
STAT 545A
Class meeting #4
Monday, September 17, 2012

Dr. Jennifer (Jenny) Bryan

Department of Statistics and Michael Smith Laboratories

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/

Where you can find STAT 545A stuff on the web:

#0: The STAT545A subpage on my website:
http://www.stat.ubc.ca/~jenny/teach/STAT545/index.html
This is more of a placeholder / advertisement. Won’t be
changing much. Won’t hold valuable content.

#1: Our collaborative course webspace:
http://www.bryanlab.msl.ubc.ca/stat545a2012/
will host student work, lecture slides, etc.

#2: In a special directory within my Stat website:
http://www.stat.ubc.ca/~jenny/notOcto/STAT545A/ will
hold serious business, like well-organized R projects full of
code, figures, etc., where I cannot tolerate the annoying
interface of the above system.

http://www.stat.ubc.ca/~jenny/teach/STAT545/index.html
http://www.stat.ubc.ca/~jenny/teach/STAT545/index.html
http://www.bryanlab.msl.ubc.ca/stat545a2012/
http://www.bryanlab.msl.ubc.ca/stat545a2012/
http://www.stat.ubc.ca/~jenny/notOcto/STAT545A/
http://www.stat.ubc.ca/~jenny/notOcto/STAT545A/

Review of last class

Basic data checking of categorical variables, both actual
factors and an integer-valued variable like year

table() is good, often nice to couple with barchart() or
dotplot()

Simple but useful view of simple R objects: character,
logical, numeric, or factor

R objects have a mode and a class

Factors are special.

Review of last class, cont’d

Vectors (and matrices and arrays) are at the heart of R.
Many computations can and should be “vectorized” (not
really explained/demo’d yet).

Most common “data collection” R objects: vector, matrix,
array, data.frame, list

attach() is evil. Keep your data safely tucked into a
data.frame and pass it to graphing and modelling
functions.

Embrace Names.

Focus of next couple of classes

Data checking, cleaning, and exploration of single
variables, categorical and quantitative

Data exploration of 2 variables at a time

Care and feeding of R objects

Data aggregation, i.e. doing a repetitive activity on many
different subsets of the data. How and why to
accomplish in R without loops.

From now on, this is what ‘gDat’ holds ... data for years
1952, 1957, ... w/ continent filled in.

write.table(gDat,
 paste0(whereAmI, "data/gapminderDataFiveYear.txt"),
 quote = FALSE, sep = "\t", row.names = FALSE)

Last line of bryan-a01-05-everyFiveYears.R writes the
“cleaned” data to file:

 /Users/jenny/teaching/STAT545A/examples/gapminder/code:
 total used in directory 288 available 278879212
 drwxr-xr-x 25 jenny staff 850 Sep 11 22:24 .
 drwxr-xr-x 7 jenny staff 238 Mar 31 2011 ..
 -rw-r--r--@ 1 jenny staff 6148 Sep 11 22:19 .DS_Store
 -rw-r--r-- 1 jenny staff 2583 Sep 11 22:19 .Rhistory
 -rw-r--r-- 1 jenny staff 4807 Sep 11 13:24 bryan-a01-01-dataPrep.R
 -rw-r--r-- 1 jenny staff 6349 Sep 11 13:33 bryan-a01-02-dataMerge.R
 -rw-r--r-- 1 jenny staff 5783 Sep 11 14:38 bryan-a01-03-dataExplore.R
 -rw-r--r-- 1 jenny staff 3497 Sep 11 22:11 bryan-a01-04-fillContinentData.R
 -rw-r--r-- 1 jenny staff 4573 Sep 11 22:24 bryan-a01-05-everyFiveYears.R

Anatomy of a real world data analysis, so far:

Addressing data deficiencies. Actually cleaning
the data and creating a beautiful data file to
begin the serious graphing work.

Read at your leisure. Will not discuss in class.

 /Users/jenny/teaching/STAT545A/examples/gapminder/code:
 total used in directory 288 available 278879212
 drwxr-xr-x 25 jenny staff 850 Sep 11 22:24 .
 drwxr-xr-x 7 jenny staff 238 Mar 31 2011 ..
 -rw-r--r--@ 1 jenny staff 6148 Sep 11 22:19 .DS_Store
 -rw-r--r-- 1 jenny staff 2583 Sep 11 22:19 .Rhistory
 -rw-r--r-- 1 jenny staff 4807 Sep 11 13:24 bryan-a01-01-dataPrep.R
 -rw-r--r-- 1 jenny staff 6349 Sep 11 13:33 bryan-a01-02-dataMerge.R
 -rw-r--r-- 1 jenny staff 5783 Sep 11 14:38 bryan-a01-03-dataExplore.R
 -rw-r--r-- 1 jenny staff 3497 Sep 11 22:11 bryan-a01-04-fillContinentData.R
 -rw-r--r-- 1 jenny staff 4573 Sep 11 22:24 bryan-a01-05-everyFiveYears.R

Anatomy of a real world data analysis, so far:

> gDat <- read.delim(paste0(whereAmI,"data/gapminderDataFiveYear.txt"))

> str(gDat)
'data.frame':! 1704 obs. of 6 variables:
 $ country : Factor w/ 142 levels "Afghanistan",..: 1 1 1 1 1 1 1 1 1 1 ...
 $ year : int 1952 1957 1962 1967 1972 1977 1982 1987 1992 1997 ...
 $ pop : num 8425333 9240934 10267083 11537966 13079460 ...
 $ continent: Factor w/ 5 levels "Africa","Americas",..: 3 3 3 3 3 3 3 3 3 3 ...
 $ lifeExp : num 28.8 30.3 32 34 36.1 ...
 $ gdpPercap: num 779 821 853 836 740 ...

From now on, I will be using the cleaned Gapminder
data.

... picking up where we left off

Focusing on the R ways to address collections of data:
vectors/arrays, lists, data.frames

“indexing”

“pulling out specific bits of your data for inspection,
modification, use in a figure, use in a model, etc.”

In most contexts, you can subscript in many ways.
The most common/useful:
• a logical vector
• a vector of positive (or negative!) integers
• a vector of character strings

read the documentation
for seq() and friends, rep()

> x <- rnorm(6)
> names(x) <- letters[seq_along(x)]
> round(x, 2)
 a b c d e f
 0.51 0.32 0.28 1.40 -0.89 -1.94
> x[x < 0]
 e f
-0.8889749 -1.9428406
> x[seq(from = 1, to = length(x), by = 2)]
 a c e
 0.5092672 0.2750631 -0.8889749
> x[-c(2, 5)]
 a c d f
 0.5092672 0.2750631 1.3958511 -1.9428406
> x[c('c', 'a', 'f')]
 c a f
 0.2750631 0.5092672 -1.9428406

Subscripting vectors

Requires two indices, e.g. x[i, j]*
But all of the previous options are still open
• a logical vector
• a vector of positive (or negative!) integers
• a vector of character strings

Subscripting matrices

> jMat <- outer(as.character(1:4), as.character(1:4),
+ function(x, y) {
+ paste('x', x, y, sep = "")
+ })

> jMat
 [,1] [,2] [,3] [,4]
[1,] "x11" "x12" "x13" "x14"
[2,] "x21" "x22" "x23" "x24"
[3,] "x31" "x32" "x33" "x34"
[4,] "x41" "x42" "x43" "x44"

I’ll demo with this.

