
STAT 545A
Class meeting #3
Wednesday, September 12, 2012

Dr. Jennifer (Jenny) Bryan

Department of Statistics and Michael Smith Laboratories

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/

take control of where files are read from and written to

‘read.table’ and friends are main data import functions

‘data.frame’ is preferred receptacle for data in R

inspect and sanity check R objects early and often

save figures to file, probably PDF, with R code not mouse

‘subset’ is great function for subsetting a ‘data.frame’

walk before run; work small examples; feel free to ignore problematic
data and/or make up nice data in order to get started

Review of last class

I haven’t been able to construct a great reason to prefer one
over the other. The important point is to develop a notion of
an analytical project and map that onto the directory(ies)
where you read from and write to.

amplifying on David’s comment re: my method of ‘taking
control of where files are read from and written to’

setwd("/Users/jenny/teaching/2012-2013/STAT545A/examples/gapminder/")
gDat <- read.delim("data/gapminderData.txt")
canDat <- subset(gDat, country == "Canada")
plot(canDat$year, canDat$pop)
dev.print(pdf, “figs/deleteMeNow.pdf", width = 6, height = 6)

vs.
whereAmI <- "/Users/jenny/teaching/2012-2013/STAT545A/examples/gapminder/"
gDat <- read.delim(paste0(whereAmI, "data/gapminderData.txt"))
canDat <- subset(gDat, country == "Canada")
plot(canDat$year, canDat$pop)
dev.print(pdf,
 paste0(whereAmI, "figs/deleteMeNow.pdf"), width = 6, height = 6)

Here is some Rstudio documentation on Working
Directories and Workspaces and the Projects feature.

amplifying on David’s comment re: my method of ‘taking
control of where files are read from and written to’

The intro underscores my point:
“The default behavior of R for the handling of .RData files and
workspaces encourages and facilitates a model of breaking work
contexts into distinct working directories. This article describes
the various features of RStudio which support this workflow.

IMPORTANT NOTE: In version v0.95 of RStudio a new Projects
feature was introduced to make managing multiple working
directories more straightforward. The features described below
still work however Projects are now the recommended
mechanism for dealing with multiple work contexts.”

http://Working%20Directories%20and%20Workspaces
http://Working%20Directories%20and%20Workspaces
http://Working%20Directories%20and%20Workspaces
http://Working%20Directories%20and%20Workspaces
http://livepage.apple.com/
http://livepage.apple.com/
http://rstudio.org/docs/using/projects
http://rstudio.org/docs/using/projects

Focus of next couple of classes

Data checking, cleaning, and exploration of single
variables, categorical and quantitative

Data exploration of 2 variables at a time

Care and feeding of R objects

Data aggregation, i.e. doing a repetitive activity on many
different subsets of the data. How and why to
accomplish in R without loops.

Where you can find STAT 545A stuff on the web:
#0: The STAT545A subpage on my website:
http://www.stat.ubc.ca/~jenny/teach/STAT545/index.html
This is more of a placeholder / advertisement. Won’t be
changing much. Won’t hold valuable content.

#1: Our collaborative course webspace:
http://www.bryanlab.msl.ubc.ca/stat545a2012/
will host student work, lecture slides, etc.

#2: In a special directory within my Stat website:
http://www.stat.ubc.ca/~jenny/notRw/teaching/STAT545A/
will hold serious business, like well-organized R projects
full of code, figures, etc., where I cannot tolerate the
annoying interface of the above system. PROBABLY
CHANGING TO GITHUB ... WILL DECIDE SOON.

http://www.stat.ubc.ca/~jenny/teach/STAT545/index.html
http://www.stat.ubc.ca/~jenny/teach/STAT545/index.html
http://www.bryanlab.msl.ubc.ca/stat545a2012/
http://www.bryanlab.msl.ubc.ca/stat545a2012/
http://www.stat.ubc.ca/~jenny/notRw/teaching/STAT545A/
http://www.stat.ubc.ca/~jenny/notRw/teaching/STAT545A/

I make heavy use of graphing functions from the
lattice package.

Make sure you have it. It is one of the official
Recommended packages, so most installations will
have it available already.

You will need to load it into your R session
before my code will run for you. Do this like so:

library(lattice)

You may want to make this automatic by adding to
your .Rprofile. Here is the official documentation about
R Startup.

http://cran.r-project.org/src/contrib/2.15.1/Recommended/
http://cran.r-project.org/src/contrib/2.15.1/Recommended/
http://cran.r-project.org/src/contrib/2.15.1/Recommended/
http://cran.r-project.org/src/contrib/2.15.1/Recommended/
http://stat.ethz.ch/R-manual/R-patched/library/base/html/Startup.html
http://stat.ethz.ch/R-manual/R-patched/library/base/html/Startup.html

How does R resolve function arguments?
> tinyDat <- subset(gDat, country == "Canada")

> tinyDat <- subset(gDat, subset = country == "Canada")

tinyDat # both give same result
 country year pop continent lifeExp gdpPercap
241 Canada 1952 14785584 Americas 68.750 11367.16
242 Canada 1957 17010154 Americas 69.960 12489.95
243 Canada 1962 18985849 Americas 71.300 13462.49
244 Canada 1967 20819767 Americas 72.130 16076.59
245 Canada 1972 22284500 Americas 72.880 18970.57
246 Canada 1977 23796400 Americas 74.210 22090.88
247 Canada 1982 25201900 Americas 75.760 22898.79
248 Canada 1987 26549700 Americas 76.860 26626.52
249 Canada 1992 28523502 Americas 77.950 26342.88
250 Canada 1997 30305843 Americas 78.610 28954.93
251 Canada 2002 31902268 Americas 79.770 33328.97
252 Canada 2007 33390141 Americas 80.653 36319.24

In the first case above, how does R know what I want it
to do with the input ‘country == “Canada”’?

