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The Vancouver Institute for Visual Analytics (VIVA) is a joint SFU/UBC initiative to promote Visual Analytics (“the science 

of analytical reasoning facilitated by interactive visual interfaces”).
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You will learn:  
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Pizza and soft drinks will be provided.

Registration is free at:http://awva.eventbrite.com ( limit 60) 

Location: University of British Columbia – Vancouver Campus, Dodson Room, Irving K. Barber Learning Center 

Date: Monday, October 1st, 2012 

Time: 12:00 – 13:00
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The Vancouver Institute for Visual Analytics invites all UBC 

students and faculty to attend the Open Doors event of the Andrew 

Wade Visual Analytics Challenge program on Monday, October 

1st, 12:00pm, at the Irving K. Barber Dodson Room.



Review of last class

How to isolate bits of R objects for inspection, modification, 
graphing, modelling.

Data aggregation: doing something repetitive for various bits of 
your data. Top-level for loops authored by YOU are rarely 
necessary or even desirable. Exploit apply, sapply, lapply, tapply, by, 
etc.

do.call() trick and other strategies for “tidying up” the results 
returned after data aggregation.



The plyr package may be worth adopting for data 
aggregation. JB intends to make the switch! Still good to 
know about the base R functions, though.....

http://plyr.had.co.nz

http://plyr.had.co.nz
http://plyr.had.co.nz


Review of last class

Data presentation strategies:

build up your own confidence and that of your audience with (boring) facts 
(how many observations? how many variables? overview of missing data and 
how you address) ... make some figures illustrating this (boring) stuff

give your audience a good sense of the whole dataset, at a high level

do some bulk processing / data reduction, e.g. linear regression of lifeExp on 
year for each of 142 countries

now transition to highlighting trends and facilitating comparisons (e.g. 
distribution of life expectancy rates of change by continent)

use analytical results to identify interesting cases, e.g. countries with worst and 
best life expectancy gains, and revisit raw data ... end with an interesting 
story ... tie to outside events or knowledge, etc.



I strongly recommend you use ‘<-’ for 
assignment , instead of ‘=’.

It shows and enforces better discipline.  Say exactly 
what you mean, mean exactly what you say.

Assignment, argument passing, and testing for 
equality are distinct concepts. Thus, your syntax 
should be distinct too.

(jYear <- max(gDat$year))
xyplot(lifeExp ~ gdpPercap, gDat,
       subset = year == jYear)

Before we go on ...
My advice re: assignment operator in R



In my head, I read ‘x <- rnorm(10)’ as “x gets 
10 random normal variates”.

I reserve the single equals sign (‘=’) for providing 
values for funtion arguments.

The double equals sign (‘==’) is a comparison 
operator.

Don’t just take my word for it, look at R itself and 
examples in documentation. Look at Google’s R 
style guide.

(jYear <- max(gDat$year))
plot(lifeExp ~ gdpPercap, gDat,
     subset = year == jYear)

http://google-styleguide.googlecode.com/svn/trunk/google-r-style.html
http://google-styleguide.googlecode.com/svn/trunk/google-r-style.html
http://google-styleguide.googlecode.com/svn/trunk/google-r-style.html
http://google-styleguide.googlecode.com/svn/trunk/google-r-style.html


exploring the numeric variables:
population
life expectancy
GDP per capita

Today!

exploring and checking quantitative 
univariate data



Consider observations of one quantitative variable 
X ... possibly in the presence of one or two 
categorical variables Y and Z, that take on a small 
number of values

X might be ... life expectancy in Gapminder

Y, Z might be ... country or continent or year



X might be ... life expectancy in Gapminder

Y, Z might be ... country or continent or year

What would you most like to know about the 
observed distribution of the X’s (ignore Y, Z)?

Now focus on the possible relationship between X 
and Y, Z.  What would you most like to know?