* technically not true, but that’s usually what you want

Functions for getting to know a matrix

> jMat
 [,1] [,2] [,3] [,4]
[1,] "x11" "x12" "x13" "x14"
[2,] "x21" "x22" "x23" "x24"
[3,] "x31" "x32" "x33" "x34"
[4,] "x41" "x42" "x43" "x44"

> str(jMat)
 chr [1:4, 1:4] "x11" "x21" "x31" "x41" "x12" "x22" "x32" ...

> class(jMat)
[1] "matrix"

> mode(jMat)
[1] "character"

> dim(jMat)
[1] 4 4

> jMat
 [,1] [,2] [,3] [,4]
[1,] "x11" "x12" "x13" "x14"
[2,] "x21" "x22" "x23" "x24"
[3,] "x31" "x32" "x33" "x34"
[4,] "x41" "x42" "x43" "x44"

> jMat[2, 3]
[1] "x23"

> jMat[7] # works! double-edged sword
[1] "x32"

> jMat[2,] # one row
[1] "x21" "x22" "x23" "x24"

> jMat[, 3] # one column
[1] "x13" "x23" "x33" "x43"

Square brackets to subscript/subset a matrix -- consider ‘drop’

> jMat[2,]
[1] "x21" "x22" "x23" "x24"

> dim(jMat[2,])
NULL

> is.matrix(jMat[2,])
[1] FALSE

> is.vector(jMat[2,])
[1] TRUE

> jMat[2, , drop = FALSE]
 [,1] [,2] [,3] [,4]
[1,] "x21" "x22" "x23" "x24"

> dim(jMat[2, , drop = FALSE])
[1] 1 4

> is.matrix(jMat[2, , drop = FALSE])
[1] TRUE

> is.vector(jMat[2, , drop = FALSE])
[1] FALSE

> jMat[, 3] # one col
[1] "x13" "x23" "x33" "x43"
> jMat[, 3, drop = FALSE] # same story here
 [,1]
[1,] "x13"
[2,] "x23"
[3,] "x33"
[4,] "x43"

Be aware of matrix w/ 1 row or col vs. a vector!

> rownames(jMat)
NULL
> colnames(jMat)
NULL
> rownames(jMat) <- paste0("row", c("One","Two","Three","Four"))
> colnames(jMat) <- c("carrot", "cabbage", "grape", "banana")
> jMat
 carrot cabbage grape banana
rowOne "x11" "x12" "x13" "x14"
rowTwo "x21" "x22" "x23" "x24"
rowThree "x31" "x32" "x33" "x34"
rowFour "x41" "x42" "x43" "x44"
> dimnames(jMat)
[[1]]
[1] "rowOne" "rowTwo" "rowThree" "rowFour"

[[2]]
[1] "carrot" "cabbage" "grape" "banana"

> dimnames(jMat) <- NULL
> dimnames(jMat)
NULL
> dimnames(jMat) <- list(paste0("row", c("One","Two","Three","Four")),
+ c("carrot", "cabbage", "grape", "banana"))
> jMat
 carrot cabbage grape banana
rowOne "x11" "x12" "x13" "x14"
rowTwo "x21" "x22" "x23" "x24"
rowThree "x31" "x32" "x33" "x34"
rowFour "x41" "x42" "x43" "x44"

How to query and
change row and
column names

> jMat
 carrot cabbage grape banana
rowOne "x11" "x12" "x13" "x14"
rowTwo "x21" "x22" "x23" "x24"
rowThree "x31" "x32" "x33" "x34"
rowFour "x41" "x42" "x43" "x44"

> jMat[c("rowOne", "rowThree"), c("carrot", "banana")]
 carrot banana
rowOne "x11" "x14"
rowThree "x31" "x34"

> jMat[-c(2, 3), c(TRUE, TRUE, FALSE, FALSE)]
 carrot cabbage
rowOne "x11" "x12"
rowFour "x41" "x42"

> jMat[1, grepl("r[ao]", colnames(jMat))]
carrot grape
 "x11" "x13"

Further proof that you can index using
all sorts of different things

character strings; here re:
row or column names

(negative!) integers, logical
vectors

integers, logical vectors arising from
regular expression testing

Also be aware that indexing can be done on the left-
hand side of an assignment to replace those values

> jMat["rowThree", 2:3] <-
+ c("HEY!", "THIS IS NUTS!")

> jMat
 carrot cabbage grape banana
rowOne "x11" "x12" "x13" "x14"
rowTwo "x21" "x22" "x23" "x24"
rowThree "x31" "HEY!" "THIS IS NUTS!" "x34"
rowFour "x41" "x42" "x43" "x44"

now ... data.frames

> gDat$year
 [1] 1952 1957 1962 1967 1972 1977 1982 1987 1992 1997 2002 2007 1952 1957

 <snip, snip>

[1681] 1952 1957 1962 1967 1972 1977 1982 1987 1992 1997 2002 2007 1952 1957
[1695] 1962 1967 1972 1977 1982 1987 1992 1997 2002 2007

> str(gDat$year)
 int [1:1704] 1952 1957 1962 1967 1972 1977 1982 1987 1992 1997 ...

> mode(gDat$year)
[1] "numeric"

> class(gDat$year)
[1] "integer"

> is.vector(gDat$year)
[1] TRUE

> is.data.frame(gDat$year)
[1] FALSE

gDat$year

Use the dollar sign to extract one variable by name
(works for lists in general, not just data.frames)

> cDat <- subset(gDat, subset = country == "Canada",
+ select = c(country, continent, lifeExp))

> str(cDat)
'data.frame':! 12 obs. of 3 variables:
 $ country : Factor w/ 142 levels "Afghanistan",..: 21 21 21 21 21 21 21 21
2..
 $ continent: Factor w/ 5 levels "Africa","Americas",..: 2 2 2 2 2 2 2 2 2
2 ...
 $ lifeExp : num 68.8 70 71.3 72.1 72.9 ...

> mode(cDat)
[1] "list"

> class(cDat)
[1] "data.frame"

> is.vector(cDat)
[1] FALSE

> is.data.frame(cDat)
[1] TRUE

How to extract certain rows and/or variables
(columns) from a data.frame*

* subset() also works for vectors and matrices, but it is especially important for data.frames

subset package:base R Documentation

Subsetting Vectors, Matrices and Data Frames

Description:

 Return subsets of vectors, matrices or data frames which meet
 conditions.