How R resolves function arguments.

By name, if given in ‘name = value’ form.

Otherwise, by position.

How I tend to operate: for a function I call often,
for arguments I often specify, for the first one or
two argument, I may suppress the name, if
convenient. Otherwise, I give the name to aid my
future self in understanding and re-using the code.

For technical detail, consult the Argument matching
section of the R language definition.

http://cran.r-project.org/doc/manuals/R-lang.html%23Argument-matching
http://cran.r-project.org/doc/manuals/R-lang.html%23Argument-matching
http://cran.r-project.org/doc/manuals/R-lang.html%23Argument-matching
http://cran.r-project.org/doc/manuals/R-lang.html%23Argument-matching
http://cran.r-project.org/doc/manuals/R-lang.html
http://cran.r-project.org/doc/manuals/R-lang.html

providing data.frame as first
argument, determined to be ‘x’
by position

second argument, if
unnamed, will be
assumed to be ‘subset’

I only use position to match first 1 or 2 arguments (at
most!); after that I give “name = value”

tinyDat <- subset(gDat, country == "Canada",
 select = c("year", "pop"))

subset package:base R Documentation

Subsetting Vectors, Matrices and Data Frames

Description:

 Return subsets of vectors, matrices or data frames which meet
 conditions.

Usage:

 <snip, snip>

 ## S3 method for class 'data.frame'
 subset(x, subset, select, drop = FALSE, ...)

> str(gDat)
'data.frame':! 3312 obs. of 6 variables:
 $ country : Factor w/ 187 levels "Afghanistan",..: 1 1 1 1 1 1 1 1 1 1 ...
 $ year : int 1952 1957 1962 1967 1972 1977 1982 1987 1992 1997 ...
 $ pop : int 8425333 9240934 10267083 11537966 13079460 14880372 1288181..
 $ continent: Factor w/ 7 levels "","Africa","Americas",..: 4 4 4 4 4 4 4 4 4 ..
 $ lifeExp : num 28.8 30.3 32 34 36.1 ...
 $ gdpPercap: num 779 821 853 836 740 ...

> peek(gDat) # jb personal function
 country year pop continent lifeExp gdpPercap
1387 Iceland 1994 266075 Europe 79.240 25941.5378
1460 Ireland 2002 3879155 Europe 77.783 34077.0494
2003 Myanmar 1992 40546538 Asia 59.320 347.0000
2090 Netherlands Antilles 1977 170574 72.120 17335.4979
2334 Philippines 1997 75012988 Asia 68.564 2536.5349
2694 Solomon Islands 1972 174500 Oceania 55.506 864.9743
3242 Venezuela 1957 6702668 Americas 57.907 9802.4665

We are here: data (seemingly?) successfully imported.

Nothing obviously screwed up.

Let’s sanity check and get to know the data.

> peek(gDat) # jb personal function
 country year pop continent lifeExp gdpPercap
1387 Iceland 1994 266075 Europe 79.240 25941.5378
1460 Ireland 2002 3879155 Europe 77.783 34077.0494
2003 Myanmar 1992 40546538 Asia 59.320 347.0000
2090 Netherlands Antilles 1977 170574 72.120 17335.4979
2334 Philippines 1997 75012988 Asia 68.564 2536.5349
2694 Solomon Islands 1972 174500 Oceania 55.506 864.9743
3242 Venezuela 1957 6702668 Americas 57.907 9802.4665

> ## do we have NAs?
> sapply(gDat, function(x) sum(is.na(x)))
 country year pop continent lifeExp gdpPercap
 0 0 0 0 0 0
> ## no NAs ... good!

Always check for NAs early. Can be a wildly frustrating
and sometimes hard to detect source of trouble in
downstream analyses.

(My ‘sapply’ way of checking for NAs will become clear
to you very soon.)

exploring the categorical variables:
year (numeric but integer-valued, so sort of categorical)
country
continent

> peek(gDat) # jb personal function
 country year pop continent lifeExp gdpPercap
1387 Iceland 1994 266075 Europe 79.240 25941.5378
1460 Ireland 2002 3879155 Europe 77.783 34077.0494
2003 Myanmar 1992 40546538 Asia 59.320 347.0000
2090 Netherlands Antilles 1977 170574 72.120 17335.4979
2334 Philippines 1997 75012988 Asia 68.564 2536.5349
2694 Solomon Islands 1972 174500 Oceania 55.506 864.9743
3242 Venezuela 1957 6702668 Americas 57.907 9802.4665

> ## year
> summary(gDat$year)
 Min. 1st Qu. Median Mean 3rd Qu. Max.
 1950 1967 1982 1980 1996 2007

> ## confirming we have 1950, 1951, ..., 2007
> identical(sort(unique(gDat$year)), 1950:2007) # TRUE
[1] TRUE

> length(1950:2007) # 58 poss vals for year
[1] 58

‘summary’ is often informative

if you know what the possible values should be, check it!

get a sense for how many possible values

> table(gDat$year)

1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965
 39 24 143 24 24 24 24 144 25 25 26 26 151 26 26 27
1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981
 27 156 27 27 27 27 168 32 27 27 27 171 27 27 27 27
1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997
 171 27 27 27 27 171 27 27 32 33 183 33 33 33 33 184
1998 1999 2000 2001 2002 2003 2004 2005 2006 2007
 33 33 33 33 187 33 32 30 18 183

‘table’ is the main function for tabulation

expects categorical data; here it’s operating on numeric
data but OK since year is integer-valued

BUT who wants to look at that table? QUICK tell me,
does every year appear with the same frequency? OK,
no. Is there a pattern? Who knows???

barchart(table(gDat$year))

Figures are as useful for data
checking as they are for
downstream tasks

Easy to see that most
countries only have data every
five years, i.e. 1952, 1957, ...