<make a list>



Key foundational concepts
Let's say that random variable X  has cumulative distribution
function F  and density f , i.e.
F(x) = P(X ≤ x),  ′F (x) = f (x)

Quantile function is the inverse of the CDF F
F(x0 ) = p0 ⇔ F−1(p0 ) = x0

Specific functionals of the distribution are of special interest

E(X) = xdF∫     "expectation"  "the mean" (measure of location)

F−1(0.5)    "the median" (robust measure of location)

V (X) = var(X) =σ 2 = (x − E(X))2 dF∫   "variance" (measure of spread)

                           σ  "standard deviation"
"median absolute deviation"  "MAD" (measure of spread)
IQR = F−1(0.75)− F−1(0.25)   "interquartile range" (measure of spread)



Key concepts -- less ‘tidy’

• Unimodal?  If not, how many modes?  Where?

• Symmetric?  If not, what’s the shape?  Which tail is long?

• If considering Y, is the distribution of X meaningfully 
different ... in location, spread, shape, etc. ... for different 
values of Y?



Summaries computed from observed data are 
empirical versions of those “key” concepts

I.e. the average of a sample is an estimate -- and 
merely an estimate -- of the true mean

Clear statistical thinkers make a big distinction between 
these concepts, though we often speak casually about 
it

In this exploratory data analysis class we will be fairly 
relaxed but don’t ever forget these distinctions are 
real



Numerical summaries, esp. location

> summary(gDat$lifeExp)
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
  23.60   48.20   60.71   59.47   70.85   82.60 

> fivenum(gDat$lifeExp)
[1] 23.5990 48.1850 60.7125 70.8460 82.6030

> mean(gDat$lifeExp)
[1] 59.47444

> median(gDat$lifeExp)
[1] 60.7125



Numerical summaries, esp. spread

> var(gDat$lifeExp)
[1] 166.8517

> sd(gDat$lifeExp)
[1] 12.91711

> mad(gDat$lifeExp)
[1] 16.10104

> IQR(gDat$lifeExp)
[1] 22.6475



Numerical summaries, esp. extremes
> min(gDat$lifeExp)
[1] 23.599

> max(gDat$lifeExp)
[1] 82.603

> quantile(gDat$lifeExp, probs = c(0.05, 0.95))
     5%     95% 
38.4924 77.4370 

> range(gDat$lifeExp)
[1] 23.599 82.603

> which.min(gDat$lifeExp)
[1] 1293

> gDat[which.min(gDat$lifeExp), ]
     country year     pop continent lifeExp gdpPercap
1293  Rwanda 1992 7290203    Africa  23.599  737.0686

> which.max(gDat$lifeExp)
[1] 804

> gDat[which.max(gDat$lifeExp), ]
    country year       pop continent lifeExp gdpPercap
804   Japan 2007 127467972      Asia  82.603  31656.07



Data aggregation returns!

> with(gDat,
+      tapply(lifeExp, continent, median))
  Africa Americas     Asia   Europe  Oceania 
 47.7920  67.0480  61.7915  72.2410  73.6650 

Summarizing X for the different levels of Y



> (foo <- with(gDat,
+              tapply(lifeExp, continent, summary)))
$Africa
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
  23.60   42.37   47.79   48.87   54.41   76.44 

$Americas
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
  37.58   58.41   67.05   64.66   71.70   80.65 

$Asia
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
  28.80   51.43   61.79   60.06   69.51   82.60 

$Europe
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
  43.58   69.57   72.24   71.90   75.45   81.76 

$Oceania
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
  69.12   71.20   73.66   74.33   77.55   81.24 

> (leByContinent <- do.call(cbind, foo))
        Africa Americas  Asia Europe Oceania
Min.     23.60    37.58 28.80  43.58   69.12
1st Qu.  42.37    58.41 51.43  69.57   71.20
Median   47.79    67.05 61.79  72.24   73.66
Mean     48.87    64.66 60.06  71.90   74.33
3rd Qu.  54.41    71.70 69.51  75.45   77.55
Max.     76.44    80.65 82.60  81.76   81.24

Data aggregation 
returns!

