
STAT 545A
Class meeting #5
Wednesday, September 19, 2012

Dr. Jennifer (Jenny) Bryan

Department of Statistics and Michael Smith Laboratories

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/

The Vancouver Institute for Visual Analytics (VIVA) is a joint SFU/UBC initiative to promote Visual Analytics (“the science

of analytical reasoning facilitated by interactive visual interfaces”).

9$�LV�D�PXOWLGLVFLSOLQDU\�ÀHOG�LQWHQGHG�WR�KHOS�SHRSOH�LQWHUDFWLYHO\�H[SORUH�DQG�V\QWKHVL]H�LQIRUPDWLRQ�LQ�RUGHU�WR�GHULYH�
LQVLJKWV�IURP�PDVVLYH��G\QDPLF��DQG�RIWHQ�DPELJXRXV�DQG�FRQÁLFWLQJ�GDWD��

9$�GUDZV�RQ�UHVHDUFK�IURP�DUHDV�VXFK�DV�LQIRUPDWLRQ�YLVXDOL]DWLRQ��KXPDQ�FRPSXWHU�LQWHUDFWLRQ��PDFKLQH�OHDUQLQJ��VWDWLV�
tics, decision making and problem solving, communication, and the cognitive and social sciences.

9$�FDQ�SUHSDUH�\RX�IRU�LQWHUQVKLSV�OHDGLQJ�WR�KLJK�GHPDQG�SRVLWLRQV�RI�GDWD�VFLHQWLVWV�DQG�DQDO\VWV�

9,9$�RIIHUV�VWXGHQWV�DQ�RSSRUWXQLW\�WR�SDUWLFLSDWH�LQ�9$�UHVHDUFK�SURMHFWV�DQG�ZRUN�ZLWK�FXWWLQJ�HGJH�9$�WRROV��XVLQJ�UHDO�
ZRUOG�GDWD��LQ�FROODERUDWLRQ�ZLWK�GRPDLQ�VXEMHFW�PDWWHU�H[SHUWV���

You will learn:

��KRZ�\RX�FDQ�JHW�LQYROYHG�LQ�9$�WKURXJK�WKH�$QGUHZ�:DGH�9LVXDO�$QDO\WLFV�&KDOOHQJH�SURJUDP�
��DERXW�WKH�QHZ�*UDGXDWH�&HUWLÀFDWH�LQ�9LVXDO�$QDO\WLFV��DW�6)8

Pizza and soft drinks will be provided.

Registration is free at:http://awva.eventbrite.com (limit 60)

Location: University of British Columbia – Vancouver Campus, Dodson Room, Irving K. Barber Learning Center

Date: Monday, October 1st, 2012

Time: 12:00 – 13:00

)RU�PRUH�LQIRUPDWLRQ��FKDOOHQJH#YLYD�YLYD�FD�

The Vancouver Institute for Visual Analytics invites all UBC

students and faculty to attend the Open Doors event of the Andrew

Wade Visual Analytics Challenge program on Monday, October

1st, 12:00pm, at the Irving K. Barber Dodson Room.

Review of last class

How to isolate bits of R objects for inspection, modification,
graphing, modelling.

Data aggregation: doing something repetitive for various bits of
your data. Top-level for loops authored by YOU are rarely
necessary or even desirable. Exploit apply, sapply, lapply, tapply, by,
etc.

do.call() trick and other strategies for “tidying up” the results
returned after data aggregation.

The plyr package may be worth adopting for data
aggregation. JB intends to make the switch! Still good to
know about the base R functions, though.....

http://plyr.had.co.nz

http://plyr.had.co.nz
http://plyr.had.co.nz

Review of last class

Data presentation strategies:

build up your own confidence and that of your audience with (boring) facts
(how many observations? how many variables? overview of missing data and
how you address) ... make some figures illustrating this (boring) stuff

give your audience a good sense of the whole dataset, at a high level

do some bulk processing / data reduction, e.g. linear regression of lifeExp on
year for each of 142 countries

now transition to highlighting trends and facilitating comparisons (e.g.
distribution of life expectancy rates of change by continent)

use analytical results to identify interesting cases, e.g. countries with worst and
best life expectancy gains, and revisit raw data ... end with an interesting
story ... tie to outside events or knowledge, etc.

I strongly recommend you use ‘<-’ for
assignment , instead of ‘=’.

It shows and enforces better discipline. Say exactly
what you mean, mean exactly what you say.

Assignment, argument passing, and testing for
equality are distinct concepts. Thus, your syntax
should be distinct too.

(jYear <- max(gDat$year))
xyplot(lifeExp ~ gdpPercap, gDat,
 subset = year == jYear)

Before we go on ...
My advice re: assignment operator in R

In my head, I read ‘x <- rnorm(10)’ as “x gets
10 random normal variates”.

I reserve the single equals sign (‘=’) for providing
values for funtion arguments.

The double equals sign (‘==’) is a comparison
operator.

Don’t just take my word for it, look at R itself and
examples in documentation. Look at Google’s R
style guide.

(jYear <- max(gDat$year))
plot(lifeExp ~ gdpPercap, gDat,
 subset = year == jYear)

http://google-styleguide.googlecode.com/svn/trunk/google-r-style.html
http://google-styleguide.googlecode.com/svn/trunk/google-r-style.html
http://google-styleguide.googlecode.com/svn/trunk/google-r-style.html
http://google-styleguide.googlecode.com/svn/trunk/google-r-style.html

exploring the numeric variables:
population
life expectancy
GDP per capita

Today!

exploring and checking quantitative
univariate data

Consider observations of one quantitative variable
X ... possibly in the presence of one or two
categorical variables Y and Z, that take on a small
number of values

X might be ... life expectancy in Gapminder

Y, Z might be ... country or continent or year

X might be ... life expectancy in Gapminder

Y, Z might be ... country or continent or year

What would you most like to know about the
observed distribution of the X’s (ignore Y, Z)?

Now focus on the possible relationship between X
and Y, Z. What would you most like to know?