‘barchart’ is a useful -- but
often over-used way -- to
present tabulated data

Freq

1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007

0 50 100 150

dotplot(table(gDat$year),
 origin = 0,
 type = c("p", "h"))

‘dotplot’ is often a better choice
than ‘barchart’

Why better?

higher data : ink ratio

better handling of origin, esp.
when origin isn’t well defined or
when meaning of number is
relative to others, not some
absolute scale

Freq

1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007

0 50 100 150

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Freq

1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007

50 100 150

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Freq

1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007

0 50 100 150

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

dotplot(table(gDat$year),
 origin = 0,
 type = c("p", "h"))

dotplot(table(gDat$year))

> ## country
> str(gDat$country) # 187 countries
 Factor w/ 187 levels "Afghanistan",..: 1 1 1 1 1 1 1 1 1 1 ...

> table(gDat$country)

 Afghanistan Albania Algeria
 12 12 12
 Angola Argentina Armenia
 12 12 4
 8 12 12
 <snip snip many other lines like this scrolled by yawn >
 United States Uruguay Uzbekistan
 57 12 4
 Vanuatu Venezuela Vietnam
 7 12 12
 West Bank and Gaza Yemen, Rep. Zambia
 12 12 12
 Zimbabwe
 12

as before, with raw data and with our tabulation by year,
huge tables of numbers are hard to digest ... make a
figure!

barchart(table(gDat$country))

what we learn / confirm:

most countries only have data
for 12 years (i.e. 1952,
1957, ...)

a few countries, like Canada
and Belgium, have data for all
58 years

Freq

Afghanistan
Albania
Algeria
Angola

Argentina
Armenia

Aruba
Australia

Austria
Azerbaijan
Bahamas

Bahrain
Bangladesh

Barbados
Belarus
Belgium

Belize
Benin

Bhutan
Bolivia

Bosnia and Herzegovina
Botswana

Brazil
Brunei

Bulgaria
Burkina Faso

Burundi
Cambodia
Cameroon

Canada
Cape Verde

Central African Republic
Chad
Chile

China
Colombia
Comoros

Congo, Dem. Rep.
Congo, Rep.

Costa Rica
Cote d'Ivoire

Croatia
Cuba

Cyprus
Czech Republic

Denmark
Djibouti

Dominican Republic
Ecuador

Egypt
El Salvador

Equatorial Guinea
Eritrea

Estonia
Ethiopia

Fiji
Finland
France

French Guiana
French Polynesia

Gabon
Gambia
Georgia

Germany
Ghana
Greece

Grenada
Guadeloupe

Guatemala
Guinea

Guinea−Bissau
Guyana

Haiti
Honduras

Hong Kong, China
Hungary

Iceland
India

Indonesia
Iran
Iraq

Ireland
Israel

Italy
Jamaica

Japan
Jordan

Kazakhstan
Kenya

Korea, Dem. Rep.
Korea, Rep.

Kuwait
Latvia

Lebanon
Lesotho
Liberia

Libya
Lithuania

Luxembourg
Macao, China

Madagascar
Malawi

Malaysia
Maldives

Mali
Malta

Martinique
Mauritania

Mauritius
Mexico

Micronesia, Fed. Sts.
Moldova

Mongolia
Montenegro

Morocco
Mozambique

Myanmar
Namibia

Nepal
Netherlands

Netherlands Antilles
New Caledonia

New Zealand
Nicaragua

Niger
Nigeria
Norway

Oman
Pakistan
Panama

Papua New Guinea
Paraguay

Peru
Philippines

Poland
Portugal

Puerto Rico
Qatar

Reunion
Romania

Russia
Rwanda
Samoa

Sao Tome and Principe
Saudi Arabia

Senegal
Serbia

Sierra Leone
Singapore

Slovak Republic
Slovenia

Solomon Islands
Somalia

South Africa
Spain

Sri Lanka
Sudan

Suriname
Swaziland

Sweden
Switzerland

Syria
Taiwan

Tajikistan
Tanzania
Thailand

Timor−Leste
Togo

Tonga
Trinidad and Tobago

Tunisia
Turkey

Turkmenistan
Uganda
Ukraine

United Arab Emirates
United Kingdom

United States
Uruguay

Uzbekistan
Vanuatu

Venezuela
Vietnam

West Bank and Gaza
Yemen, Rep.

Zambia
Zimbabwe

0 10 20 30 40 50 60

> as.data.frame(table(table(gDat$country)))
 nObs nCountries
1 1 3
...
9 12 104
...
21 57 7
22 58 13

> dotplot(table(table(gDat$country)),
 type = c("p","h"),
 origin = 0)

obscure but often useful:
tabulate your original table!

13 countries have “complete
data”, i.e. for all 58 years

104 countries have data for
12 years, i.e. 1952, 1957, ...

Freq

1

4

5

7

8

9

10

11

12

13

18

20

26

32

35

42

49

52

55

56

57

58

0 20 40 60 80 100

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

> ## continent
> str(gDat$continent) # 7 values for continent,
 Factor w/ 7 levels "","Africa","Americas",..: 4 4 4 4 4 4 4 4 4 4 ...

> table(gDat$continent)
 Africa Americas Asia Europe FSU Oceania
 301 613 343 557 1302 122 74

Ouch -- 301 observations don’t have continent info.
Which countries are affected? Maybe I can ignore them?