do.call() trick to 
tidy up the result



> with(gDat,
+      tapply(lifeExp, list(year, continent), median))
      Africa Americas   Asia  Europe Oceania
1952 38.8330   54.745 44.869 65.9000 69.2550
1957 40.5925   56.074 48.284 67.6500 70.2950
1962 42.6305   58.299 49.325 69.5250 71.0850
1967 44.6985   60.523 53.655 70.6100 71.3100
1972 47.0315   63.441 56.950 70.8850 71.9100
1977 49.2725   66.353 60.765 72.3350 72.8550
1982 50.7560   67.405 63.739 73.4900 74.2900
1987 51.6395   69.498 66.295 74.8150 75.3200
1992 52.4290   69.862 68.690 75.4510 76.9450
1997 52.7590   72.146 70.265 76.1160 78.1900
2002 51.2355   72.047 71.028 77.5365 79.7400
2007 52.9265   72.899 72.396 78.6085 80.7195

Summarizing X for the different levels of (Y, Z)



but who wants to look at tables 
of numbers all day?



stripplot(lifeExp ~ continent, gDat,
          subset = year == 2007)

“strip plot”, i.e. a univariate scatter plot
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Digression: R’s formula syntax

http://cran.r-project.org/doc/manuals/R-intro.html#Formulae-for-statistical-models

y ~ x
“y twiddle x”

In modelling functions, says y is response or dependent 
variable and x is the predictor or covariate or 
independent variable. More generally, the right-hand 
side can be much more complicated.

http://cran.r-project.org/doc/manuals/R-intro.html#Formulae-for-statistical-models
http://cran.r-project.org/doc/manuals/R-intro.html#Formulae-for-statistical-models


> jFit <- lm(lifeExp ~ I(year - 1950), gDat,
+            subset = continent == 'Americas')
> summary(jFit)

<snip, snip>

Coefficients:
               Estimate Std. Error t value Pr(>|t|)    
(Intercept)    59.03624    1.20834  48.857  < 2e-16 ***
I(year - 1950)  0.30944    0.03535   8.753 7.52e-13 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

Residual standard error: 5.178 on 70 degrees of freedom
Multiple R-squared: 0.5225,! Adjusted R-squared: 0.5157 
F-statistic: 76.61 on 1 and 70 DF,  p-value: 7.524e-13 
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simple linear regression example you’ve 
seen before

x and y are quantitative



y ~ x
“y twiddle x”

In many plotting functions, esp. lattice, this says to plot y 
against x.

xyplot(lifeExp ~ year | country, zDat,
       layout = c(4,2), type = c('p','g','r'))
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scatterplot example you’ve seen before
x and y are quantitative



y ~ x | z

In many plotting functions, esp. lattice, this says to plot y against x 
for every level of z (assumed to be categorical). Evokes 
conditional probability, “given z”, etc.

xyplot(lifeExp ~ year | country, zDat,
       layout = c(4,2), type = c('p','g','r'))
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scatterplot example you’ve seen before
x and y are quantitative
z is categorical



> t.test(lifeExp ~ continent, tinyDat)

! Welch Two Sample t-test

data:  lifeExp by continent 
t = -6.5267, df = 13.291, p-value = 1.727e-05
alternative hypothesis: true difference in means is not equal to 0 
95 percent confidence interval:
 -28.35922 -14.27766 
sample estimates:
mean in group Africa mean in group Europe 
            57.01227             78.33071 
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two-groups testing example you’ve 
seen before

y is quantitative and x is the binary 
variable that specifies the two 
groups

y ~ x



watch my formulas in the following 
graphing examples to see more ways to 
use the formula interface

end digression



stripplot(lifeExp ~ continent, gDat,
          subset = year == 2007,
          jitter.data = TRUE)

jitter -- adding a bit of 
Gaussian noise -- is 
helpful for preventing 
overplotting in small 
datasets
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stripplot(lifeExp ~ continent, gDat,
          subset = year == 2007,
          jitter.data = TRUE,
          type = c("p", "a"), fun = median)