<make a list>

Key foundational concepts
Let's say that random variable X has cumulative distribution
function F and density f , i.e.
F(x) = P(X ≤ x), ′F (x) = f (x)

Quantile function is the inverse of the CDF F
F(x0) = p0 ⇔ F−1(p0) = x0

Specific functionals of the distribution are of special interest

E(X) = xdF∫ "expectation" "the mean" (measure of location)

F−1(0.5) "the median" (robust measure of location)

V (X) = var(X) =σ 2 = (x − E(X))2 dF∫ "variance" (measure of spread)

 σ "standard deviation"
"median absolute deviation" "MAD" (measure of spread)
IQR = F−1(0.75)− F−1(0.25) "interquartile range" (measure of spread)

Key concepts -- less ‘tidy’

• Unimodal? If not, how many modes? Where?

• Symmetric? If not, what’s the shape? Which tail is long?

• If considering Y, is the distribution of X meaningfully
different ... in location, spread, shape, etc. ... for different
values of Y?

Summaries computed from observed data are
empirical versions of those “key” concepts

I.e. the average of a sample is an estimate -- and
merely an estimate -- of the true mean

Clear statistical thinkers make a big distinction between
these concepts, though we often speak casually about
it

In this exploratory data analysis class we will be fairly
relaxed but don’t ever forget these distinctions are
real

Numerical summaries, esp. location

> summary(gDat$lifeExp)
 Min. 1st Qu. Median Mean 3rd Qu. Max.
 23.60 48.20 60.71 59.47 70.85 82.60

> fivenum(gDat$lifeExp)
[1] 23.5990 48.1850 60.7125 70.8460 82.6030

> mean(gDat$lifeExp)
[1] 59.47444

> median(gDat$lifeExp)
[1] 60.7125

Numerical summaries, esp. spread

> var(gDat$lifeExp)
[1] 166.8517

> sd(gDat$lifeExp)
[1] 12.91711

> mad(gDat$lifeExp)
[1] 16.10104

> IQR(gDat$lifeExp)
[1] 22.6475

Numerical summaries, esp. extremes
> min(gDat$lifeExp)
[1] 23.599

> max(gDat$lifeExp)
[1] 82.603

> quantile(gDat$lifeExp, probs = c(0.05, 0.95))
 5% 95%
38.4924 77.4370

> range(gDat$lifeExp)
[1] 23.599 82.603

> which.min(gDat$lifeExp)
[1] 1293

> gDat[which.min(gDat$lifeExp),]
 country year pop continent lifeExp gdpPercap
1293 Rwanda 1992 7290203 Africa 23.599 737.0686

> which.max(gDat$lifeExp)
[1] 804

> gDat[which.max(gDat$lifeExp),]
 country year pop continent lifeExp gdpPercap
804 Japan 2007 127467972 Asia 82.603 31656.07

Data aggregation returns!

> with(gDat,
+ tapply(lifeExp, continent, median))
 Africa Americas Asia Europe Oceania
 47.7920 67.0480 61.7915 72.2410 73.6650

Summarizing X for the different levels of Y

> (foo <- with(gDat,
+ tapply(lifeExp, continent, summary)))
$Africa
 Min. 1st Qu. Median Mean 3rd Qu. Max.
 23.60 42.37 47.79 48.87 54.41 76.44

$Americas
 Min. 1st Qu. Median Mean 3rd Qu. Max.
 37.58 58.41 67.05 64.66 71.70 80.65

$Asia
 Min. 1st Qu. Median Mean 3rd Qu. Max.
 28.80 51.43 61.79 60.06 69.51 82.60

$Europe
 Min. 1st Qu. Median Mean 3rd Qu. Max.
 43.58 69.57 72.24 71.90 75.45 81.76

$Oceania
 Min. 1st Qu. Median Mean 3rd Qu. Max.
 69.12 71.20 73.66 74.33 77.55 81.24

> (leByContinent <- do.call(cbind, foo))
 Africa Americas Asia Europe Oceania
Min. 23.60 37.58 28.80 43.58 69.12
1st Qu. 42.37 58.41 51.43 69.57 71.20
Median 47.79 67.05 61.79 72.24 73.66
Mean 48.87 64.66 60.06 71.90 74.33
3rd Qu. 54.41 71.70 69.51 75.45 77.55
Max. 76.44 80.65 82.60 81.76 81.24

Data aggregation
returns!

do.call() trick to
tidy up the result

> with(gDat,
+ tapply(lifeExp, list(year, continent), median))
 Africa Americas Asia Europe Oceania
1952 38.8330 54.745 44.869 65.9000 69.2550
1957 40.5925 56.074 48.284 67.6500 70.2950
1962 42.6305 58.299 49.325 69.5250 71.0850
1967 44.6985 60.523 53.655 70.6100 71.3100
1972 47.0315 63.441 56.950 70.8850 71.9100
1977 49.2725 66.353 60.765 72.3350 72.8550
1982 50.7560 67.405 63.739 73.4900 74.2900
1987 51.6395 69.498 66.295 74.8150 75.3200
1992 52.4290 69.862 68.690 75.4510 76.9450
1997 52.7590 72.146 70.265 76.1160 78.1900
2002 51.2355 72.047 71.028 77.5365 79.7400
2007 52.9265 72.899 72.396 78.6085 80.7195

Summarizing X for the different levels of (Y, Z)

but who wants to look at tables
of numbers all day?

stripplot(lifeExp ~ continent, gDat,
 subset = year == 2007)

“strip plot”, i.e. a univariate scatter plot

life
Ex
p

40

50

60

70

80

Africa Americas Asia Europe Oceania

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

Digression: R’s formula syntax

http://cran.r-project.org/doc/manuals/R-intro.html#Formulae-for-statistical-models

y ~ x
“y twiddle x”

In modelling functions, says y is response or dependent
variable and x is the predictor or covariate or
independent variable. More generally, the right-hand
side can be much more complicated.

http://cran.r-project.org/doc/manuals/R-intro.html#Formulae-for-statistical-models
http://cran.r-project.org/doc/manuals/R-intro.html#Formulae-for-statistical-models

> jFit <- lm(lifeExp ~ I(year - 1950), gDat,
+ subset = continent == 'Americas')
> summary(jFit)