> noContinent <- droplevels(subset(gDat, continent == ""))

> nlevels(noContinent$country) # 26 levels
[1] 26

> levels(noContinent$country)
 [1] "Armenia" "Aruba" "Australia"
 [4] "Bahamas" "Barbados" "Belize"
 [7] "Canada" "French Guiana" "French Polynesia"
[10] "Georgia" "Grenada" "Guadeloupe"
[13] "Haiti" "Hong Kong, China" "Maldives"
[16] "Martinique" "Micronesia, Fed. Sts." "Netherlands Antilles"
[19] "New Caledonia" "Papua New Guinea" "Reunion"
[22] "Samoa" "Sao Tome and Principe" "Tonga"
[25] "Uzbekistan" "Vanuatu"

No -- we will need to fix this.
(Use of ‘droplevels’, ‘nlevels’, ‘levels’ will be explained shortly.)

We’ve identified two major issues:

[1] Most countries only have data for twelve years: 1952,
1957, ..., 2007.

[2] 26 countries don’t have the continent specified.

How I chose to handle:
Focus only those twelve years and populate the missing
continent data myself.

This is an example of “data cleaning”.

A mundane but critical step in any real world data analysis.

See the file bryan-a01-04-fillContinentData.R for gory
details of filling in the continent data.

Fiddly but well-documented, easy to repeat, extend.

Broad message: try to fix data deficiencies with a script,
instead of artisanal Excel work.

Why? Because the heart-breaking truth is that you will
need to redo this when the underlying data source rolls
to next version, a colleague uses the same instrument to
collect new data, a collaborator sends data collected in
the same weird manner, etc.

gDat <- read.delim(paste0(whereAmI, "data/gapminderDataWithContinent.txt"))

str(gDat)
'data.frame':!3312 obs. of 6 variables:
.....

gDat <- subset(gDat, subset = year %% 5 == 2)

str(gDat) # 'data.frame':! 2012 obs. of 6 variables:

Main R code for filtering on year:

See the file bryan-a01-05-everyFiveYears.R for gory
details.

Shows how I worked to take unruly data
Gapminder actually provides for download and
created the input file gapminderData.txt.

Read at your leisure. Will not discuss in class.

 /Users/jenny/teaching/STAT545A/examples/gapminder/code:
 total used in directory 288 available 278879212
 drwxr-xr-x 25 jenny staff 850 Sep 11 22:24 .
 drwxr-xr-x 7 jenny staff 238 Mar 31 2011 ..
 -rw-r--r--@ 1 jenny staff 6148 Sep 11 22:19 .DS_Store
 -rw-r--r-- 1 jenny staff 2583 Sep 11 22:19 .Rhistory
 -rw-r--r-- 1 jenny staff 4807 Sep 11 13:24 bryan-a01-01-dataPrep.R
 -rw-r--r-- 1 jenny staff 6349 Sep 11 13:33 bryan-a01-02-dataMerge.R
 -rw-r--r-- 1 jenny staff 5783 Sep 11 14:38 bryan-a01-03-dataExplore.R
 -rw-r--r-- 1 jenny staff 3497 Sep 11 22:11 bryan-a01-04-fillContinentData.R
 -rw-r--r-- 1 jenny staff 4573 Sep 11 22:24 bryan-a01-05-everyFiveYears.R

Anatomy of a real world data analysis, so far:

What we’re doing today for categorical
variables and later for quantitative.

Diagnostic data exploration. What needs to be
fixed? What should I be aware of?

 /Users/jenny/teaching/STAT545A/examples/gapminder/code:
 total used in directory 288 available 278879212
 drwxr-xr-x 25 jenny staff 850 Sep 11 22:24 .
 drwxr-xr-x 7 jenny staff 238 Mar 31 2011 ..
 -rw-r--r--@ 1 jenny staff 6148 Sep 11 22:19 .DS_Store
 -rw-r--r-- 1 jenny staff 2583 Sep 11 22:19 .Rhistory
 -rw-r--r-- 1 jenny staff 4807 Sep 11 13:24 bryan-a01-01-dataPrep.R
 -rw-r--r-- 1 jenny staff 6349 Sep 11 13:33 bryan-a01-02-dataMerge.R
 -rw-r--r-- 1 jenny staff 5783 Sep 11 14:38 bryan-a01-03-dataExplore.R
 -rw-r--r-- 1 jenny staff 3497 Sep 11 22:11 bryan-a01-04-fillContinentData.R
 -rw-r--r-- 1 jenny staff 4573 Sep 11 22:24 bryan-a01-05-everyFiveYears.R

Anatomy of a real world data analysis, so far:

Addressing data deficiencies. Actually cleaning
the data and creating a beautiful data file to
begin the serious graphing work.

Read at your leisure. Will not discuss in class.

 /Users/jenny/teaching/STAT545A/examples/gapminder/code:
 total used in directory 288 available 278879212
 drwxr-xr-x 25 jenny staff 850 Sep 11 22:24 .
 drwxr-xr-x 7 jenny staff 238 Mar 31 2011 ..
 -rw-r--r--@ 1 jenny staff 6148 Sep 11 22:19 .DS_Store
 -rw-r--r-- 1 jenny staff 2583 Sep 11 22:19 .Rhistory
 -rw-r--r-- 1 jenny staff 4807 Sep 11 13:24 bryan-a01-01-dataPrep.R
 -rw-r--r-- 1 jenny staff 6349 Sep 11 13:33 bryan-a01-02-dataMerge.R
 -rw-r--r-- 1 jenny staff 5783 Sep 11 14:38 bryan-a01-03-dataExplore.R
 -rw-r--r-- 1 jenny staff 3497 Sep 11 22:11 bryan-a01-04-fillContinentData.R
 -rw-r--r-- 1 jenny staff 4573 Sep 11 22:24 bryan-a01-05-everyFiveYears.R

Anatomy of a real world data analysis, so far:

> gDat <- read.delim(paste0(whereAmI,"data/gapminderDataFiveYear.txt"))

> str(gDat)
'data.frame':! 1704 obs. of 6 variables:
 $ country : Factor w/ 142 levels "Afghanistan",..: 1 1 1 1 1 1 1 1 1 1 ...
 $ year : int 1952 1957 1962 1967 1972 1977 1982 1987 1992 1997 ...
 $ pop : num 8425333 9240934 10267083 11537966 13079460 ...
 $ continent: Factor w/ 5 levels "Africa","Americas",..: 3 3 3 3 3 3 3 3 3 3 ...
 $ lifeExp : num 28.8 30.3 32 34 36.1 ...
 $ gdpPercap: num 779 821 853 836 740 ...