Usage:

 <snip, snip>

 ## S3 method for class 'data.frame'
 subset(x, subset, select, drop = FALSE, ...)

Arguments:

 x: object to be subsetted.

 subset: logical expression indicating elements or rows to keep:
 missing values are taken as false.

 select: expression, indicating columns to select from a data frame.

> cDat <- subset(gDat, subset = country == "Canada",
+ select = c(country, continent, lifeExp))

subset package:base R Documentation

Subsetting Vectors, Matrices and Data Frames

Description:

 Return subsets of vectors, matrices or data frames which meet
 conditions.

Usage:

 <snip, snip>

 ## S3 method for class 'data.frame'
 subset(x, subset, select, drop = FALSE, ...)

Arguments:

 x: object to be subsetted.

 subset: logical expression indicating elements or rows to keep:
 missing values are taken as false.

 select: expression, indicating columns to select from a data frame.

> cDat <- subset(gDat, subset = country == "Canada",
+ select = c(country, continent, lifeExp))

subset package:base R Documentation

Subsetting Vectors, Matrices and Data Frames

<snip, snip>

Details:

 This is a generic function, with methods supplied for matrices,
 data frames and vectors (including lists). Packages and users can
 add further methods.

 For ordinary vectors, the result is simply 'x[subset &
 !is.na(subset)]'.

 For data frames, the 'subset' argument works on the rows. Note
 that 'subset' will be evaluated in the data frame, so columns can
 be referred to (by name) as variables in the expression (see the
 examples).

 The 'select' argument exists only for the methods for data frames
 and matrices. It works by first replacing column names in the
 selection expression with the corresponding column numbers in the
 data frame and then using the resulting integer vector to index
 the columns. This allows the use of the standard indexing
 conventions so that for example ranges of columns can be specified
 easily, or single columns can be dropped (see the examples).

I really do encourage you to see the examples and
notice how I use subset().

> gDat[20:25, c("country", "lifeExp")]
 country lifeExp
20 Albania 72.000
21 Albania 71.581
22 Albania 72.950
23 Albania 75.651
24 Albania 76.423
25 Algeria 43.077

Just FYI, you can index a data.frame like you would a
matrix:

... but using subset() is often easier and leads to more
readable, robust code

jDat <- subset(gDat, country == "Canada")

don't refer to variables by number
leads to poor figure labels and confusion

plot(jDat[,5] ~ jDat[, 2]) # BAD

Bad practices in data manipulation/access

bad = will ultimately
lead to more mistakes,
wasting your time

●

●

●

●

●

●

●

●

●

●

●

●

1950 1960 1970 1980 1990 2000

70
72

74
76

78
80

jDat[, 2]

jD
at

[,
5]

use data.frames!
don't create new, stand-alone copies of certain variables

jDat <- subset(gDat, country == "Canada")

year <- jDat[, 2] # BAD
lifeExp <- jDat[, 5]

xyplot(lifeExp ~ year)

rm(year,lifeExp)

Bad practices in data manipulation/access

bad = will ultimately
lead to more mistakes,
wasting your time

year

life
Ex
p

70

75

80

1950 1960 1970 1980 1990 2000

●
●
●

●

●●●●

●●

●
●●●

●●
●
●
●
●
●

●●
●●

●

●
●

●

●
●

●
●

●
●●

●
●●

●
●
●
●●

●●
●
●
●
●

●
●●

●
●●

●

Bad practices in data manipulation/access

use data.frames!
don't attach data.frame

attach(gDat)

xyplot(lifeExp ~ year) # BAD

detach(gDat)

bad = will ultimately
lead to more mistakes,
wasting your time

year

life
Ex
p

70

75

80

1950 1960 1970 1980 1990 2000

●
●
●

●

●●●●

●●

●
●●●

●●
●
●
●
●
●

●●
●●

●

●
●

●

●
●

●
●

●
●●

●
●●

●
●
●
●●

●●
●
●
●
●

●
●●

●
●●

●

Best practices in data manipulation/access

> ## give variables within data.frames short, informative names
> ## will make it easy to access variables by name

> xyplot(jDat$lifeExp ~ jDat$year) # GOOD

> with(jDat,
+ xyplot(lifeExp ~ year)) # BETTER

> xyplot(lifeExp ~ year, jDat) # BEST

good = more robust,
self-documenting

year

life
Ex
p

70

75

80

1950 1960 1970 1980 1990 2000

●
●
●

●

●●●●

●●

●
●●●

●●
●
●
●
●
●

●●
●●

●

●
●

●

●
●

●
●

●
●●

●
●●

●
●
●
●●

●●
●
●
●
●

●
●●

●
●●

●

Best practices in data manipulation/access

> ## if you don't need the data subset long-term,
> ## don't create a persistent copy! use the subset argument available
> ## in many functions to subset on the fly

> xyplot(lifeExp ~ year, gDat,
+ subset = country == "Canada") # BESTEST

good = more robust, self-
documenting, minimalistic

year

life
Ex
p

70

75

80

1950 1960 1970 1980 1990 2000

●
●
●

●

●●●●

●●

●
●●●

●●
●
●
●
●
●

●●
●●

●

●
●

●

●
●

●
●

●
●●

●
●●

●
●
●
●●

●●
●
●
●
●

●
●●

●
●●

●

with(jDat,
 xyplot(lifeExp ~ year))*

with() is a handy function

can make it more pleasant to rigorously use
data.frames and reference-by-name -- cuts down
on the repetitive typing

good for weaning yourself off of ‘attach’-ing R
objects

*Note: example is slightly silly, since xyplot() has a ‘data =’ argument, but you get the point.

If you extract a
variable like so ...

... you will get this
<object>

str(<object>):

... you will get this
(plain English):

jDf$X3

jDf[['X3']]

jDf[, 'X3']

 [1] "x13" "x23" "x33" "x43"

chr [1:4] "x13" "x23" "x33"
"x43"

the variable, as a
vector
here, a character
vector of length 4

jDf['X3']

jDf[, 'X3',
 drop = FALSE]

subset(jDf,
 select = X3)

 X3
1 x13
2 x23
3 x33
4 x43

'data.frame':	

 4 obs. of 1 variable:
 $ X3: chr "x13" "x23" "x33" "x43"

data.frame with
only this variable
in it

> jDf <- data.frame(jMat, stringsAsFactors = FALSE)
> jDf
 X1 X2 X3 X4
1 x11 x12 x13 x14
2 x21 x22 x23 x24
3 x31 x32 x33 x34
4 x41 x42 x43 x44

Extracting one variable
from a data.frame:

data.frame style vs list style vs matrix stylepreferred (?)

jDf$X3

jDf[['X3']]

Both achieve the same thing
here: extracting the component
named X3 from the data.frame
(i.e. list) jDf

Both methods -- $ and [[-- can
extract only one component

Main difference: If the name of
the component you want is
stored as on R object, you must
use [[.