<snip, snip>

Coefficients:
 Estimate Std. Error t value Pr(>|t|)
(Intercept) 59.03624 1.20834 48.857 < 2e-16 ***
I(year - 1950) 0.30944 0.03535 8.753 7.52e-13 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 5.178 on 70 degrees of freedom
Multiple R-squared: 0.5225,! Adjusted R-squared: 0.5157
F-statistic: 76.61 on 1 and 70 DF, p-value: 7.524e-13

year

life
Ex
p

50

55

60

65

70

75

80

1950 1960 1970 1980 1990 2000

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

Americas

simple linear regression example you’ve
seen before

x and y are quantitative

y ~ x
“y twiddle x”

In many plotting functions, esp. lattice, this says to plot y
against x.

xyplot(lifeExp ~ year | country, zDat,
 layout = c(4,2), type = c('p','g','r'))

year

life
Ex
p

40

50

60

70

80

1950 1970 1990

●
●

●
●

●
●

●
●

●

●

●

●

Zimbabwe

●●
●●●●●●●

●
●

●

Paraguay

1950 1970 1990

●

●

●

●

●

●
●

●

●●
●

●

Iraq

●
●●●●

●●●●●
●

●

Denmark

●

●

●
●

●

●

●

●

●

●
●

●

Libya

1950 1970 1990

●

●

●

●

●
●

●

●

●

●
●

●

Nicaragua

●

●

●

●

●

●

●

●

●
●

●
●

Oman

1950 1970 1990

40

50

60

70

80

●

●

●
●

●

●
●

●

●

●
●●

Turkey

scatterplot example you’ve seen before
x and y are quantitative

y ~ x | z

In many plotting functions, esp. lattice, this says to plot y against x
for every level of z (assumed to be categorical). Evokes
conditional probability, “given z”, etc.

xyplot(lifeExp ~ year | country, zDat,
 layout = c(4,2), type = c('p','g','r'))

year

life
Ex
p

40

50

60

70

80

1950 1970 1990

●
●

●
●

●
●

●
●

●

●

●

●

Zimbabwe

●●
●●●●●●●

●
●

●

Paraguay

1950 1970 1990

●

●

●

●

●

●
●

●

●●
●

●

Iraq

●
●●●●

●●●●●
●

●

Denmark

●

●

●
●

●

●

●

●

●

●
●

●

Libya

1950 1970 1990

●

●

●

●

●
●

●

●

●

●
●

●

Nicaragua

●

●

●

●

●

●

●

●

●
●

●
●

Oman

1950 1970 1990

40

50

60

70

80

●

●

●
●

●

●
●

●

●

●
●●

Turkey

scatterplot example you’ve seen before
x and y are quantitative
z is categorical

> t.test(lifeExp ~ continent, tinyDat)

! Welch Two Sample t-test

data: lifeExp by continent
t = -6.5267, df = 13.291, p-value = 1.727e-05
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
 -28.35922 -14.27766
sample estimates:
mean in group Africa mean in group Europe
 57.01227 78.33071

lifeExp
D
en
si
ty

0.00

0.05

0.10

0.15

30 40 50 60 70 80 90

●●
●

●●
●●

● ●●
●

Africa

30 40 50 60 70 80 90

●●●● ●● ●

Europe

two-groups testing example you’ve
seen before

y is quantitative and x is the binary
variable that specifies the two
groups

y ~ x

watch my formulas in the following
graphing examples to see more ways to
use the formula interface

end digression

stripplot(lifeExp ~ continent, gDat,
 subset = year == 2007,
 jitter.data = TRUE)

jitter -- adding a bit of
Gaussian noise -- is
helpful for preventing
overplotting in small
datasets

life
Ex
p

40

50

60

70

80

Africa Americas Asia Europe Oceania

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

stripplot(lifeExp ~ continent, gDat,
 subset = year == 2007,
 jitter.data = TRUE,
 type = c("p", "a"), fun = median)

> with(gDat,
+ tapply(lifeExp, list(year, continent), median))
 Africa Americas Asia Europe Oceania
1952 38.8330 54.745 44.869 65.9000 69.2550
<snip, snip>
2007 52.9265 72.899 72.396 78.6085 80.7195

many lattice functions let
you request many
embellishments via the
“type” argument; more info
later;
here I add a line connecting
the continent-specific
medians

life
Ex
p

40

50

60

70

80

Africa Americas Asia Europe Oceania

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

life
Ex
p

40

50

60

70

80

Africa Americas Asia Europe Oceania

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

life
Ex
p

40

50

60

70

80

Africa Asia Americas Europe Oceania

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

stripplot(lifeExp ~ continent, gDat,
 subset = year == 2007,
 jitter.data = TRUE,
 type = c("p", "a"), fun = median)

stripplot(lifeExp ~ reorder(continent, lifeExp), gDat,
 subset = year == 2007,
 jitter.data = TRUE,
 type = c("p", "a"), fun = median)

stripplot(lifeExp ~ reorder(continent, lifeExp), gDat,
 subset = year == 2007,
 jitter.data = TRUE,
 type = c("p", "a"), fun = median)

reorder() helps reorder
factor levels in terms of a
summary measure on a
quantitative variable; see,
e.g. Sarkar 10.6 “Ordering
levels of categorical
variables” or Case study 2
in this talk Sarkar gave at
UseR! 2007

here we reorder on the fly
with reorder()

sometimes we actually
change the factor levels
order in the underlying
data.frame, e.g. gDat

part of the proper care and
feeding of factors!

life
Ex
p

40

50

60

70

80

Africa Asia Americas Europe Oceania

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

http://www.springerlink.com/content/w3541066762qxr03/
http://www.springerlink.com/content/w3541066762qxr03/
http://www.r-project.org/conferences/useR-2007/program/presentations/sarkar.pdf
http://www.r-project.org/conferences/useR-2007/program/presentations/sarkar.pdf

stripplot(lifeExp ~ reorder(continent, lifeExp),
 gDat, subset = year %in% c(1952, 1977, 2007),
 groups = year, auto.key = TRUE,
 jitter.data = TRUE,
 type = c("p", "a"), fun = median)

like many modelling
functions, most lattice
functions accept a subset
argument; here we narrow
to just 3 years (early,
middle, and late)

life
Ex
p

30

40

50

60

70

80

Africa Asia Americas Europe Oceania

1952
1957
1962
1967
1972
1977
1982
1987
1992
1997
2002
2007

stripplot(lifeExp ~ reorder(continent, lifeExp),
 gDat, subset = year %in% c(1952, 1977, 2007),
 groups = year, auto.key = TRUE,
 jitter.data = TRUE,
 type = c("p", "a"), fun = median)