> with(gDat,
+      tapply(lifeExp, list(year, continent), median))
      Africa Americas   Asia  Europe Oceania
1952 38.8330   54.745 44.869 65.9000 69.2550
<snip, snip>
2007 52.9265   72.899 72.396 78.6085 80.7195

many lattice functions let 
you request many 
embellishments via the 
“type” argument; more info 
later;
here I add a line connecting 
the continent-specific 
medians
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stripplot(lifeExp ~ continent, gDat,
          subset = year == 2007,
          jitter.data = TRUE,
          type = c("p", "a"), fun = median)

stripplot(lifeExp ~ reorder(continent, lifeExp), gDat,
          subset = year == 2007,
          jitter.data = TRUE,
          type = c("p", "a"), fun = median)



stripplot(lifeExp ~ reorder(continent, lifeExp), gDat,
          subset = year == 2007,
          jitter.data = TRUE,
          type = c("p", "a"), fun = median)

reorder() helps reorder 
factor levels in terms of a 
summary measure on a 
quantitative variable; see, 
e.g. Sarkar 10.6 “Ordering 
levels of categorical 
variables” or Case study 2 
in this talk Sarkar gave at 
UseR! 2007

here we reorder on the fly 
with reorder()

sometimes we actually 
change the factor levels 
order in the underlying 
data.frame, e.g. gDat

part of the proper care and 
feeding of factors!
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http://www.springerlink.com/content/w3541066762qxr03/
http://www.springerlink.com/content/w3541066762qxr03/
http://www.r-project.org/conferences/useR-2007/program/presentations/sarkar.pdf
http://www.r-project.org/conferences/useR-2007/program/presentations/sarkar.pdf


stripplot(lifeExp ~ reorder(continent, lifeExp),
          gDat, subset = year %in% c(1952, 1977, 2007),
          groups = year, auto.key = TRUE,
          jitter.data = TRUE,
          type = c("p", "a"), fun = median)

like many modelling 
functions, most lattice 
functions accept a subset 
argument; here we narrow 
to just 3 years (early, 
middle, and late)
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stripplot(lifeExp ~ reorder(continent, lifeExp),
          gDat, subset = year %in% c(1952, 1977, 2007),
          groups = year, auto.key = TRUE,
          jitter.data = TRUE,
          type = c("p", "a"), fun = median)

‘groups’ argument specifies 
a factor variable to 
distinguish in the plot via 
superposition, i.e. to 
highlight via different colors 
or symbols or line types

auto.key adds an automatic 
key

but you can see some 
problems, no?
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stripplot(lifeExp ~ reorder(continent, lifeExp),
          subset(gDat, subset = year %in% c(1952, 1977, 2007)),
          groups = year, auto.key = TRUE,
          jitter.data = TRUE,
          type = c("p", "a"), fun = median)

much better!

unused factor levels in the 
factor specified via groups 
can cause problems

better to subset the data 
prior to enacting the 
graphing command

here I’ve been clever and 
used subset() in gDat

See Sarkar 9.2.5 “Dropping unused levels 
from groups”, Sarkar 10.4.1 “Dropping of 
factor levels”
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stripplot(lifeExp ~ reorder(continent, lifeExp),
          gDat, subset = year %in% c(1952, 1977, 2007),
          groups = year, auto.key = TRUE,
          jitter.data = TRUE,
          type = c("p", "a"), fun = median)

stripplot(lifeExp ~ reorder(continent, lifeExp),
          subset(gDat, subset = year %in% c(1952, 1977, 2007)),
          groups = year, auto.key = TRUE,
          jitter.data = TRUE,
          type = c("p", "a"), fun = median)

subtle difference in stripplot() 
call; big difference in result
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stripplot(lifeExp ~ reorder(continent, lifeExp),
          subset(gDat, subset = year %in% c(1952, 1977, 2007)),
          ## reversing rows in key makes it easier to read
          groups = year, auto.key = list(reverse.rows = TRUE),
          jitter.data = TRUE,
          type = c("p", "a"), fun = median)

gilding the lily:
make the order of your key 
correspond to what the viewer 
confronts in the graphic
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Affords opportunities to .......

confirm the expected

make comparisons:
across continents
across time within continent

identify trends:
change over time

make comparisons of trends:
is change over time similar
or different across continent?
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stripplot(lifeExp ~ factor(year),
          droplevels(subset(gDat, continent != "Oceania")),
          groups = reorder(continent, lifeExp),
          auto.key = list(reverse.rows = TRUE),
          jitter.data = TRUE,
          type = c("p", "a"), fun = median)



stripplot(lifeExp ~ reorder(continent, lifeExp), gDat,
          jitter.data = TRUE,
          type = c("p", "a"), fun = median)

But what about larger datasets?
Jittering is not enough. Overplotting remains a 
problem.
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bwplot(lifeExp ~ reorder(continent, lifeExp), gDat)

boxplot or `box and whiskers’ plot (hence ‘bwplot()’)
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Figure from Visualizing Data by Cleveland.