> ## this will not work
> jDf[[c('X1','X2')]]
Error in .subset2(x, i, exact = exact) : subscript out of bounds

> (luckyVar <- sample(names(jDf), 1))
[1] "X2"
> jDf[[luckyVar]]
[1] "x12" "x22" "x32" "x42"

Difference between $ and [[access of a single variable from a
data.frame

Valid commands Description Comments
jDf[, c('X2','X3')] matrix style subscripting why do this?

jDf[c('X2','X3')] vector style subscripting good

subset(jDf, select = c(X2,X3)) using the subset() function very good
colsToKeep <-
 grep('[2|3]$', names(jDf),
 value = TRUE))

followed by either of these:

subset(jDf, select = colsToKeep)

jDf[colsToKeep]

example of programmatically
generating the names, in this
case, of the variables to keep

similar idea also works if
indexing by a vector of
numbers of by a logical
vector

very useful when the
columns to keep can
or must be derived

> jDf <- data.frame(jMat, stringsAsFactors = FALSE)
> jDf
 X1 X2 X3 X4
1 x11 x12 x13 x14
2 x21 x22 x23 x24
3 x31 x32 x33 x34
4 x41 x42 x43 x44

Extracting > 1 variables
from a data.frame

 X2 X3
1 x12 x13
2 x22 x23
3 x32 x33
4 x42 x43

'data.frame':! 4 obs. of 2 variables:
 $ X2: chr "x12" "x22" "x32" "x42"
 $ X3: chr "x13" "x23" "x33" "x43"

match(), %in%, grep(),
grepl(), which() are all
useful for subscripting

> ## randomly permute the variables and ...
> ## still get X2 & X3
> jDfScrambled <- jDf[sample(length(jDf))]
> jDfScrambled
 X1 X4 X2 X3
1 x11 x14 x12 x13
2 x21 x24 x22 x23
3 x31 x34 x32 x33
4 x41 x44 x42 x43
> jDfScrambled[match(colsToKeep,
 names(jDfScrambled))]
 X2 X3
1 x12 x13
2 x22 x23
3 x32 x33
4 x42 x43

> jDf[names(jDf) %in% c('X1','X4')]
 X1 X4
1 x11 x14
2 x21 x24
3 x31 x34
4 x41 x44

> jDfPlus <- data.frame(jDf,
+ Y1 = rnorm(nrow(jDf)),
+ Y2 = rexp(nrow(jDf)))

> jDfPlus
 X1 X2 X3 X4 Y1 Y2
1 x11 x12 x13 x14 -0.43312107 0.31115650
2 x21 x22 x23 x24 0.80392540 0.07896557
3 x31 x32 x33 x34 0.02549102 0.89839139
4 x41 x42 x43 x44 -1.29231415 0.62356150

> jDfPlus[grepl('^Y', names(jDfPlus))]
 Y1 Y2
1 -0.43312107 0.31115650
2 0.80392540 0.07896557
3 0.02549102 0.89839139
4 -1.29231415 0.62356150

Inspecting

str() summary()
mode() class()

methods() head() tail()
peek()*

Sizing

length(), nrow(),
ncol(), dim()

Testing & converting

The is / as family: is.numeric()
is.character() is.vector()

as.matrix() as.numeric() etc etc

unlist() unclass()

Creating

c() factor() matrix() array()
list() data.frame() read.table()

*JB function

Helpful function round-up

Naming & inspecting
names

names() dimnames()
row.names() rownames()

colnames()

Fussing with factors

factor()
levels() nlevels()

droplevels()
reorder() relevel()

as.character()
recode()**

**from the car add-on package

Ask yourself ...

Do I want to create sub-data.frames for each level
of some factor (or unique combination of several
factors) ... in order to compute or graph something?

If YES, use data aggregation techniques or
conditioning in lattice plots -- don’t subset the
data.frame.

If NO, then maybe you really do need to subset the
data.frame. See previous section, esp. subset().

Subsetting a data.frame

Sources for further study of topics covered:

Chapter 8 (“Data Aggregation”) of Spector
(2008). This whole book is extremely valuable.
Author’s webpage (lots of great material
here). Google books search.

http://www.springerlink.com/content/t19776/?p=ad6463d79e364494b8248078d4fcc8c4&pi=1
http://www.springerlink.com/content/t19776/?p=ad6463d79e364494b8248078d4fcc8c4&pi=1
http://www.springerlink.com/content/t19776/?p=ad6463d79e364494b8248078d4fcc8c4&pi=1
http://www.springerlink.com/content/t19776/?p=ad6463d79e364494b8248078d4fcc8c4&pi=1
http://www.stat.berkeley.edu/~spector/
http://www.stat.berkeley.edu/~spector/
http://books.google.com/books?id=grfuq1twFe4C&lpg=PP1&dq=data%2520manipulation%2520spector&pg=PP1%23v=onepage&q=&f=false
http://books.google.com/books?id=grfuq1twFe4C&lpg=PP1&dq=data%2520manipulation%2520spector&pg=PP1%23v=onepage&q=&f=false

 /Users/jenny/teaching/STAT545A/examples/gapminder/code:
 total used in directory 296 available 275170116
 drwxr-xr-x 25 jenny staff 850 Sep 17 13:44 .
 drwxr-xr-x 8 jenny staff 272 Sep 14 12:05 ..
 -rw-r--r--@ 1 jenny staff 6148 Sep 11 22:42 .DS_Store
 -rw-r--r-- 1 jenny staff 2833 Sep 16 22:49 .Rhistory
 -rw-r--r-- 1 jenny staff 4807 Sep 11 13:24 bryan-a01-01-dataPrep.R
 -rw-r--r-- 1 jenny staff 6349 Sep 11 13:33 bryan-a01-02-dataMerge.R
 -rw-r--r-- 1 jenny staff 5783 Sep 11 14:38 bryan-a01-03-dataExplore.R
 -rw-r--r-- 1 jenny staff 3497 Sep 11 22:11 bryan-a01-04-fillContinentData.R
 -rw-r--r-- 1 jenny staff 4573 Sep 11 22:24 bryan-a01-05-everyFiveYears.R

 <snip, snip>

 rw-r--r-- 1 jenny staff 6438 Sep 17 13:44 bryan-a01-40-dataAggregation.R

Anatomy of a real world data analysis, so far:

The code of my demos of data aggregation using the
Gapminder data can be found in the file bryan-a01-40-
dataAggregation.R

http://www.stat.ubc.ca/~jenny/notOcto/STAT545A/examples/gapminder/code/bryan-a01-40-dataAggregation.R
http://www.stat.ubc.ca/~jenny/notOcto/STAT545A/examples/gapminder/code/bryan-a01-40-dataAggregation.R
http://www.stat.ubc.ca/~jenny/notOcto/STAT545A/examples/gapminder/code/bryan-a01-40-dataAggregation.R
http://www.stat.ubc.ca/~jenny/notOcto/STAT545A/examples/gapminder/code/bryan-a01-40-dataAggregation.R

