.8325
1767	Lithuania	2001	3645747	FSU	71.740	10272.3655
1866	Maldives	1972	122681		51.440	719.3214
2187	Nigeria	1962	41871351	Africa	39.360	1150.9275
2794	Sri Lanka	1997	18698655	Asia	70.457	2664.4773
3214	United States	2003	290342554	Americas	77.470	39747.3764

See wikipedia page for "<u>Defensive programming</u>" or "<u>Good Programming Practices in</u> <u>Healthcare Creating Robust Programs</u>," a conference report that is mostly about SAS but is specific to (bio)statistical analysis -- I especially like the rules listed on pages 3 and 4.

ntr	У	уе	ear	pc	ор	conti	ine	ent
C:	58	Min.	:1950	Min.	:5.941e+04		:	301
:	58	1st Qu.	:1967	1st Qu.	:2.679e+06	Africa	:	613
:	58	Median	:1982	Median	:7.557e+06	Americas	5:	343
:	58	Mean	:1980	Mean	:3.161e+07	Asia	:	557
:	58	3rd Qu.	:1996	3rd Qu.	:1.959e+07	Europe	:	1302
:	58	Max.	:2007	Max.	:1.319e+09	FSU	:	122
:2	964					Oceania	:	74
	gdpP	ercap						
	Min.	: 24	1.2					
	1st Qu	. : 251	4.6					
	Median	: 783	88.5					
	Mean	: 1131	7.1					
	3rd Qu	.: 1735	57.9					
	Max.	: 11352	23.1					
	>ntr :: :: :2	htry 58 58 58 58 58 58 58 2964 gdpF Min. 1st Qu Median Mean 3rd Qu Max.	<pre>htry yes 58 Min. 58 1st Qu. 58 Median 58 Mean 58 3rd Qu. 58 Max. 2964 gdpPercap Min. 24 1st Qu.: 251 Median : 783 Mean : 1131 3rd Qu.: 1735 Max. :11352</pre>	<pre>htry year 2: 58 Min. :1950 : 58 1st Qu.:1967 : 58 Median :1982 : 58 Mean :1980 : 58 3rd Qu.:1996 : 58 Max. :2007 :2964 gdpPercap Min. : 241.2 1st Qu.: 2514.6 Median : 7838.5 Mean : 11317.1 3rd Qu.: 17357.9 Max. :113523.1</pre>	<pre>httry year po 2: 58 Min. :1950 Min. : 58 1st Qu.:1967 1st Qu. : 58 Median :1982 Median : 58 Mean :1980 Mean : 58 3rd Qu.:1996 3rd Qu. : 58 Max. :2007 Max. :2964 gdpPercap Min. : 241.2 1st Qu.: 2514.6 Median : 7838.5 Mean : 11317.1 3rd Qu.: 17357.9 Max. :113523.1</pre>	<pre>htry year pop 2: 58 Min. :1950 Min. :5.941e+04 3 58 1st Qu.:1967 1st Qu.:2.679e+06 5 58 Median :1982 Median :7.557e+06 5 58 Mean :1980 Mean :3.161e+07 5 58 3rd Qu.:1996 3rd Qu.:1.959e+07 5 58 Max. :2007 Max. :1.319e+09 2964 gdpPercap Min. : 241.2 1st Qu.: 2514.6 Median : 7838.5 Mean : 11317.1 3rd Qu.: 17357.9 Max. :113523.1</pre>	Year pop contr 2: 58 Min. :1950 Min. :5.941e+04	Atry year pop contine c: 58 Min. :1950 Min. :5.941e+04 : : 58 1st Qu.:1967 1st Qu.:2.679e+06 Africa : : : 58 Median :1982 Median :7.557e+06 Americas: : : 58 Median :1980 Mean :3.161e+07 Asia : : : 58 Mean :1980 Mean :3.161e+07 Asia : : : 58 Max. :2007 Max. :1.319e+09 FSU : : : 2964 Oceania : Oceania : oceania : gdpPercap Min. : 241.2 1st Qu.: 2514.6 Mean : 11317.1 3rd Qu.: 17357.9 Max. :113523.1 Max. :113523.1

'summary' is another good option that generally does something intelligent and informative for most objects

'summary' marks a transition from sanity checking to data exploration ...

Reach out and touch -- but do not print to screen - your data

str()
head()
tail()
peek() -- not built-in

summary()

now we look at getting information back out of R -- specifically saving a figure

Problem: Getting figures out of R

In an attempt to save face, I won't go into the amount of time it took me to figure out how to save something as a pdf

The next issue that I faced was figuring out how to save each individual graph as a pdf with a different file name. After much researching, I finally came across the paste function and I was able to save each file automatically within my loop. I had to manually combine the pdf files into one file using Adobe Acrobat.