‘groups’ argument specifies
a factor variable to
distinguish in the plot via
superposition, i.e. to
highlight via different colors
or symbols or line types

auto.key adds an automatic
key

but you can see some
problems, no?

life
Ex
p

30

40

50

60

70

80

Africa Asia Americas Europe Oceania

1952
1957
1962
1967
1972
1977
1982
1987
1992
1997
2002
2007

stripplot(lifeExp ~ reorder(continent, lifeExp),
 subset(gDat, subset = year %in% c(1952, 1977, 2007)),
 groups = year, auto.key = TRUE,
 jitter.data = TRUE,
 type = c("p", "a"), fun = median)

much better!

unused factor levels in the
factor specified via groups
can cause problems

better to subset the data
prior to enacting the
graphing command

here I’ve been clever and
used subset() in gDat

See Sarkar 9.2.5 “Dropping unused levels
from groups”, Sarkar 10.4.1 “Dropping of
factor levels”

life
Ex
p

30

40

50

60

70

80

Africa Asia Americas Europe Oceania

1952
1977
2007

http://www.springerlink.com/content/g5024908j0nv1401/
http://www.springerlink.com/content/g5024908j0nv1401/
http://www.springerlink.com/content/w3541066762qxr03/
http://www.springerlink.com/content/w3541066762qxr03/

stripplot(lifeExp ~ reorder(continent, lifeExp),
 gDat, subset = year %in% c(1952, 1977, 2007),
 groups = year, auto.key = TRUE,
 jitter.data = TRUE,
 type = c("p", "a"), fun = median)

stripplot(lifeExp ~ reorder(continent, lifeExp),
 subset(gDat, subset = year %in% c(1952, 1977, 2007)),
 groups = year, auto.key = TRUE,
 jitter.data = TRUE,
 type = c("p", "a"), fun = median)

subtle difference in stripplot()
call; big difference in result

life
Ex
p

30

40

50

60

70

80

Africa Asia Americas Europe Oceania

1952
1957
1962
1967
1972
1977
1982
1987
1992
1997
2002
2007

life
Ex
p

30

40

50

60

70

80

Africa Asia Americas Europe Oceania

1952
1977
2007

stripplot(lifeExp ~ reorder(continent, lifeExp),
 subset(gDat, subset = year %in% c(1952, 1977, 2007)),
 ## reversing rows in key makes it easier to read
 groups = year, auto.key = list(reverse.rows = TRUE),
 jitter.data = TRUE,
 type = c("p", "a"), fun = median)

gilding the lily:
make the order of your key
correspond to what the viewer
confronts in the graphic

life
Ex
p

30

40

50

60

70

80

Africa Asia Americas Europe Oceania

2007
1977
1952

life
Ex
p

30

40

50

60

70

80

Africa Asia Americas Europe Oceania

2007
1977
1952

Affords opportunities to

confirm the expected

make comparisons:
across continents
across time within continent

identify trends:
change over time

make comparisons of trends:
is change over time similar
or different across continent?

life
Ex
p

30

40

50

60

70

80

1952 1957 1962 1967 1972 1977 1982 1987 1992 1997 2002 2007

Europe
Americas
Asia
Africa

stripplot(lifeExp ~ factor(year),
 droplevels(subset(gDat, continent != "Oceania")),
 groups = reorder(continent, lifeExp),
 auto.key = list(reverse.rows = TRUE),
 jitter.data = TRUE,
 type = c("p", "a"), fun = median)

stripplot(lifeExp ~ reorder(continent, lifeExp), gDat,
 jitter.data = TRUE,
 type = c("p", "a"), fun = median)

But what about larger datasets?
Jittering is not enough. Overplotting remains a
problem.

life
Ex
p

30

40

50

60

70

80

Africa Asia Americas Europe Oceania

●

●

●

●

●

●
●
●
●●●

●

●

●

●
●

●
●

●

●●
●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●●●
●●●

●

●

●
● ●
●
●
●
●

●
●
●

●

●
●

●●
●

●
●

●
●
●

●
●

●
●

●
● ●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
● ●
●
●
●

●
●

●
●

●

●

●

●

●

●

●
●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●●●
● ●●
●

●
●

●

●

●

●

●

●

●
●

●●●

●

●

●

●

●●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●
●

●

●●

●
●
●
●
●
●

●
●
●
●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●●
●●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●
●
●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●
●

●
●
●

●●

●

●

●

●

●

●

●

●
●

●

●
●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●
●

●●
●
●

●
●

●

●

●

●

●

●

●
●●●

●
●

●

●

●
●● ●●●
●
●

●

●
●

●
●●

●●
●●●●

●
●
●

●

●

●

●

●

●

●
●

●

● ●
●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●
●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●
●

●●

●
●
●
●

●

●
●
●
●

●

●

●●
●
●

●
●

●

●

●
●
●

●
●
●
●

●
●
●

●

●

●

●

●

●

●

●
●
●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●●
●

●
●
●

●
●
●
●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●
●
●

●
●●
●●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●
●
●

●

●

●

●

●

●

●

●

●
●
●

●
●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●● ●●●●

●

●
●

●
●●●

●

●
●●

●●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●
●●

●
●

●
●

●

●
●

●

●

●
●

●
●

●
●

●
●
●

●

●

●
●

●
●
●

●
●
●

●
●●

●

●

●

●

●
●

●● ●●●●

●

●

●

●

●

●

●

●
●
●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●
●

●

●

●

●

●
●

●
●
●
●

●
●

●

●

●
●
●

●

●

●

●

●

●

●

●
●
●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●●

●

●

●

●

●
●
●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●
●
●
●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●● ●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●
●

●

●

●

●

●

●

●

●

●

●●
●

●●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●●

●
●

●
●

●●
●

●
●

●●
●●

●●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●●
●
●

●

●

●

●

●

●

●

●

●

●

●
●
●

●●
●●

●
● ●
●●
●

●●
●

●
●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●
●
●
●
●

●●
●

●
●●

●●
●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●●
●●●

●

●
●

●

●

●

●

●
●

●
●
●
●
●

●

●

●
●

●
●

●●
●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●●

●●●●●●

●
●

●

●

●
●●
●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●●
●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●●
●●