For those situations ... when you need to do <sthg> for
various ‘chunks’ of your dataset

Best method depends on the nature of these chunks

chunks are ... relevant functions

rows, columns, etc. of
matrices / arrays

apply

components of a
list(remember data.frames are
lists!)

sapply, lapply

groups induced by
levels of ≥ 1 factor(s)

aggregate
tapply
by
split (+ [sl]apply)

chunks are ... relevant functions

rows, columns, etc. of
matrices / arrays

apply

components of a
list(remember data.frames are
lists!)

sapply, lapply

groups induced by
levels of ≥ 1 factor(s)

aggregate
tapply
by
split (+ [sl]apply)

Let chunk = row or
column of matrix

grab the Gapminder data to use in examples
whereAmI <- "/Users/jenny/teaching/STAT545A/examples/gapminder/"

data import from local file
gDat <- read.delim(paste0(whereAmI,
 "data/gapminderDataFiveYear.txt"))

reach out and touch the data
str(gDat)
'data.frame':!1704 obs. of 6 variables:
$ country : Factor w/ 142 levels "Afghanistan",..: 1 1 1 1 1 1 1 1 1 1 ...
$ year : int 1952 1957 1962 1967 1972 1977 1982 1987 1992 1997 ...
$ pop : num 8425333 9240934 10267083 11537966 13079460 ...
$ continent: Factor w/ 5 levels "Africa","Americas",..: 3 3 3 3 3 3 ...
$ lifeExp : num 28.8 30.3 32 34 36.1 ...
$ gdpPercap: num 779 821 853 836 740 ...

creating a toy matrix, so I can demo apply
(jCountries <- sort(c('Canada', 'United States', 'Mexico')))
tinyDat <- subset(gDat, country %in% jCountries)
str(tinyDat) # 'data.frame': 36 obs. of 6 variables:
(nY <- length(unique(tinyDat$year))) # 12 years

jLifeExp <- matrix(tinyDat$lifeExp, nrow = nY)
colnames(jLifeExp) <- jCountries
rownames(jLifeExp) <- tinyDat$year[1:nY]
jLifeExp

apply(jLifeExp, 1, mean)

apply(jLifeExp, 2, median)

jCountries[apply(jLifeExp, 1, which.max)]

Complete code, for
reference

> jLifeExp
 Canada Mexico United States
1952 68.750 50.789 68.440
1957 69.960 55.190 69.490
1962 71.300 58.299 70.210
1967 72.130 60.110 70.760
1972 72.880 62.361 71.340
1977 74.210 65.032 73.380
1982 75.760 67.405 74.650
1987 76.860 69.498 75.020
1992 77.950 71.455 76.090
1997 78.610 73.670 76.810
2002 79.770 74.902 77.310
2007 80.653 76.195 78.242

> apply(jLifeExp, 1, mean)
 1952 1957 1962 1967 1972 1977 1982 1987
62.65967 64.88000 66.60300 67.66667 68.86033 70.87400 72.60500 73.79267
 1992 1997 2002 2007
75.16500 76.36333 77.32733 78.36333

> apply(jLifeExp, 2, median)
 Canada Mexico United States
 74.9850 66.2185 74.0150

> jCountries[apply(jLifeExp, 1, which.max)]
 [1] "Canada" "Canada" "Canada" "Canada" "Canada" "Canada" "Canada" "Canada"
 [9] "Canada" "Canada" "Canada" "Canada"

apply(jLifeExp, 1, mean)

“Take this matrix and for every row, compute the mean.”

apply(jLifeExp, 2, median)

“Take this matrix and for every column, compute the median.”

Note: apply() works perfectly well on arrays of dimension 3
and higher. Read the docs and proceed with care.

chunks are ... relevant functions

rows, columns, etc. of
matrices / arrays

apply

components of a
list(remember data.frames are
lists!)

sapply, lapply

groups induced by
levels of ≥ 1 factor(s)

aggregate
tapply
by
split (+ [sl]apply)

Let chunk = variable in a
data.frame

> sapply(gDat, summary)
$country
 Afghanistan Albania Algeria
 12 12 12
 <snip, snip>
 (Other)
 516

$year
 Min. 1st Qu. Median Mean 3rd Qu. Max.
 1952 1966 1980 1980 1993 2007

$pop
 Min. 1st Qu. Median Mean 3rd Qu. Max.
6.001e+04 2.794e+06 7.024e+06 2.960e+07 1.959e+07 1.319e+09

$continent
 Africa Americas Asia Europe Oceania
 624 300 396 360 24

$lifeExp
 Min. 1st Qu. Median Mean 3rd Qu. Max.
 23.60 48.20 60.71 59.47 70.85 82.60

$gdpPercap
 Min. 1st Qu. Median Mean 3rd Qu. Max.
 241.2 1202.0 3532.0 7215.0 9325.0 113500.0

sapply(gDat, summary)

To each component of this list, apply summary().
Recall that a data.frame is a list.

Of course, in the case of summary(), there’s an
even better way to do this. See next page.
But I wanted to demo with a function that did
something sensible for all variables.

> summary(gDat)
 country year pop continent
 Afghanistan: 12 Min. :1952 Min. :6.001e+04 Africa :624
 Albania : 12 1st Qu.:1966 1st Qu.:2.794e+06 Americas:300
 Algeria : 12 Median :1980 Median :7.024e+06 Asia :396
 Angola : 12 Mean :1980 Mean :2.960e+07 Europe :360
 Argentina : 12 3rd Qu.:1993 3rd Qu.:1.959e+07 Oceania : 24
 Australia : 12 Max. :2007 Max. :1.319e+09
 (Other) :1632
 lifeExp gdpPercap
 Min. :23.60 Min. : 241.2
 1st Qu.:48.20 1st Qu.: 1202.1
 Median :60.71 Median : 3531.8
 Mean :59.47 Mean : 7215.3
 3rd Qu.:70.85 3rd Qu.: 9325.5
 Max. :82.60 Max. :113523.1

For the record, this is the best way to
get a summary() of each variable in a
data.frame.

> sapply(gDat, is.numeric)
 country year pop continent lifeExp gdpPercap
 FALSE TRUE TRUE FALSE TRUE TRUE

> sapply(gDat, is.numeric)
 country year pop continent lifeExp gdpPercap
 FALSE TRUE TRUE FALSE TRUE TRUE

> gDatNum <- subset(gDat, select = sapply(gDat, is.numeric))

> str(gDatNum)
'data.frame':! 1704 obs. of 4 variables:
 $ year : int 1952 1957 1962 1967 1972 1977 1982 1987 1992 1997 ...
 $ pop : num 8425333 9240934 10267083 11537966 13079460 ...
 $ lifeExp : num 28.8 30.3 32 34 36.1 ...
 $ gdpPercap: num 779 821 853 836 740 ...