Where boxplots come from



bwplot(lifeExp ~ reorder(continent, lifeExp), gDat,
       panel = panel.violin)

violin plot
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Note: I will talk explicitly about panel functions when we properly introduce lattice.



bwplot(lifeExp ~ reorder(continent, lifeExp), gDat,
       panel = function(..., box.ratio) {
         panel.violin(..., col = "transparent", border = "grey60",
                      varwidth = FALSE, box.ratio = box.ratio)
         panel.bwplot(..., fill = NULL, box.ratio = .1)
       })

violin plot + boxplot
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densityplot(~ lifeExp | continent, gDat)
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densityplot(~ lifeExp, gDat,
            groups = reorder(continent, lifeExp), auto.key = TRUE,
            plot.points = FALSE, ref = TRUE)

ability to superpose 
to facilitate direct 
visual comparison is 
big advantage of 
densityplot over 
histogram

using reorder() again 
so that order in key 
better matches 
order of the 
distributions
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For medium-to-large datasets,
main data visualizations driven by

1. the density f
a. histogram
b. kernel density estimate

2. the CDF F
1. box-and-whisker plot
2. empirical cumulative distribution function

See Ch. 3 of Sarkar



Main data visualizations driven by
1. the density f

a. histogram (histogram)
b. kernel density estimate (densityplot)

2. the CDF F
1. box-and-whisker plot (bwplot)
2. empirical cumulative distribution function 
(ecdfplot)

If densityplot and bwplot had a child ... 
you might get a violin plot.
See Ch. 3 of Sarkar

functions from lattice or latticeExtra



✓=possible/
sensible

~ x y ~ x ~ x | y ~ x , 
groups = y

stripplot ✓

bwplot ✓

histogram ✓ ✓

densityplot ✓ ✓ ✓

ecdfplot ✓ ✓ ✓

*

* I’ve actually extended densityplot to work here, for personal use. See next page.



Raw MATalpha growth

Colony size (log scale)
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I was so disappointed that y ~ x and y ~ x | z didn’t 
work for densityplot, that I implemented that.



Why do I like densityplot better than histogram?

less sensitive (at least visually) to arbitrary choice of 
tuning parameter (bandwidth for densityplot, bin 
boundaries for histogram)

ability to superpose

natural to include raw observed data in a rug

Why do I like violinplot and my version of densityplot 
better than boxplot?

ability to spot bimodality
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Where boxplots fail



gvhd10             package:latticeExtra             R Documentation

Flow cytometry data from five samples from a patient

Description:

     Flow cytometry data from blood samples taken from a Leukemia
     patient before and after allogenic bone marrow transplant.  The
     data spans five visits.

Usage:

     data(gvhd10)

Format:

     A data frame with 113896 observations on the following 8
     variables.

     'FSC.H' forward scatter height values

     'SSC.H' side scatter height values 

     'FL1.H' intensity (height) in the FL1 channel 

     'FL2.H' intensity (height) in the FL2 channel 

     'FL3.H' intensity (height) in the FL3 channel 

     'FL2.A' intensity (area) in the FL2 channel 

     'FL4.H' intensity (height) in the FL4 channel 

     'Days' a factor with levels '-6' '0' '6' '13' '20' '27' '34'



Violin plot > boxplot?

## Figure 3.13
bwplot(Days ~ log(FSC.H), data = gvhd10, 
       xlab = "log(Forward Scatter)",
       ylab = "Days Past Transplant")

## Figure 3.14
bwplot(Days ~ log(FSC.H), gvhd10, 
       panel = panel.violin, box.ratio = 3,
       xlab = "log(Forward Scatter)", 
       ylab = "Days Past Transplant")



what about “empirical cumulative distribution plots” 
or ECDF plots?

Personally, I don’t have much use for them.



What is the empirical cumulative distribution (ecdf)?