From now on, I will be using the cleaned Gapminder
data.

We lost lots of observations (~1700 vs 3100) and
countries (142 vs 187), in the name of tidying up.

exploring the quantitative variables:
population
life expectancy
GDP per capita

... will happen next time ...

Basic -- but not necessarily
well-known -- R facts that are
really useful

(vs. highly technical material only a developer could love)

Sources I relied heavily upon:

Chapters 1 (“Data in R”), 5 (“Factors”), 6
(“Subscripting”), and 8 (“Data Aggregation”) of
Spector (2008). This whole book is extremely
valuable. Author’s webpage (lots of great
material here). Google books search.

The R language Definition

Personal experience, painful at times

http://www.springerlink.com/content/t19776/?p=ad6463d79e364494b8248078d4fcc8c4&pi=1
http://www.springerlink.com/content/t19776/?p=ad6463d79e364494b8248078d4fcc8c4&pi=1
http://www.stat.berkeley.edu/~spector/
http://www.stat.berkeley.edu/~spector/
http://books.google.com/books?id=grfuq1twFe4C&lpg=PP1&dq=data%2520manipulation%2520spector&pg=PP1%23v=onepage&q=&f=false
http://books.google.com/books?id=grfuq1twFe4C&lpg=PP1&dq=data%2520manipulation%2520spector&pg=PP1%23v=onepage&q=&f=false
http://cran.r-project.org/doc/manuals/R-lang.html
http://cran.r-project.org/doc/manuals/R-lang.html

Mode of R objects

• Most, though not all, R objects have one of these
“modes” (there are many others):

- numeric

- character

- logical

• An object can only have one mode.

• Numeric includes integer and double floating point, but
the user can often gloss over that distinction. When it’s
time to worry about that, you’ll know.

Mode of R objects

• Helpful functions:

- mode()

- is.numeric(), is.character(), is.logical()

- as.numeric(), as.character(), as.logical()

Class of R objects

• An object can also have a class. Here things are more
complicated.....

• The rationale for R classes is as with other object-oriented
languages. Method dispatch example: Generic functions,
like print() and summary(), use the class to determine what
exactly they should do with an object.

• Objects can have more than one class (inheritance and all
that good stuff) and can have no class (in which case, the
mode is usually the class).

• Typical user, especially a newbie, does not need to worry
too much about classes.

Class of R objects
• Helpful functions:

- class()

- unclass() -- use with care

- methods() -- examples to run:

• To see all methods available for objects of class “lm”,
the result of fitting a linear model, try
methods(class = "lm")

• To see all the class-specific methods there are for the
all-purpose function str() try
methods(generic.function = "str")

> mode(gDat)
[1] "list"

> class(gDat)
[1] "data.frame"

> mode(gDat$country)
[1] "numeric"

> class(gDat$country)
[1] "factor"

> mode(gDat$year)
[1] "numeric"

> class(gDat$year)
[1] "integer"

> mode(gDat$lifeExp)
[1] "numeric"

> class(gDat$lifeExp)
[1] "numeric"

mode and class of some of the
Gapminder objects

Reach out and touch -- but do not
print to screen - your data

str()
summary()
head()
tail()
peek() -- not built-in
mode()
class()

Reminder of other functions that help you to
get and stay acquainted with your R objects.
Use them early, use them often.

Simple
view

Technically correct R viewTechnically correct R viewTechnically correct R view
Simple
view

mode class typeof

character character character character

logical logical logical logical

numeric numeric integer or
numeric

integer or
double

factor numeric factor integer

Simple view of simple R objects
that will get you pretty far

Simple view of simple R objects
that will get you pretty far

Simple
view

Technically correct R viewTechnically correct R viewTechnically correct R view
Simple
view

mode class typeof

character character character character

logical logical logical logical

numeric numeric integer or
numeric

integer or
double

factor numeric factor integer

Factors

• Valuable way to store categorical data BUT ...

- Jenny’s Law: A factor variable will be the source of at
least one major headache in each data analysis, costing
me hours several minutes of valuable time.

• Why needed

- In modelling: proper use of factors will make it much
easier to specify models, construct contrasts, etc.

- In visualization: lattice is smart about conditioning on
factors or conveying factor levels through color, line
type, etc.

See Chapter 5 of
Spector (2008).

http://www.springerlink.com/content/t19776/?p=ad6463d79e364494b8248078d4fcc8c4&pi=1
http://www.springerlink.com/content/t19776/?p=ad6463d79e364494b8248078d4fcc8c4&pi=1

Factors
• Basic trickiness: Factors are stored as integers, with an

associated set of labels (usually character strings). The
character info is more visible/interpretable, but don’t ever
forget factors are really numeric.

• Factors are “high-maintenance” variables, but I still advise
you to Embrace Factors and Their Labels/Levels.

- Make the labels informative yet concise.

- Make a deliberate choice of the first or reference
level, when relevant.

- Choose the overall order in a principled way, when
relevant. Be prepared to change the order or drop
levels at various points in an analysis.

See Chapter 5 of
Spector (2008).

http://www.springerlink.com/content/t19776/?p=ad6463d79e364494b8248078d4fcc8c4&pi=1
http://www.springerlink.com/content/t19776/?p=ad6463d79e364494b8248078d4fcc8c4&pi=1

Factors in Gapminder dataset are ‘country’ and
‘continent’.