Effect: new data.frame containing only the numeric
Gapminder variables.

> str(gDatNum)
'data.frame':! 1704 obs. of 4 variables:
 $ year : int 1952 1957 1962 1967 1972 1977 1982 1987 1992 1997 ...
 $ pop : num 8425333 9240934 10267083 11537966 13079460 ...
 $ lifeExp : num 28.8 30.3 32 34 36.1 ...
 $ gdpPercap: num 779 821 853 836 740 ...

> sapply(gDatNum, median)
 year pop lifeExp gdpPercap
 1979.5000 7023595.5000 60.7125 3531.8470

> lapply(gDatNum, median)
$year
[1] 1979.5

$pop
[1] 7023596

$lifeExp
[1] 60.7125

$gdpPercap
[1] 3531.847

> sapply(gDatNum, median)
 year pop lifeExp gdpPercap
 1979.5000 7023595.5000 60.7125 3531.8470

> lapply(gDatNum, median)
$year
[1] 1979.5

$pop
[1] 7023596

$lifeExp
[1] 60.7125

$gdpPercap
[1] 3531.847

sapply() and lapply() both operate on lists,
component-wise.
sapply() tries hard to tidy up the return value, e.g.
re-package for your convenience. lapply() does
not; it always returns a list.

> sapply(gDatNum, range)
 year pop lifeExp gdpPercap
[1,] 1952 60011 23.599 241.1659
[2,] 2007 1318683096 82.603 113523.1329

> lapply(gDatNum, range)
$year
[1] 1952 2007

$pop
[1] 60011 1318683096

$lifeExp
[1] 23.599 82.603

$gdpPercap
[1] 241.1659 113523.1329

Another demo of difference in return value.

chunks are ... relevant functions

rows, columns, etc. of
matrices / arrays

apply

components of a
list(remember data.frames are
lists!)

sapply, lapply

groups induced by
levels of ≥ 1 factor(s)

tapply
aggregate
by
split (+ [sl]apply)

Let chunk = ragged groups of
elements of a vector or rows of a
data.frame

> ## how many countries for each continent?
> with(gDat,
+ tapply(country, continent, function(x) {
+ length(unique(x))
+ }))
 Africa Americas Asia Europe Oceania
 52 25 33 30 2

introducing tapply
with(gDat,
 tapply(lifeExp, continent, max))
 Africa Americas Asia Europe Oceania
 76.442 80.653 82.603 81.757 81.235

apply this
function to
each chunk

Divide this vector
into chunks ...

based on this
factor and ...

The function to evaluate can be built-in, like max()
above, custom but defined in advance, or custom
and defined ‘on the fly’, as I’ve done below and
later in this class.

> ## tapply result often needs clean-up

> (rangeLifeExp <- with(gDat,
+ tapply(lifeExp, continent, range)))
$Africa
[1] 23.599 76.442

$Americas
[1] 37.579 80.653

$Asia
[1] 28.801 82.603

$Europe
[1] 43.585 81.757

$Oceania
[1] 69.120 81.235

> str(rangeLifeExp)
List of 5
 $ Africa : num [1:2] 23.6 76.4
 $ Americas: num [1:2] 37.6 80.7
 $ Asia : num [1:2] 28.8 82.6
 $ Europe : num [1:2] 43.6 81.8
 $ Oceania : num [1:2] 69.1 81.2
 - attr(*, "dim")= int 5
 - attr(*, "dimnames")=List of 1
 ..$: chr [1:5] "Africa" "Americas" "Asia" "Europe" ...

Output of tapply() often benefits from
some simplification and/or clean-up.

> (rangeLifeExp <- with(gDat,
+ tapply(lifeExp, continent, range)))
$Africa
[1] 23.599 76.442

$Americas
[1] 37.579 80.653

$Asia
[1] 28.801 82.603

$Europe
[1] 43.585 81.757

$Oceania
[1] 69.120 81.235

<snip, snip>

> ## rbind does what we want, but does not scale well
> rbind(rangeLifeExp[[1]], rangeLifeExp[[2]],
+ rangeLifeExp[[3]], rangeLifeExp[[4]], rangeLifeExp[[5]])
 [,1] [,2]
[1,] 23.599 76.442
[2,] 37.579 80.653
[3,] 28.801 82.603
[4,] 43.585 81.757
[5,] 69.120 81.235

Here, you’d like to stack up the vectors
row- or column-wise. rbind() and cbind()
are the functions that do that. But the
naive implementation, demonstrated here,
is inherently flawed. In the long run, you
will be killed by the requirement to
enumerate the vectors you wish to rbind().

> (rangeLifeExp <- with(gDat,
+ tapply(lifeExp, continent, range)))
$Africa
[1] 23.599 76.442

$Americas
[1] 37.579 80.653

$Asia
[1] 28.801 82.603

$Europe
[1] 43.585 81.757

$Oceania
[1] 69.120 81.235

<snip, snip>

> ## do.call scales (and gets nice row names)
> do.call(rbind, rangeLifeExp)
 [,1] [,2]
Africa 23.599 76.442
Americas 37.579 80.653
Asia 28.801 82.603
Europe 43.585 81.757
Oceania 69.120 81.235

This is the right way -- the general way --
to do this. do.call() is an extremely handy
function for making matrices or
data.frames out of lists with valid
components. This is a recurring task after
data aggregation. Note we also get
informative row names for free, i.e. they
propagate from the factor level labels.
This happens alot, reinforcing the rewards
of good names, factor level labels, etc.

To sum up ...

By analogy: sapply has lapply
tapply() has <not much>
i.e. you have to do your own clean-up :-(

But the do.call() trick will work wonders.

> (rangeLifeExp <- with(gDat,
+ tapply(lifeExp, continent, range)))
$Africa
[1] 23.599 76.442

$Americas
[1] 37.579 80.653

$Asia
[1] 28.801 82.603

$Europe
[1] 43.585 81.757

$Oceania
[1] 69.120 81.235

<snip, snip>

> ## do.call scales (and gets nice row names)
> do.call(rbind, rangeLifeExp)
 [,1] [,2]
Africa 23.599 76.442
Americas 37.579 80.653
Asia 28.801 82.603
Europe 43.585 81.757
Oceania 69.120 81.235

> (rangeLifeExp <- with(gDat,
+ tapply(lifeExp, continent, range)))
$Africa
[1] 23.599 76.442

$Americas
[1] 37.579 80.653

$Asia
[1] 28.801 82.603

$Europe
[1] 43.585 81.757

$Oceania
[1] 69.120 81.235

<snip, snip>

> ## do.call scales (and gets nice row names)
> do.call(rbind, rangeLifeExp)
 [,1] [,2]
Africa 23.599 76.442
Americas 37.579 80.653
Asia 28.801 82.603
Europe 43.585 81.757
Oceania 69.120 81.235

BUT ...

tapply() only works on single variables; in
this example, lifeExp

what to do when you need to work with
multiple variables at once?

consider by()

> (yearMin <- min(gDat$year))
[1] 1952
> coefEst <- by(gDat, gDat$country, function(cty) {
+ coef(lm(lifeExp ~ I(year - yearMin), cty))
+ })
> coefEst
gDat$country: Afghanistan
 (Intercept) I(year - yearMin)
 29.9072949 0.2753287

gDat$country: Albania
 (Intercept) I(year - yearMin)
 59.2291282 0.3346832

<snip, snip>
--
gDat$country: Zimbabwe
 (Intercept) I(year - yearMin)
 55.22124359 -0.09302098

apply this
function to
each chunk

Divide this
data.frame into
chunks ... based on this

factor and ...