Output I found pdf() and dev.off() to be useful,

(Getting ready to) make a figure

- First draft (and the next ~100 attempts!) should be displayed in a window; for example, in a XII() or quartz() device
- When ready to preserve for posterity, I advise you default to PDF. Most generally useful format to have around.
 - Educate yourself about vector versus raster graphics <u>here</u> (or Google it yourself). Short version: default to vector, which PDF is an example of.
- Save the figure w/ a line of R code, not with the mouse.
- If preparing a figure for the web and/or a figure that presents a very large number of data points -- png() is a good option to consider. The web winds are blowing towards SVG these days.

(Getting ready to) make a figure

- If you rigorously produce your figures from code you save -versus via typing at the command line or (shudder) with a mouse -- it will always be easy to remake a figure natively on a different device. This will come up!
- Additionally, it will be easy to find the R code that generated any figure by searching for the figure filename on your computer, filtering for *.R files if possible.
- The following methods for writing to PDF should work for other devices.

Two good blog posts on saving R graphics

10 tips for making your R graphics look their best Revolutions blog post <u>http://blog.revolutionanalytics.com/2009/01/10-tips-for-making-your-</u> <u>r-graphics-look-their-best.html</u> <-- highly recommended

High-quality R graphics on the Web with SVG Revolutions blog post <u>http://blog.revolutionanalytics.com/2011/07/r-svg-graphics.html</u>

Save a figure -- Method I

- Open a PDF device by calling pdf(), execute all your graphics commands, close the PDF by calling dev.off()
 - Pros: Most 'correct' method. Possible to create multipage files.
 - Cons: pdf() and dev.off() commands clutter up your R file and require repeated (de-)commenting out. It's annoying to re-submit all those commands, when you're staring at a beautiful figure on the screen.

```
pdf(paste0(whereAmI,"figs/rawPlotsByORF.pdf"),
    width = 9.5, height = 7)
for(i in seq(along = levels(kDat$ORF)))
    print(xyplot(pheno ~ tm | day, kDat,<blah, blah, ...>)
dev.off()
```

Save a figure -- Method 2

- Make the figure in a screen device, such as XII(). Call dev.print to copy that to a PDF file.
 - Pros: Immediate gratification. PDF-generating code is limited to one command, so easier to (de-)comment out.
 - Cons: Slightly 'incorrect'. Certain aspects of the figure depend on the graphics device (which would be XII, not PDF), therefore, in some cases, you can get different PDF files with Methods I and 2. It's a risk I'm often willing to take. Also, won't work for multi-page figures.

Strategies for tackling difficult tasks, getting unstuck

break the task down into small pieces

walk before you run

make stuff up -- worry about dotting your i's and crossing your t's later

set aside the weird cases and just work with the "pretty" data at first I decided to create a series of graphs (one for each year) which look as similar as possible to the gapminder graphics.

I was able to create scatterplot of a single year with most of the required features pretty quickly (maybe an hour), because I relied on parts of R that I already knew: reading a data frame from a file, filtering rows based on some condition (i.e., year), and drawing scatterplots. (Because basic R graphics could do everything I needed for the assignment, I didn't try using Lattice or GGPlot.)

I initially took a couple of shortcuts: I only drew a single year, did not colour points based on the country's continent, and used a random size of dots instead of making it proportional to population. Also, I started with linear instead of log scale for the GDP axis.

I then started adding the missing bits, and each took longer than expected..... In the end, the 'missing bits' that I avoided in my first pass at the code took longer than the basic functionality

Splitting up the task into components worked well to keep me focused instead of trying to think about everything at once. For instance, I started just graphing one year's worth of data and working on that first. Then, I tried to get different colors for data from each continent, change the size/shape of each data point, add a legend, etc.