●
●
●

●
●
●
●
●
●

●

●

●

●
●

●

●

●

●

●

●
●
●

●

●
●

●
●

●

●

●
●
●●●●●

●
●
●

●

●
●●

●
●●

●
●

●

●
●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●

●
●

●
●
●

●●
●●●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●
●

● ●
●

●
●
●
●

●
●

●
●
●
●
●

●
●
●
●
●
●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●
●

●

●
●

●

●
●

●

●

●
●
●

●

●
●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●
●●●
●

●

●

●●●

●●
●●●●
●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●●

●

●

●

●

●

●
● ●
●
●

●
●

●
●

●
●

●

●
●
●●

●

●
●●

●
●●
●

●
●
●●●
●

●
●

●

●
●
●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

bwplot(lifeExp ~ reorder(continent, lifeExp), gDat)

boxplot or `box and whiskers’ plot (hence ‘bwplot()’)

life
Ex
p

30

40

50

60

70

80

Africa Asia Americas Europe Oceania

●

●

●

●
●

●
●
●
●
●
●
●

●

●
●

●

●

●

●

●
●●
●

●

●

●

●

●

●

●

Figure from Visualizing Data by Cleveland.

Where boxplots come from

bwplot(lifeExp ~ reorder(continent, lifeExp), gDat,
 panel = panel.violin)

violin plot

life
Ex
p

30

40

50

60

70

80

Africa Asia Americas Europe Oceania

Note: I will talk explicitly about panel functions when we properly introduce lattice.

bwplot(lifeExp ~ reorder(continent, lifeExp), gDat,
 panel = function(..., box.ratio) {
 panel.violin(..., col = "transparent", border = "grey60",
 varwidth = FALSE, box.ratio = box.ratio)
 panel.bwplot(..., fill = NULL, box.ratio = .1)
 })

violin plot + boxplot

life
Ex
p

30

40

50

60

70

80

Africa Asia Americas Europe Oceania

●

●

●

●
●

●
●
●
●
●
●
●

●

●
●

●

●

●

●

●
●●
●

●

●

●

●

●

●

●

lifeExp

Pe
rc

en
t o

f T
ot

al

0

10

20

30

40

50

60

20 40 60 80

Africa Americas

20 40 60 80

Asia

Europe

20 40 60 80

0

10

20

30

40

50

60
Oceania

histogram(~ lifeExp | continent, gDat)

lifeExp

Pe
rc

en
t o

f T
ot

al

0

10

20

30

40

50

60

20 40 60 80

Africa Americas

20 40 60 80

Asia

Europe

20 40 60 80

0

10

20

30

40

50

60
Oceania

lifeExp

Pe
rc

en
t o

f T
ot

al

0
5

10
15
20
25

20 40 60 80

year year

20 40 60 80

year year

year year year

0
5
10
15
20
25

year
0
5

10
15
20
25

year

20 40 60 80

year year

20 40 60 80

year

histogram(~ lifeExp | year, gDat)

lifeExp

D
en
si
ty

0.00

0.02

0.04

0.06

0.08

0.10

20 40 60 80

●●● ●●● ●●●●●●●●●●●●●●●●●●●●● ● ●● ●●●●●●●●●●●●

Africa

●●● ●●●

Americas

20 40 60 80

●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●● ●● ●●● ●●● ●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

Asia
●● ●●● ●●●

Europe

20 40 60 80

0.00

0.02

0.04

0.06

0.08

0.10

●●●●●●●●●●●●●●●●●●●●●●●●

Oceania

densityplot(~ lifeExp | continent, gDat)

lifeExp

D
en
si
ty

0.00

0.02

0.04

0.06

0.08

0.10

20 40 60 80

Africa Americas

20 40 60 80

Asia

Europe

20 40 60 80

0.00

0.02

0.04

0.06

0.08

0.10
Oceania

densityplot(~ lifeExp | continent, gDat,
 plot.points = FALSE, ref = TRUE)

densityplot(~ lifeExp, gDat,
 groups = reorder(continent, lifeExp), auto.key = TRUE,
 plot.points = FALSE, ref = TRUE)

ability to superpose
to facilitate direct
visual comparison is
big advantage of
densityplot over
histogram

using reorder() again
so that order in key
better matches
order of the
distributions

lifeExp

D
en
si
ty

0.00

0.02

0.04

0.06

0.08

0.10

20 40 60 80

Africa
Asia
Americas
Europe
Oceania

For medium-to-large datasets,
main data visualizations driven by

1. the density f
a. histogram
b. kernel density estimate

2. the CDF F
1. box-and-whisker plot
2. empirical cumulative distribution function

See Ch. 3 of Sarkar

Main data visualizations driven by
1. the density f

a. histogram (histogram)
b. kernel density estimate (densityplot)

2. the CDF F
1. box-and-whisker plot (bwplot)
2. empirical cumulative distribution function
(ecdfplot)

If densityplot and bwplot had a child ...
you might get a violin plot.
See Ch. 3 of Sarkar

functions from lattice or latticeExtra

✓=possible/
sensible

~ x y ~ x ~ x | y ~ x ,
groups = y

stripplot ✓

bwplot ✓

histogram ✓ ✓

densityplot ✓ ✓ ✓

ecdfplot ✓ ✓ ✓

*

* I’ve actually extended densityplot to work here, for personal use. See next page.

Raw MATalpha growth

Colony size (log scale)

Ag
ar

 p
la

te

1
2
3
4
5
6
7
8
9

10
11
12
13
14

8.0 8.5 9.0 9.5 10.0 10.5

MATalpha_111105_N MATalpha_111105_O
1
2
3
4
5
6
7
8
9

10
11
12
13
14

MATalpha_220305_N

8.0 8.5 9.0 9.5 10.0 10.5

MATalpha_220305_O

I was so disappointed that y ~ x and y ~ x | z didn’t
work for densityplot, that I implemented that.