Suddenly, fitting a regression
model to each of 142 countries
doesn’t look so bad.

> coefEst
gDat$country: Afghanistan
 (Intercept) I(year - yearMin)
 29.9072949 0.2753287

<snip, snip>

gDat$country: Zimbabwe
 (Intercept) I(year - yearMin)
 55.22124359 -0.09302098

> ## clean up
> coefEst <- data.frame(do.call(rbind,coefEst))
> coefEst <-
+ data.frame(country = factor(rownames(coefEst),
+ levels = levels(gDat$country)),
+ coefEst)
> names(coefEst) <- c('country','intercept','slope')
> rownames(coefEst) <- NULL
> peek(coefEst)
 country intercept slope
10 Belgium 67.89192 0.20908462
67 Japan 65.12205 0.35290420
88 Myanmar 41.41155 0.43309510
91 Netherlands 71.88962 0.13668671
93 Nicaragua 43.04513 0.55651958
121 Sudan 37.87419 0.38277483
141 Zambia 47.65803 -0.06042517

Clean-up tasks you will
do over and over again:

convert to data.frame
(often with the do.call

trick), exert control over
factor conversion &
levels, give variables

decent names.

> peek(coefEst)
 country intercept slope
11 Benin 39.58851 0.3342329
15 Brazil 51.51204 0.3900895
56 Hong Kong, China 63.42864 0.3659706
78 Malawi 36.91037 0.2342259
94 Niger 35.15067 0.3421091
114 Singapore 61.84588 0.3408860
124 Switzerland 69.45372 0.2222315

> ## bring in continent

> coefEstVersion1 <- coefEst

> coefEstVersion1$continent <-
+ gDat$continent[match(coefEst$country, gDat$country)]

> peek(coefEstVersion1)
 country intercept slope continent
9 Bangladesh 36.13549 0.4981308 Asia
36 Djibouti 36.27715 0.3674035 Africa
45 France 67.79013 0.2385014 Europe
48 Germany 67.56813 0.2136832 Europe
80 Mali 33.05123 0.3768098 Africa
85 Montenegro 62.24163 0.2930014 Europe
140 Yemen, Rep. 30.13028 0.6054594 Asia

match() is invaluable for
“table look-up” tasks.

Bringing the continent info back

> coefEstVersion1$continent <-
+ gDat$continent[match(coefEst$country, gDat$country)]

return the numeric index of the
first match of this in that

> peek(coefEstVersion1)
 country intercept slope continent
7 Austria 66.44846 0.2419923 Europe
71 Korea, Rep. 49.72750 0.5554000 Asia
93 Nicaragua 43.04513 0.5565196 Americas
118 South Africa 49.34128 0.1691594 Africa
131 Tunisia 44.55531 0.5878434 Africa
135 United States 68.41385 0.1841692 Americas
140 Yemen, Rep. 30.13028 0.6054594 Asia

then grab the corresponding
elements of this other variable

> peek(coefEst)
 country intercept slope
11 Benin 39.58851 0.3342329
15 Brazil 51.51204 0.3900895
56 Hong Kong, China 63.42864 0.3659706
78 Malawi 36.91037 0.2342259
94 Niger 35.15067 0.3421091
114 Singapore 61.84588 0.3408860
124 Switzerland 69.45372 0.2222315

> ## bring in continent
> ## method 2: using merge

> ## create a table with variables for country and continent
> justCountryContinent <- subset(gDat, select = c(country, continent))
> dups <- duplicated(justCountryContinent)
> justCountryContinent <- subset(justCountryContinent, !dups)
> str(justCountryContinent)
'data.frame':! 142 obs. of 2 variables:
 $ country : Factor w/ 142 levels "Afghanistan",..: 1 2 3 4 5 6 7 8 9 10 ...
 $ continent: Factor w/ 5 levels "Africa","Americas",..: 3 4 1 1 2 5 4 3 3 4 ...

> coefEstVersion2 <- merge(coefEst, justCountryContinent)

> peek(coefEstVersion2)
 country continent intercept slope
46 Gabon Africa 38.93535 0.4467329
81 Mauritania Africa 40.02560 0.4464175
82 Mauritius Africa 55.37077 0.3484538
110 Saudi Arabia Asia 40.81412 0.6496231
116 Slovenia Europe 66.08635 0.2005238
132 Turkey Europe 46.02232 0.4972399
140 Yemen, Rep. Asia 30.13028 0.6054594

merge() is invaluable
for ... merging. More
general than match.

tapply is very, very useful when you need to compute on
1 variable for groups defined by 1 or more factors

aggregate is just a wrapper for tapply; personally I don’t
find it that useful

by is very, very useful ... sort of like tapply for data.frames
(under the hood, it is just a wrapper for tapply)

split, and mapply come up in more complicated settings

Data aggregation

What is the payoff for all of this hard work
doing data aggregation?

You can make data summaries and figures
that other people -- people less skilled at
data manipulation -- can’t or won’t make.
They don’t know how and/or don’t have
enought time.

densityplot(~ slope | continent, coefEst,
 type = c('p','g'),
 xlab = paste("Slope from lm(lifeExp ~ year -",
 yearMin, "), within country"))

> bestWorst <- by(coefEst, coefEst$continent, function(z)
{
+ z[c(which.min(z$slope), which.max(z$slope)),]
+ })
> ## drop Oceania ... only 2 countries
> bestWorst <- subset(bestWorst, continent != "Oceania")
> bestWorst # lovely!
 country intercept slope continent status
1 Zimbabwe 55.22124 -0.09302098 Africa worst
2 Libya 42.10194 0.62553566 Africa best
3 Paraguay 62.48183 0.15735455 Americas worst
4 Nicaragua 43.04513 0.55651958 Americas best
5 Iraq 50.11346 0.23521049 Asia worst
6 Oman 37.20774 0.77217902 Asia best
7 Denmark 71.03359 0.12133007 Europe worst
8 Turkey 46.02232 0.49723986 Europe best

Visualize: how swiftly is
life expectancy
increasing over time.