> str(gDat)
'data.frame':! 1704 obs. of 6 variables:
 $ country : Factor w/ 142 levels "Afghanistan",..: 1 1 1 1 1 1 1 1 1 1 ...
 $ year : int 1952 1957 1962 1967 1972 1977 1982 1987 1992 1997 ...
 $ pop : num 8425333 9240934 10267083 11537966 13079460 ...
 $ continent: Factor w/ 5 levels "Africa","Americas",..: 3 3 3 3 3 3 3 3 3 3 ...
 $ lifeExp : num 28.8 30.3 32 34 36.1 ...
 $ gdpPercap: num 779 821 853 836 740 ...

> peek(gDat)
 country year pop continent lifeExp gdpPercap
64 Australia 1967 11872264 Oceania 71.100 14526.1246
152 Bosnia and Herzegovina 1987 4338977 Europe 71.140 4314.1148
998 Mongolia 1957 882134 Asia 45.248 912.6626
1115 Nicaragua 2002 5146848 Americas 70.836 2474.5488
1126 Niger 1997 9666252 Africa 51.313 580.3052
1168 Pakistan 1967 60641899 Asia 49.800 942.4083
1213 Philippines 1952 22438691 Asia 47.752 1272.8810

> levels(gDat$continent)
[1] "Africa" "Americas" "Asia" "Europe" "Oceania"

> nlevels(gDat$continent)
[1] 5

> table(gDat$continent)

 Africa Americas Asia Europe Oceania
 624 300 396 360 24

> summary(gDat$continent)
 Africa Americas Asia Europe Oceania
 624 300 396 360 24

Getting to know a factor

Factors

• read.table() and data.frame() are the two main functions
you will use to create data.frames. By default, they will
both convert character variables to factors.

• If you have a good reason, how to prevent this?

- For an R session: options(stringsAsFactors = FALSE).
Put in .Rprofile to make it truly global.

- Universally within a call to read.table(): include
stringsAsFactors = FALSE in the call.

- For specific variables within a call to read.table(): use
the arguments ‘as.is’ (my top choice) or
‘colClasses’ (my second choice).

See Chapter 5 of
Spector (2008).

http://stat.ethz.ch/R-manual/R-devel/library/base/html/options.html
http://stat.ethz.ch/R-manual/R-devel/library/base/html/options.html
http://www.springerlink.com/content/t19776/?p=ad6463d79e364494b8248078d4fcc8c4&pi=1
http://www.springerlink.com/content/t19776/?p=ad6463d79e364494b8248078d4fcc8c4&pi=1

Factors

• How to prevent conversion of character to factor when
forming data.frames (cont’d)?

- Universally within a call to data.frame(): include
stringsAsFactors = FALSE in the call.

- For specific variables within a call to data.frame():
protect the variable with I().

See Chapter 5 of
Spector (2008).

http://www.springerlink.com/content/t19776/?p=ad6463d79e364494b8248078d4fcc8c4&pi=1
http://www.springerlink.com/content/t19776/?p=ad6463d79e364494b8248078d4fcc8c4&pi=1

Factor booby traps

• Take great care when replacing or adding data to a
factor, e.g. catenating two factors with c() or adding
observations to a data.frame. Basic approach: factor -->
character, add/combine the data, character --> factor.

• Take great care when changing the labels of the levels or
when changing the order of the levels. It’s easy to mangle
the mapping of old labels to new labels or to change only
the levels but not the labels, etc etc.

• Beware of subscripting with a factor -- you’re probably
thinking of the variable as character and trying to
subscript by name, but R will use the underlying numeric
vector and will subscript by position.

> (jCountry <- factor(c("USA", "Canada")))
[1] USA Canada
Levels: Canada USA

> ## oops I forgot Mexico!
> (jCountry <- c(jCountry, "Mexico"))
[1] "2" "1" "Mexico"
> ## does NOT work

> (jCountry <- factor(c("USA", "Canada")))
[1] USA Canada
Levels: Canada USA

> (jCountry <- factor(c(as.character(jCountry), "Mexico")))
[1] USA Canada Mexico
Levels: Canada Mexico USA
> ## works :-)

Example of silent but deadly failure when hoping to add a
factor level

illustrates this non-obvious workflow:
factor --> character --> (add data) --> factor

> ## create, then print to screen
> x <- 4 + 3
> x
[1] 7

> ## surround the expression with () to
> ## create and print to screen at once!
> (x <- 4 + 3)
[1] 7

Handy Tip
Why do I sometimes surround an R expression with
parentheses?
To create and inspect an object at once

After you eliminate some data, sometimes you wish to
rationalize the factor levels, i.e. reduce to those that
actually occur. New-ish function ‘droplevels’ is probably
best way to go.

> (foo <- sample(gDat$country, size = 5))
[1] Australia Niger Burundi Cuba Cambodia
142 Levels: Afghanistan Albania Algeria Angola Argentina Australia ... Zimbabwe

> (foo2 <- factor(foo))
[1] Australia Niger Burundi Cuba Cambodia
Levels: Australia Burundi Cambodia Cuba Niger

> (foo3 <- foo[, drop = TRUE])
[1] Australia Niger Burundi Cuba Cambodia
Levels: Australia Burundi Cambodia Cuba Niger

> (foo4 <- droplevels(foo))
[1] Australia Niger Burundi Cuba Cambodia
Levels: Australia Burundi Cambodia Cuba Niger

Factors

• Helpful functions

- factor()

- levels(), nlevels()

- droplevels()

- reorder(), relevel()*

- as.character()

See Chapter 5 of
Spector (2008).