Why do I like densityplot better than histogram?

less sensitive (at least visually) to arbitrary choice of
tuning parameter (bandwidth for densityplot, bin
boundaries for histogram)

ability to superpose

natural to include raw observed data in a rug

Why do I like violinplot and my version of densityplot
better than boxplot?

ability to spot bimodality

log(Forward Scatter)

D
ay

s
Pa

st
 T

ra
ns

pl
an

t

−6

0

6

13

20

27

34

4.0 4.5 5.0 5.5 6.0 6.5 7.0

●

●

●

●

●

●

●

●● ● ● ●●● ●● ●● ●● ●● ●●●●● ●● ●●●● ●●● ●●● ●● ●●●● ●●● ●●● ● ● ●●● ●●●●● ●● ●● ●● ●●● ●●●● ●● ●● ●●● ● ●●●● ●●● ●●● ● ●●● ●●● ● ●●● ● ●● ●● ● ●●● ●●●●● ●●●● ●● ● ●● ●●● ●● ●● ●●●●●● ● ●●●● ●● ●● ●●

●● ●●●●● ●● ●● ●●● ●●●● ●●● ●

● ●●● ●● ● ●●● ●● ●●● ●● ● ● ●● ●●● ● ● ● ●● ● ●● ● ●●●●●● ●● ●● ●● ● ●●● ●●●● ●● ●● ●● ●● ● ●● ●●●● ● ●● ●● ●● ●● ● ● ● ●● ●● ●●● ●● ●●● ● ●● ●● ●● ● ●● ● ●● ●●●●● ● ●●● ●●● ●●● ●●● ●●● ●● ●● ●●●●● ●● ●● ● ●●●●●● ●● ●● ● ●●● ● ●●● ●● ●● ●● ● ●● ●●● ●● ● ●● ● ●●●● ●● ● ●●●● ●●● ●● ●● ●● ●● ●

●●●● ● ●●● ●●●● ●●● ●●●● ● ● ●● ●●● ●●● ● ●● ●● ●●● ●● ● ●● ● ●●● ●● ● ●●● ● ●● ● ●●

● ●● ●●●●● ●● ●●● ●● ●● ●● ●●●● ●● ● ●●● ●●● ●●● ● ●● ●●● ● ●● ●● ● ●● ●●● ● ●● ● ●●● ● ●● ● ● ●●● ●●● ●● ●●● ● ●● ● ●● ●● ● ●●● ● ●●●● ● ● ●●● ●● ●●●● ●● ●● ●●● ●●● ●● ●●● ● ●●● ● ●●● ● ●●●●●● ●● ●● ●●●● ●●● ●●●●● ● ● ●● ●● ●●●● ●● ● ●●● ● ●●● ●●●●● ●●● ●● ●●● ●● ●●● ● ●● ●●●● ●● ●● ●●●●●● ● ●●● ●●●● ●● ●● ●● ●●●● ●● ● ●●● ● ●●● ●● ●●● ●● ●●● ●●● ●● ●● ●● ●● ●● ●●●● ● ●●● ●● ● ● ●●●●● ● ●● ●●● ●●● ●●● ● ●● ●● ●● ●● ●●● ●●●●● ● ●●● ●● ● ●●●●● ●●●●●● ●● ●● ● ●● ●● ●● ● ●●● ●● ●●● ●●●● ●● ●● ●●● ●●● ● ● ●● ● ●●● ● ●● ● ●●●● ●●● ●● ●● ●● ●●● ●●●● ● ●●●●●● ●● ● ●●● ● ●●● ● ●● ●● ●● ●● ●●● ●●● ●●●●● ●● ●● ●● ●● ●●● ●● ●● ●● ●●● ●● ●●●●● ● ●● ● ●●● ●●● ● ●●● ●● ● ●●●● ●● ●● ●●●● ● ●●● ● ●● ●●●● ●● ●●●●●●● ●●● ●●●●●● ●● ●●● ●●● ●● ●● ●●●● ● ●● ● ●●● ●●●● ●● ● ●● ●●● ● ●● ●●● ●●●●●

●● ●●●●●●● ●●

● ● ●●● ●●●● ● ●● ●●● ●●● ●● ● ●●● ●● ●● ●●● ●● ●● ●●●●● ●●● ●●●●●●● ●● ●● ●● ●● ●● ● ●●● ●●● ● ●●● ●●● ●●●● ● ●●●●●● ● ●● ●● ●● ●●● ● ● ●●●● ●● ●●● ● ●●● ●● ● ●●● ●● ●● ●●● ●●● ●● ● ● ●● ●●●● ●● ●●● ● ● ●●●●● ●● ●●●● ●● ●●● ● ● ●● ●● ●● ●●● ● ● ●●● ●● ●●●● ● ●●●● ●● ●●●● ● ●● ●● ●

log(Forward Scatter)

D
ay

s
Pa

st
 T

ra
ns

pl
an

t

−6

0

6

13

20

27

34

4.0 4.5 5.0 5.5 6.0 6.5 7.0

Where boxplots fail

gvhd10 package:latticeExtra R Documentation

Flow cytometry data from five samples from a patient

Description:

 Flow cytometry data from blood samples taken from a Leukemia
 patient before and after allogenic bone marrow transplant. The
 data spans five visits.

Usage:

 data(gvhd10)

Format:

 A data frame with 113896 observations on the following 8
 variables.

 'FSC.H' forward scatter height values

 'SSC.H' side scatter height values

 'FL1.H' intensity (height) in the FL1 channel

 'FL2.H' intensity (height) in the FL2 channel

 'FL3.H' intensity (height) in the FL3 channel

 'FL2.A' intensity (area) in the FL2 channel

 'FL4.H' intensity (height) in the FL4 channel

 'Days' a factor with levels '-6' '0' '6' '13' '20' '27' '34'

Violin plot > boxplot?

Figure 3.13
bwplot(Days ~ log(FSC.H), data = gvhd10,
 xlab = "log(Forward Scatter)",
 ylab = "Days Past Transplant")

Figure 3.14
bwplot(Days ~ log(FSC.H), gvhd10,
 panel = panel.violin, box.ratio = 3,
 xlab = "log(Forward Scatter)",
 ylab = "Days Past Transplant")

what about “empirical cumulative distribution plots”
or ECDF plots?

Personally, I don’t have much use for them.

What is the empirical cumulative distribution (ecdf)?