Get the best
and worst

> bestWorst # lovely!
 country intercept slope continent status
1 Zimbabwe 55.22124 -0.09302098 Africa worst
2 Libya 42.10194 0.62553566 Africa best
3 Paraguay 62.48183 0.15735455 Americas worst
4 Nicaragua 43.04513 0.55651958 Americas best
5 Iraq 50.11346 0.23521049 Asia worst
6 Oman 37.20774 0.77217902 Asia best
7 Denmark 71.03359 0.12133007 Europe worst
8 Turkey 46.02232 0.49723986 Europe best

Europe has least variability in slope (except for Turkey), also lowest
mean/median/mode, Asia and Americas have highest mean/median/
mode, Africa has most spread, intriguing ‘first world vs developing
nations’ angle via bimodality for the Americas?

Slope from lm(lifeExp ~ year − 1952), within country

D
en

si
ty

0

1

2

3

4

5

0.0 0.5 1.0

●● ●● ●● ●● ● ●● ●● ● ●● ●● ● ●● ●●●●● ●●● ● ●● ●●● ●● ●● ● ●●●● ●● ● ● ●●●●

Africa

● ●●● ●●●● ●●●●● ●● ● ●●● ●●●●● ●

Americas
● ●●● ●● ● ●●●● ● ●● ●●● ●●● ● ●●● ●●● ●●● ●●●

Asia

0.0 0.5 1.0

0

1

2

3

4

5

●●● ●● ●●● ●●●●●●● ●●●● ● ●● ●● ● ●● ● ●●

Europe

revisiting "raw" data for these interesting examples
zDat <- droplevels(subset(gDat, subset = country %in%
 bestWorst$country))

taking charge of the order of levels for country
zDat$country <-
 factor(zDat$country,
 levels = with(bestWorst,
 as.character(country)[c(which(status == 'worst'),
 which(status == 'best'))]))

xyplot(lifeExp ~ year | country, zDat,
 layout = c(4,2), type = c('p','g','r'))

Confirms intuition about biggest slope <--> lowest life exp
in 1952 ... sort of, low slopes come about more through
sudden marked declines in life expectancy than gradual
trends, obvious effect of the Iraq war and the Zimbabwe
land redistribution fiasco

year

life
Ex
p

40

50

60

70

80

1950 1970 1990

●
●

●
●

●
●

●
●

●

●

●

●

Zimbabwe

● ●
● ● ● ● ● ● ●

●
●

●

Paraguay

1950 1970 1990

●

●

●

●

●

●
●

●

● ●
●

●

Iraq

●
● ● ● ●

● ● ● ● ●
●

●

Denmark

●

●

●

●

●

●

●

●

●

●
●

●

Libya

1950 1970 1990

●

●

●

●

●
●

●

●

●

●

●
●

Nicaragua

●

●

●

●

●

●

●

●

●
●

●
●

Oman

1950 1970 1990

40

50

60

70

80

●

●

●
●

●

●
●

●

●

●
● ●

Turkey

> bestWorst # lovely!
 country intercept slope continent status
1 Zimbabwe 55.22124 -0.09302098 Africa worst
2 Libya 42.10194 0.62553566 Africa best
3 Paraguay 62.48183 0.15735455 Americas worst
4 Nicaragua 43.04513 0.55651958 Americas best
5 Iraq 50.11346 0.23521049 Asia worst
6 Oman 37.20774 0.77217902 Asia best
7 Denmark 71.03359 0.12133007 Europe worst
8 Turkey 46.02232 0.49723986 Europe best

year

life
Ex
p

30

40

50

60

70

1960 1980

●
●

●
● ● ●

●
●

Rwanda

● ●
● ● ● ● ● ●

Paraguay

1960 1980

●
●

●
●

●

●

●

●

Cambodia

● ● ● ● ● ● ● ●

Norway

●
●

●

●

●

●

●

●

Gabon

1960 1980

●

●

●

●

●

●

●

●

Honduras

●
●

●

●

●

●

●

●

Oman

1960 1980

30

40

50

60

70

●

●

●
●

●
●

●
●

Turkey

> bestWorst
 country intercept slope continent
Africa.105 Rwanda -229.5024 0.1386429 Africa
Africa.44 Gabon -1317.7717 0.6931643 Africa
Americas.97 Paraguay -208.3430 0.1388881 Americas
Americas.52 Honduras -1214.8432 0.6436262 Americas
Asia.20 Cambodia -462.0226 0.2565500 Asia
Asia.94 Oman -1693.8775 0.8859357 Asia
Europe.93 Norway -118.5604 0.0979762 Europe
Europe.128 Turkey -1006.5381 0.5389095 Europe

Confirms intuition about biggest slope <--> lowest life exp
in 1950 ... sort of, Rwanda seems like an especially
desperate country, Cambodia in the 1970s: data quality
problem? more likely, US/Vietnam War + famine + Pol Pot

from a previous analysis w/ slightly different data cleaning

year

life
Ex
p

40

50

60

70

80

1950 1970 1990

●
●

●
●

●
●

●
●

●

●

●

●

Zimbabwe

●●
●●●●●●●

●
●

●

Paraguay

1950 1970 1990

●

●

●

●

●

●
●

●

●●
●

●

Iraq

●
●●●●

●●●●●
●

●

Denmark

●

●

●
●

●

●

●

●

●

●
●

●

Libya

1950 1970 1990

●

●

●

●

●
●

●

●

●

●
●

●

Nicaragua

●

●

●

●

●

●

●

●

●
●

●
●

Oman

1950 1970 1990

40

50

60

70

80

●

●

●
●

●

●
●

●

●

●
●●

Turkey

year

life
Ex
p

30

40

50

60

70

1960 1980

●
●

●
● ● ●

●
●

Rwanda

● ●
● ● ● ● ● ●

Paraguay

1960 1980

●
●

●
●

●

●

●

●

Cambodia

● ● ● ● ● ● ● ●

Norway

●
●

●

●

●

●

●

●

Gabon

1960 1980

●

●

●

●

●

●

●

●

Honduras

●
●

●

●

●

●

●

●

Oman

1960 1980

30

40

50

60

70

●

●

●
●

●
●

●
●

Turkey

Data aggregation conclusions

• [slt]apply and by give you tremendous power; learning
curve? Yes, but worth it.

• Above functions, coupled with lattice graphics, make it easy
to enact and visualize lots of analyses that would be too
much trouble if forced to script them from scratch.

• Most for loops are rendered unnecessary, once you
harness the power of data aggregation functions; more
about for loops later.

• See code to reveal the least elegant aspect of this case
study: recurring need to modify levels of factors; two main
issues: eliminating unused levels, reordering factor levels for
the side effect in lattice re: panel order.

The plyr package may be worth adopting for data
aggregation. JB intends to make the switch! Still good to
know about the base R functions, though.....

http://plyr.had.co.nz

http://plyr.had.co.nz
http://plyr.had.co.nz

exploring the numeric variables:
population
life expectancy
GDP per capita

... will happen next time ...

Next time!