'subset' is generally the best way to filter a data.frame (or even other objects), i.e. to retain only certain rows or certain variables

another function worth reading the documentation for

Specific rows can be selected via subset argument which expects a logical vector

Specific variables (or columns) can also be retained (or dropped) via select argument which expects an expression

Advantages to 'manual' subsetting:

- code cleaner, more readable
- smart about looking for variables within the data.frame you're operating on
- better handling of NAs (?)

filtering with logical vectors arising from regular expressions

```
> ## these accomplish the same thing
```

1502 Rwanda 40.000 2534927

```
> yDat <-
    subset(gDat,
+
           subset = (year %in% jYears &
+
                     grepl('^R[ow]',country)),
+
           select = c('country', 'lifeExp', 'pop'))
+
> yDat <- gDat[(gDat$year %in% jYears &</pre>
+
                grepl('^R[ow]', gDat$country)),
               c('country','lifeExp','pop')]
+
> str(yDat)
'data.frame': 16 obs. of 3 variables:
 $ country: Factor w/ 167 levels "Afghanistan",..: 127 127 ...
 $ lifeExp: num 61 64.1 66.8 66.8 69.2 ...
 $ pop
          : int 16630000 17829327 18680721 19284814 ...
> yDat
     country lifeExp
                          pop
1494 Romania 61.050 16630000
1495 Romania 64.100 17829327
. . .
```

keeping only variables 'country', 'lifeExp', and 'pop'

keeping only rows for countries starting with 'Ro' or 'Rw'

```
1503 Rwanda 41.500 2822082
```

• • •

gDat <- read.delim(file = jPaste(whereAmI,</pre>

"data/gapminderDataBiggest40.txt"))

jYear <- 1952 tinyDat <- subset(gDat, year == jYear) xyplot(lifeExp ~ gdpPercap, tinyDat) dev.print(pdf, jPaste(whereAmI, "figs/walkingBeforeRunning.pdf"))

Don't hard-wire your small test cases. Make it easy to change your test case. Change it as you make progress. You will avoid over-tuning. Naturally leads to scaling up / looping, building a function to make the plot for one year, etc.

less is more

not every country has data for each year

In some specific year, we have fewer countries involved in the survey

Also the Gapminder graphs seem to interpolate data for missing years, which seems like it would be troublesome to do properly (an average of the two closest years wouldn't be too hard maybe?).

> Next, drawing all years caused another surprise about the data: not all countries have entries for each year! Manually checking the values showed that Africa is particularly bad, and only appears every fifth year. I then decided to plot only those years to avoid having a big chunk of dots appear every few pages and then disappear again.

Don't feel obligated to show every last piece of data you have.

But try to remain true to the full data, i.e. don't hide anything or warp the truth.

Figs that showed only one year tended to be more effective than figs that superposed all years or series where most data points disappeared / reappeared incessantly.

Other common issues -- will be covered

How to scale up, loop over many years

coloring by country/ continent

legend

logging an axis, axis limits, tick marks, reference grid

controlling the relationship between population size and the circle Mini-Assignment #2:

Spend ~ I hour by end of this Friday September 7 making improvements to your Gapminder effort.

Tackle the most vexing issue you had, use class notes or other students' work for guidance (but give credit, especially if another student has helped you), etc.

JB has created a notebook page for this now: a02-assignment 2 - Gapminder Resolution

Step I of Assignment #3:Just a preview!Will be tweaked once I
see how many usingGet an R-aware editor installed.Rstudio.

R-aware = can send code to a running R process.*

Fire up R and the editor and get the system working.

(You will be glad you did. Trust me.)

*Or, at a very bare minimum, will help you enforce a coherent coding style on your R code, will do syntactical highlighting, etc..

Obsolete due to Rstudio? Good leads for editors

- <u>Emacs Speaks Statistics</u> (what I use); also see the "R and Emacs" section of the <u>R FAQ</u>
- <u>Specific Emacs installation I use</u> (Mac OS X), includes ESS
- <u>Vincent Goulet</u> has a nice version of Emacs for Windows that includes ESS, AuCTeX, aspell.
- <u>TextMate</u> + R bundles (Mac)
- <u>Tinn-R (Windows)</u>
- <u>WinEdt + R-WinEdt (helpful link?</u>)
- <u>vim</u>, an improved version of vi, + <u>R.Vim</u> (<u>helpful link?</u>)
- <u>NppToR</u>: R Syntax Highlighting, Code Folding and Code-Passing for R in Notepad++

More links re: R & editors -maybe more recent / fresh / current?

- http://www.sciviews.org/_rgui/projects/Editors.html
- <u>http://stackoverflow.com/questions/1783254/r-text-</u> editors-for-introductory-statistics-courses
- <u>http://stackoverflow.com/questions/1439059/best-ide-texteditor-for-r</u>
- http://www.rstudio.org

Just a preview! I will give some prompts for this, i.e. be more concrete about what "start Step 2 of Assignment #3:^{thinking}" should mean.

Start thinking about a dataset you really want to analyze -- especially through a series of awesome figures.

Try to get it and clean it and make your first rough plots.

Do you need help w/ R stuff? Do you need help w/ ideas? Do you want to recruit others? It's never too early to start!