F̂n (x) = # xi's ≤  x
n

F̂n (x) =
1
n

I(xi ≤ x)i∑

A step function that increases by 1/n at every 
observed value of X. The NPMLE of F.



histogram vs. densityplot

not a huge difference  in 
what you can see/learn
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ecdfplot()

densityplot()

I cannot ‘read’ 
ecdfplots ... can you 
spot bimodality?  
What’s the mean?  
Which distribution has 
greater spread?

ecdfplot vs. densityplot

very different view of 
the data!



Visualizing dist’n of X (given Y = y)

• I favor smooth histograms = density estimates.  Path of 
least resistance is densityplot.

• Observed data, if sample small enough, can be overlaid via 
points or rug.

• In small datasets, strip plot is good, especially with 
summary statistic, such as median, overlaid.

• Boxplots and, in some very special cases, ecdf plots, seem 
useful.  I like violin plots.

• Honestly, hard to find advantage of histograms, given all 
the other options.
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brief introduction to kernel density 
estimation

based on Camila Souza’s presentation 
in STAT 545A (2008)



Histogram

Well-established, widely-practiced method of density 
estimation.

Basic principle: count the number of observations in 
an interval of size h, called a bin.  Formally bin Bj is:

Bj = [x0 + ( j −1)h, x0 + jh], j = 1,2,...k

f̂h (x) =
1
nh

I(xi ∈Bj )I(x ∈Bj )j∑i∑
The histogram density estimate is:



hist()
base R

truehist()
MASS

histogram()
lattice

Histogram
Crucial ‘tuning’ parameter for histogram density 
estimation: the bins (or bin widths or number of bins)

k = 1+ log2 n

h = 3.5σ̂n−1/3

k = round(1+ log2 n)



faithful data set

bin selection 
has a huge 
impact on the 
result!



Naive estimator, uniform kernel estimator

Remember definition of the density f:

f (x) = lim
h→0

1
2h

P(x − h < X < x + h)

Therefore, for small h, a crude estimator of f is:

f̂h (x) = 1
2nh

[# xi ∈(x − h, x + h)]



Naive estimator, uniform kernel estimator
Therefore, for small h, a crude estimator of f is:

f̂h (x) = 1
2nh

[# xi ∈(x − h, x + h)]

Define a weight function:

w(x) = 1
2

 if x < 1 and 0 otherwise

And re-write the crude / naive estimator as:

f̂h (x) =
1
n

1
h
w x − xi

h
⎛
⎝⎜

⎞
⎠⎟i∑



Naive estimator, uniform kernel estimator

And re-write the crude / naive estimator as:

f̂h (x) =
1
n

1
h
w x − xi

h
⎛
⎝⎜

⎞
⎠⎟i∑

In plain English, place a box of width 2h and height 
(2nh)-1 on each observation.  Density estimate at any 
point x is the sum of these boxes.



Moving beyond a uniform (or 
rectangular) kernel

Let’s replace the weight function with another 
function K that satisfies the following:

K(x) ≥ 0

K(x)dx = 1∫
So K is a probability density function and, usually, is 
symmetric.



In general, the kernel estimator is given by:

f̂h (x) =
1
nh

K x − xi
h

⎛
⎝⎜

⎞
⎠⎟i∑

Tuning parameter h is called the bandwidth



In general, the kernel estimator is given by:

f̂h (x) =
1
nh

K x − xi
h

⎛
⎝⎜

⎞
⎠⎟i∑

Tuning parameter h is called the bandwidth

Instead of a sum of boxes, the kernel estimator is a 
sum of ‘bumps’.  K determines the shape of the 
bumps and h determines their width.

Later, we will talk about how to choose h with cross-
validation.
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density                 package:stats                  R Documentation

Kernel Density Estimation

Description:

     The (S3) generic function 'density' computes kernel density
     estimates.  Its default method does so with the given kernel and
     bandwidth for univariate observations.

Usage:

     density(x, ...)
     ## Default S3 method:
     density(x, bw = "nrd0", adjust = 1,
             kernel = c("gaussian", "epanechnikov", "rectangular",
                        "triangular", "biweight",
                        "cosine", "optcosine"),
             weights = NULL, window = kernel, width,
             give.Rkern = FALSE,
             n = 512, from, to, cut = 3, na.rm = FALSE, ...)
     