F̂n (x) = # xi's ≤ x
n

F̂n (x) =
1
n

I(xi ≤ x)i∑

A step function that increases by 1/n at every
observed value of X. The NPMLE of F.

histogram vs. densityplot

not a huge difference in
what you can see/learn

log(FSC.H)

Em
pi

ric
al

 C
D

F

0.0
0.2
0.4
0.6
0.8
1.0

4.0 4.5 5.0 5.5 6.0 6.5 7.0

−6 0

6

0.0
0.2
0.4
0.6
0.8
1.0

13
0.0
0.2
0.4
0.6
0.8
1.0

20 27
0.0
0.2
0.4
0.6
0.8
1.0

34

ecdfplot()

densityplot()

I cannot ‘read’
ecdfplots ... can you
spot bimodality?
What’s the mean?
Which distribution has
greater spread?

ecdfplot vs. densityplot

very different view of
the data!

Visualizing dist’n of X (given Y = y)

• I favor smooth histograms = density estimates. Path of
least resistance is densityplot.

• Observed data, if sample small enough, can be overlaid via
points or rug.

• In small datasets, strip plot is good, especially with
summary statistic, such as median, overlaid.

• Boxplots and, in some very special cases, ecdf plots, seem
useful. I like violin plots.

• Honestly, hard to find advantage of histograms, given all
the other options.

−2.5 −2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0

0.0

0.2

0.4

0.6

Produced from code at the R graph gallery

Illustration of kernel density estimation

http://gallery.r-enthusiasts.com
http://gallery.r-enthusiasts.com

brief introduction to kernel density
estimation

based on Camila Souza’s presentation
in STAT 545A (2008)

Histogram

Well-established, widely-practiced method of density
estimation.

Basic principle: count the number of observations in
an interval of size h, called a bin. Formally bin Bj is:

Bj = [x0 + (j −1)h, x0 + jh], j = 1,2,...k

f̂h (x) =
1
nh

I(xi ∈Bj)I(x ∈Bj)j∑i∑
The histogram density estimate is:

hist()
base R

truehist()
MASS

histogram()
lattice

Histogram
Crucial ‘tuning’ parameter for histogram density
estimation: the bins (or bin widths or number of bins)

k = 1+ log2 n

h = 3.5σ̂n−1/3

k = round(1+ log2 n)

faithful data set

bin selection
has a huge
impact on the
result!

Naive estimator, uniform kernel estimator

Remember definition of the density f:

f (x) = lim
h→0

1
2h

P(x − h < X < x + h)

Therefore, for small h, a crude estimator of f is:

f̂h (x) = 1
2nh

[# xi ∈(x − h, x + h)]

Naive estimator, uniform kernel estimator
Therefore, for small h, a crude estimator of f is:

f̂h (x) = 1
2nh

[# xi ∈(x − h, x + h)]

Define a weight function:

w(x) = 1
2

 if x < 1 and 0 otherwise

And re-write the crude / naive estimator as:

f̂h (x) =
1
n

1
h
w x − xi

h
⎛
⎝⎜

⎞
⎠⎟i∑

Naive estimator, uniform kernel estimator

And re-write the crude / naive estimator as:

f̂h (x) =
1
n

1
h
w x − xi

h
⎛
⎝⎜

⎞
⎠⎟i∑

In plain English, place a box of width 2h and height
(2nh)-1 on each observation. Density estimate at any
point x is the sum of these boxes.

Moving beyond a uniform (or
rectangular) kernel

Let’s replace the weight function with another
function K that satisfies the following:

K(x) ≥ 0

K(x)dx = 1∫
So K is a probability density function and, usually, is
symmetric.

In general, the kernel estimator is given by:

f̂h (x) =
1
nh

K x − xi
h

⎛
⎝⎜

⎞
⎠⎟i∑

Tuning parameter h is called the bandwidth

In general, the kernel estimator is given by:

f̂h (x) =
1
nh

K x − xi
h

⎛
⎝⎜

⎞
⎠⎟i∑

Tuning parameter h is called the bandwidth

Instead of a sum of boxes, the kernel estimator is a
sum of ‘bumps’. K determines the shape of the
bumps and h determines their width.

Later, we will talk about how to choose h with cross-
validation.

−2.5 −2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0

0.0

0.2

0.4

0.6

Produced from code at the R graph gallery

Illustration of kernel density estimation

http://gallery.r-enthusiasts.com
http://gallery.r-enthusiasts.com

density package:stats R Documentation

Kernel Density Estimation

Description:

 The (S3) generic function 'density' computes kernel density
 estimates. Its default method does so with the given kernel and
 bandwidth for univariate observations.

Usage:

 density(x, ...)
 ## Default S3 method:
 density(x, bw = "nrd0", adjust = 1,
 kernel = c("gaussian", "epanechnikov", "rectangular",
 "triangular", "biweight",
 "cosine", "optcosine"),
 weights = NULL, window = kernel, width,
 give.Rkern = FALSE,
 n = 512, from, to, cut = 3, na.rm = FALSE, ...)

Arguments:

 x: the data from which the estimate is to be computed.

 bw: the smoothing bandwidth to be used. The kernels are scaled
 such that this is the standard deviation of the smoothing
 kernel. (Note this differs from the reference books cited
 below, and from S-PLUS.)

 'bw' can also be a character string giving a rule to choose
 the bandwidth. See 'bw.nrd'.
 The default, '"nrd0"', has remained the default for
 historical and compatibility reasons, rather than as a
 general recommendation, where e.g., '"SJ"' would rather fit,
 see also V&R (2002).

 The specified (or computed) value of 'bw' is multiplied by
 'adjust'.

 adjust: the bandwidth used is actually 'adjust*bw'. This makes it
 easy to specify values like 'half the default' bandwidth.

kernel, window: a character string giving the smoothing kernel to be
 used. This must be one of '"gaussian"', '"rectangular"',
 '"triangular"', '"epanechnikov"', '"biweight"', '"cosine"' or
 '"optcosine"', with default '"gaussian"', and may be
 abbreviated to a unique prefix (single letter).