*sadly, not nearly as great as they sound

http://www.springerlink.com/content/t19776/?p=ad6463d79e364494b8248078d4fcc8c4&pi=1
http://www.springerlink.com/content/t19776/?p=ad6463d79e364494b8248078d4fcc8c4&pi=1

Focusing on the R ways to address collections of data:
vectors/arrays, lists, data.frames

Vectors, matrices, arrays

• Single values or scalars are minor players in real
problems people tackle with R.

• In fact, in R they are simply vectors of length 1.

- So vectors are essentially the most basic R object.

• All elements of a vector must be of same mode.

- R will silently convert if necessary, so be aware this can
happen. Often inadvertent or inept combining of data
of different modes leads to unexpected conversion.

> (jCountry <- factor(c("USA", "Canada")))
[1] USA Canada
Levels: Canada USA

> ## oops I forgot Mexico!
> (jCountry <- c(jCountry, "Mexico"))
[1] "2" "1" "Mexico"
> ## does NOT work

remember this?

> (z <- 1:10)
 [1] 1 2 3 4 5 6 7 8 9 10

> mode(z)
[1] "numeric"

> is.vector(z)
[1] TRUE

> (y <- c("red", "blue", "green"))
[1] "red" "blue" "green"

> mode(y)
[1] "character"

> is.vector(y)
[1] TRUE

> (zz <- sample(100, 4))
[1] 67 7 20 17

> mode(zz)
[1] "numeric"

> is.vector(zz)
[1] TRUE

> (x <- c("cabbage", pi, TRUE))
[1] "cabbage" "3.14159265358979" "TRUE"

> mode(x)
[1] "character"

> is.vector(x)
[1] TRUE

c() for concatenate is the
most basic way to make a
vector

Vectors, matrices, arrays

• Arrays are multidimensional extensions of vectors. Most
common are two-dimensional arrays, i.e. matrices.

• “Vectorized” computations are common and encouraged
in R.

- If two vectors have different lengths, R will recycle the
shorter one, often silently. Awesome when that’s what
you want, awful if you don’t.

- Internally, R stores matrices -- all multidimentioanl
arrays, in fact -- as vectors, “stacked” by column. When
a matrix is used in a vector context, R silently uses the
underlying vector representation. Awesome when
that’s what you want, awful if you don’t.

> (x <- matrix(c("cabbage", pi, TRUE, 4.3), nrow = 2))
 [,1] [,2]
[1,] "cabbage" "TRUE"
[2,] "3.14159265358979" "4.3"

> mode(x)
[1] "character"

> class(x)
[1] "matrix"

> dim(x)
[1] 2 2

> nrow(x)
[1] 2

> ncol(x)
[1] 2

> x[2, 1]
[1] "3.14159265358979"

> x[3]
[1] "TRUE"

> ## recycling happens
> (y <- 1:3)
[1] 1 2 3

> (z <- 3:7)
[1] 3 4 5 6 7

> y + z
[1] 4 6 8 7 9
Warning message:
In y + z : longer object length is not a multiple of
shorter object length

Vectors, matrices, arrays

• Helpful functions

- c(), matrix(), array()

- is.vector(), as.matrix(), etc etc

- length(), nrow(), ncol(), dim()

- names(), dimnames(), row.names(), rownames(),
colnames()

One last data type: list

• Think of R lists as a generalization of R vectors. A list has
elements BUT they don’t have to have the same type or
length.

• For the most part, let’s learn about lists on a need-to-
know basis. Handy facts and functions:

- A data.frame is a very special list in which the
elements -- usually factors or numeric or character
vectors -- have the same length.

- list(), is.list(), unlist(), length(), names()

Names

• Elements of vectors and, indeed, of more complicated
objects like data.frames and matrices, can have names.

• Names are used for display (printing to screen, plots, etc.)
and can be used for access and even assignment.

• It took me a while to learn this but trust me: Embrace
Names. Specific recommendations:

- Set-up names carefully. Make them informative yet
concise.

- Use names heavily for access & subsetting. Makes code
much more robust and self-documenting. Eventually this
will force you to increase your skills with regular
expressions, so be prepared.

“Simple view” of data collections

vector

list

Collecting scalars
of the same mode?

yes

no

matrix

yes

Collecting vectors
of the same length?

no

Collecting vectors
of the same mode?data.frame

yes

no

data.frame

• data.frame should be your default receptacle for
rectangular, spreadsheet-y data

• Allows holistic management of, for example, subject ID, a
quantitative response, and categorical covariates

• a data.frame is accepted by many functions for modeling
and graphing via a ‘data’ argument, allowing you to refer
to the constituent variables by variable name and causing
various good things to happen automagically (e.g. axis
labels)

• data.frame is a very special list (in the technical R sense)
that also quacks like a matrix ... offers the best of both
worlds

Many data analyses revolve around the idea of a dataset, a collection
of related values which can be treated as a single unit. For example, you
might collect information about different companies; for each company you
would have a name, an industry type, the number of employees, type of health
care plans offered, etc. For each of the companies you study you would have
values for each of these variables. If we store the data in a matrix, with rows
representing observations and columns representing variables, it would be easy
to access the data, but since the modes of the variables in a dataset will often
not be the same, a matrix would force, say, numeric variables to be stored as
character variables. To allow the ease of indexing that a matrix would provide
while accommodating different modes, R provides the data frame. A data
frame is a list with the restriction that each element of the list (the variables)
must be of the same length as every other element of the list. Thus, the mode
of a data frame is list, and its class is data.frame. While there is some
overhead for storing data in a data frame as opposed to a matrix, data frames
are the preferred method for working with “observations and variables”-style
datasets

from Chapter 1 of
Spector (2008).

http://www.springerlink.com/content/t19776/?p=ad6463d79e364494b8248078d4fcc8c4&pi=1
http://www.springerlink.com/content/t19776/?p=ad6463d79e364494b8248078d4fcc8c4&pi=1

To attach() or not attach()? NOT!