Arguments:

       x: the data from which the estimate is to be computed.

      bw: the smoothing bandwidth to be used.  The kernels are scaled
          such that this is the standard deviation of the smoothing
          kernel.  (Note this differs from the reference books cited
          below, and from S-PLUS.)

          'bw' can also be a character string giving a rule to choose
          the bandwidth.  See 'bw.nrd'.
          The default, '"nrd0"', has remained the default for
          historical and compatibility reasons, rather than as a
          general recommendation, where e.g., '"SJ"' would rather fit,
          see also V&R (2002).

          The specified (or computed) value of 'bw' is multiplied by
          'adjust'.

  adjust: the bandwidth used is actually 'adjust*bw'.  This makes it
          easy to specify values like 'half the default' bandwidth.

kernel, window: a character string giving the smoothing kernel to be
          used. This must be one of '"gaussian"', '"rectangular"',
          '"triangular"', '"epanechnikov"', '"biweight"', '"cosine"' or
          '"optcosine"', with default '"gaussian"', and may be
          abbreviated to a unique prefix (single letter).

          '"cosine"' is smoother than '"optcosine"', which is the usual
          'cosine' kernel in the literature and almost MSE-efficient.
          However, '"cosine"' is the version used by S.

       n: the number of equally spaced points at which the density is
          to be estimated.  When 'n > 512', it is rounded up to a power
          of 2 during the calculations (as 'fft' is used) and the final
          result is interpolated by 'approx'.  So it almost always
          makes sense to specify 'n' as a power of two.

density() is the workhorse 
function that powers 
densityplot()

important arguments 
highlighted

don’t confuse yourself: you 
probably think ‘n’ means the 
size of your sample but 
density() has different ideas!



densityplot(~ eruptions, data = faithful)
densityplot(~ eruptions, data = faithful, 
            kernel = "rect", bw = 0.2,
            plot.points = "rug", n = 200)

densityplot 
allows the user to 
specify the 
arguments to 
density, e.g. the 
kernel, bandwidth
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densityplot(~ eruptions, data = faithful,
            n = 35,
            main = "n = 35")

density                 package:stats                  R Documentation

Kernel Density Estimation

<snip, snip>

       n: the number of equally spaced points at which the density is
          to be estimated.  When 'n > 512', it is rounded up to a power
          of 2 during the calculations (as 'fft' is used) and the final
          result is interpolated by 'approx'.  So it almost always
          makes sense to specify 'n' as a power of two.

Practical usage tip: if the 
kernel density estimate in 
your densityplot() isn’t as 
smooth as you’d like, try 
specifying (a high) value of 
n.



Recommended sources:

Härdle, W. (1990) Smoothing Techniques With 
Implementation in S, Springer-Verlag, 1990. Sadly, 
not available via SpringerLink.

Silverman, B.W. (1986) Density Estimation for 
Statistics and Data Analysis, Chapman & Hall, 
1986. Sadly, not available via STATSnetBASE.



Here’s something that IS available via STATSnetBase (and seems to 
have been a source for this material in the first place!):

Chapter 8, Density Estimation: Erupting Geysers and Star Clusters
from
A Handbook of Statistical Analyses Using R, Second Edition
Torsten Hothorn and Brian S . Everitt
Chapman and Hall/CRC 2009
Pages 139–159
Print ISBN: 978-1-4200-7933-3
eBook ISBN: 978-1-4200-7934-0
DOI: 10.1201/9781420079340.ch8

JB succeeded in getting as PDF!
Maybe this link will work for you (?):
http://www.crcnetbase.com/doi/pdfplus/10.1201/9781420079340.ch8
otherwise get on STATSnetBASE yourself and search and click ....

http://www.crcnetbase.com/page/statistics_ebooks
http://www.crcnetbase.com/page/statistics_ebooks
http://www.crcnetbase.com/doi/pdfplus/10.1201/9781420079340.ch8%0Ahttp://www.crcnetbase.com/doi/pdfplus/10.1201/9781420079340.ch8%0A
http://www.crcnetbase.com/doi/pdfplus/10.1201/9781420079340.ch8%0Ahttp://www.crcnetbase.com/doi/pdfplus/10.1201/9781420079340.ch8%0A