 '"cosine"' is smoother than '"optcosine"', which is the usual
 'cosine' kernel in the literature and almost MSE-efficient.
 However, '"cosine"' is the version used by S.

 n: the number of equally spaced points at which the density is
 to be estimated. When 'n > 512', it is rounded up to a power
 of 2 during the calculations (as 'fft' is used) and the final
 result is interpolated by 'approx'. So it almost always
 makes sense to specify 'n' as a power of two.

density() is the workhorse
function that powers
densityplot()

important arguments
highlighted

don’t confuse yourself: you
probably think ‘n’ means the
size of your sample but
density() has different ideas!

densityplot(~ eruptions, data = faithful)
densityplot(~ eruptions, data = faithful,
 kernel = "rect", bw = 0.2,
 plot.points = "rug", n = 200)

densityplot
allows the user to
specify the
arguments to
density, e.g. the
kernel, bandwidth

n = 10

eruptions

D
en
si
ty

0.0

0.1

0.2

0.3

0.4

1 2 3 4 5 6

●
●

●
● ●● ●●●

●● ● ●● ●●● ●● ●●
●

●● ●
●● ●●

●●
●● ●●

●●
●● ●●● ●● ●● ●

● ●● ●
●

● ●●
●

●● ●●● ●● ●
●

●● ●● ●●● ●●●
●

● ●●●
● ●●●

● ●●
●● ●● ●● ●●

● ●
●● ●

●
●● ●

●● ●● ●●
●● ●●● ●●

●● ●● ● ●● ●●● ●
●

●● ●● ●● ●
● ●●

●
●● ● ●●● ●● ●●

●●● ●
● ●

●
●● ●● ●●

●● ●● ●●
●

● ● ●
● ● ● ●● ● ●

● ●●
●● ●●

●
●● ●● ●●● ●

● ●
● ●

●
●●● ●

● ●●● ●● ●● ●
● ●● ●● ●●

●●
●●●● ●● ●●

● ●● ●
●● ●

●●
●

●
●● ●●● ●●

●● ●
●

●●●●
●● ● ●●● ●● ● ●●● ●● ●

n = 35

eruptions

D
en
si
ty

0.0

0.1

0.2

0.3

0.4

0.5

1 2 3 4 5 6

●● ●● ●●
●

●● ●
● ● ●● ●●

● ●
●

●●● ●● ●●● ●
● ●● ●

● ●
●●● ●

● ●●●
●

● ●● ●● ●●
●●

● ●● ●●● ●●
●

●
●

●●
●●

●● ●●●
●●● ●

● ●●●
●

●
●

●
●

●●
●

● ●● ●● ●●
● ●●● ●● ●

●
●●● ●● ●●

●● ●●● ●
● ●● ●● ● ●●

●●
●

●● ●● ●● ●
● ●● ●● ● ●● ● ●●● ●● ●
●

●●● ●● ●
●●

●
●

●
●● ●● ●●

●
● ●● ● ●●

● ● ●● ●
●●

●●
●● ●●

●
●● ●

● ●
●

●
●● ●● ●● ●●

● ●
● ●●● ●● ●●

●
●

●● ●● ●● ●● ●●
●● ●● ●●●
●

●
●

●● ●
●● ●●

●
●

●●● ●
● ●
● ●

● ●●●● ●● ●
●●● ●

●
● ●

●● ●●
●

n = 150

eruptions

D
en
si
ty

0.0

0.1

0.2

0.3

0.4

0.5

1 2 3 4 5 6

●
● ●●

●● ●●●
●

● ● ●● ●●●
●

●
●●● ●●

●
●●

●● ●
● ●●

●●●● ●
● ●●
●

●● ●
●

●● ●● ●●● ●● ●●
●

●●● ●●
●

● ●●
●● ●

●
●

●
●● ●●

●●
●

●
●●● ● ●● ●● ●●
●

● ●● ●
●●●

●● ●● ●●●
●●

●● ●● ●
●● ●● ●

●
●● ● ●● ●

●● ●● ●
● ●● ●● ●● ●●

●
●

●
● ●●● ●● ●● ●●

● ●● ● ●●● ●● ●● ●
● ●● ●●

●●
● ●● ●

● ●● ● ●●
●

●●
●

●●● ●
●

●●
●

●● ●●
●● ●

● ●
●●

●
●

●
●● ●● ●

●
●

● ●
● ●● ●● ●

● ●
●●●

●● ●
●● ●● ●●●

●●
● ●
● ●

●
●●● ●● ●● ●● ●●●● ●

● ● ●●●
●● ● ●●● ●

● ●

densityplot(~ eruptions, data = faithful,
 n = 35,
 main = "n = 35")

density package:stats R Documentation

Kernel Density Estimation

<snip, snip>

 n: the number of equally spaced points at which the density is
 to be estimated. When 'n > 512', it is rounded up to a power
 of 2 during the calculations (as 'fft' is used) and the final
 result is interpolated by 'approx'. So it almost always
 makes sense to specify 'n' as a power of two.

Practical usage tip: if the
kernel density estimate in
your densityplot() isn’t as
smooth as you’d like, try
specifying (a high) value of
n.

Recommended sources:

Härdle, W. (1990) Smoothing Techniques With
Implementation in S, Springer-Verlag, 1990. Sadly,
not available via SpringerLink.

Silverman, B.W. (1986) Density Estimation for
Statistics and Data Analysis, Chapman & Hall,
1986. Sadly, not available via STATSnetBASE.

Here’s something that IS available via STATSnetBase (and seems to
have been a source for this material in the first place!):

Chapter 8, Density Estimation: Erupting Geysers and Star Clusters
from
A Handbook of Statistical Analyses Using R, Second Edition
Torsten Hothorn and Brian S . Everitt
Chapman and Hall/CRC 2009
Pages 139–159
Print ISBN: 978-1-4200-7933-3
eBook ISBN: 978-1-4200-7934-0
DOI: 10.1201/9781420079340.ch8

JB succeeded in getting as PDF!
Maybe this link will work for you (?):
http://www.crcnetbase.com/doi/pdfplus/10.1201/9781420079340.ch8
otherwise get on STATSnetBASE yourself and search and click

http://www.crcnetbase.com/page/statistics_ebooks
http://www.crcnetbase.com/page/statistics_ebooks
http://www.crcnetbase.com/doi/pdfplus/10.1201/9781420079340.ch8%0Ahttp://www.crcnetbase.com/doi/pdfplus/10.1201/9781420079340.ch8%0A
http://www.crcnetbase.com/doi/pdfplus/10.1201/9781420079340.ch8%0Ahttp://www.crcnetbase.com/doi/pdfplus/10.1201/9781420079340.ch8%0A