• R looks for objects on its search path. You can inspect it
with search(). I don’t want to go into more detail now.

• attach() puts a ‘database’ into the search path, where
‘database’ is typically a data.frame

• Effect: you can refer to ‘pop’ instead of ‘gDat$pop’

• Unfortunately attach() can be seen in otherwise well-
written books and documentation. I will charitably
assume it’s for reasons of space and presentation (?).

• Use of attach() is a really bad idea outside of these highly
artificial, static settings.

To attach() or not attach()? NOT!

• This thread on stackoverflow hits the main points re: the
bad consequences of using attach().

• Even the clever people at Google don’t allow it in their R
code.

• Helpful habits and functions for living an attach()-free life

- Short names for data.frames

- with(), transform()

- Use of the data argument in many functions

- Maybe get better at typing? Seriously.

http://stackoverflow.com/questions/1310247/in-r-do-you-use-attach-or-call-variables-by-name-or-slicing
http://stackoverflow.com/questions/1310247/in-r-do-you-use-attach-or-call-variables-by-name-or-slicing
http://google-styleguide.googlecode.com/svn/trunk/google-r-style.html
http://google-styleguide.googlecode.com/svn/trunk/google-r-style.html
http://google-styleguide.googlecode.com/svn/trunk/google-r-style.html
http://google-styleguide.googlecode.com/svn/trunk/google-r-style.html

a few examples of the goodness that comes from

data.frames passed as the local ‘database’ for high-
level functions

conditional plotting on a factor w/ lattice

the model formula syntax (more on that later)

jYear <- 2007
tinyDat <-
 subset(gDat, year == jYear & continent %in% c('Africa', 'Europe'))

densityplot(~ lifeExp | continent, tinyDat)

lifeExp

D
en
si
ty

0.00

0.05

0.10

0.15

30 40 50 60 70 80 90

●●
●

●●
●●

● ●●
●

Africa

30 40 50 60 70 80 90

●●●● ●● ●

Europe

> t.test(lifeExp ~ continent, tinyDat)

! Welch Two Sample t-test

data: lifeExp by continent
t = -6.5267, df = 13.291, p-value = 1.727e-05
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
 -28.35922 -14.27766
sample estimates:
mean in group Africa mean in group Europe
 57.01227 78.33071

lifeExp
D
en
si
ty

0.00

0.05

0.10

0.15

30 40 50 60 70 80 90

●●
●

●●
●●

● ●●
●

Africa

30 40 50 60 70 80 90

●●●● ●● ●

Europe

xyplot(lifeExp ~ year | continent, gDat,
 type = c('p','smooth','g'))

year

life
Ex
p

30

40

50

60

70

80

1950 1960 1970 1980 1990 2000

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●
●

●
● ● ●

●

●
●

●

●
●

●
●

●
●

●

●

●

●
●

●

●
●

●
●

● ● ●
●

●
●

●
●

●
●

●

●

●
●

● ● ●

●

●

●

●
●

●
●

●

●

●

●

●
●

●
●

●
●

●
●

●
●

●
● ● ● ● ●

●

●
●

●
●

●

●

●
●

●

●

●

● ●
●

●
●

●
●

●
●

● ●
●

●
●

●
●

●
● ● ●

●
●

●

●

●
●

●

●

● ● ●
●

●

●

●

●

Africa

●
● ● ●

●
●

● ●
●

●
● ●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

● ● ●
●

●
●

● ●
● ●

●

●

●
●

●
●

●
● ●

●
●

●

●

●

●
●

●

●
●

●
●

●
●

●

●
● ● ● ●

●
● ●

● ● ● ●

Americas
●

●
●

●
●

●
● ● ● ● ●

●

●
●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

● ●
●

●
●

●
● ●

●

●

●

●

●

●
●

●
●

●
●

●

●
●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●
●

●

●

●
●

●
●

●
●

●

●
●

●
●

● ●
●

● ●

●

●

●
●

●
●

●

●
●

●
●

●

●

●

●

●

●

●
● ● ● ● ●

●

●
●

●
●

●

●

●

●

●

●
●

●

●
●

●
●

●
●

●
●

● ●
●

●

●

●

●
●

●
●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
● ●

●
●

●
●

●
●

●

●

●

●

●

●
●

●

Asia

1950 1960 1970 1980 1990 2000

30

40

50

60

70

80

●
●

●
● ●

●
●

●
●

● ●
●

●
●

● ● ●
●

●
●

●
●

● ●

●
●

●
●

●
●

●
● ●

●
● ●

●

●
●

●
● ● ● ● ●

●
● ●

●
●

●
●

●
●

● ● ●
● ●

●

●

●

●
●

●
●

●
●

●

●
● ●

●
● ● ● ● ●

● ●
● ●

● ●

Europe

> jFit <- lm(lifeExp ~ I(year - 1950), gDat,
+ subset = continent == 'Americas')
> summary(jFit)

<snip, snip>

Coefficients:
 Estimate Std. Error t value Pr(>|t|)
(Intercept) 59.03624 1.20834 48.857 < 2e-16 ***
I(year - 1950) 0.30944 0.03535 8.753 7.52e-13 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 5.178 on 70 degrees of freedom
Multiple R-squared: 0.5225,!Adjusted R-squared: 0.5157
F-statistic: 76.61 on 1 and 70 DF, p-value: 7.524e-13

year

life
Ex
p

50

55

60

65

70

75

80

1950 1960 1970 1980 1990 2000

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

Americas

... to be continued

Focusing on the R ways to address collections of data:
vectors/arrays, lists, data.frames

