STAT 545A
Class meeting #6
Monday, September 24,2012

Dr. Jennifer (Jenny) Bryan

Department of Statistics and Michael Smith Laboratories

@ OB

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/

Review of last class
Quantitative summaries of a quantitative variable X (e.g.
mean, median, variance, MAD, min, max,)

Above especially interesting when executed for levels of
categorical variable(s) Y(, Z) via data aggregation
techniques (e.g. tapply, by, or the plyr package?)

For small to medium datasets, stripplot is the way to go;
SHOW ME THE DATA! SHOW ME THE DATA!

stripplot bells & whistles: jitter, type =“a” to add, e.g. the
median, groups to superpose another categorical
variable, auto.key = TRUE to get basic legend

Review of last class

For medium-to-large datasets, stripplot is either not
enough or not even useful => densityplot is my favorite
way to convey an empirical distribution

Kernel density estimate at x = sum of bumps centered at
observed data x;. Shape of bumps = kernel; surprisingly
not that important. Width of bumps = bandwidth; main
tuning parameter.

Other options include boxplot, violin plot, histogram,
ecdfplot

Sidebars:“<-" for assignment, formula interface

Sources for further study of topics covered:

Chapter 4 (“Graphics”) of Venables & Ripley
(2002) has some good material on base R
graphics. Sadly not available via SpringerLink.

http://www.stats.ox.ac.uk/pub/MASS4/
http://www.stats.ox.ac.uk/pub/MASS4/
http://www.stats.ox.ac.uk/pub/MASS4/
http://www.stats.ox.ac.uk/pub/MASS4/
http://www.springerlink.com/mathematics-and-statistics/statistics/
http://www.springerlink.com/mathematics-and-statistics/statistics/

Sources for further study of topics covered:

Chapters 2 (“Simple Usage of Traditional
Graphics”) and 3 (“Customizing Traditional
Graphics™) of Murrell (2006). This whole book
is extremely valuable. Author’s webpage™ (for
example, code to produce all figs in book is
here). Google books search.

I’m sure there are others -- | learned what |
know about base R graphics a long time ago. So
I’d welcome feedback if students find more or
better references that are more current.

* An issue with exporting from Keynote to PDF breaks this link.
Use The Google and “Paul Murrell R graphics” to find the page.Also
the relevant chapter(s) may have different number(s) in the 2nd
edition, which now exists.

http://www.crcnetbase.com/isbn/9781584884866
http://www.crcnetbase.com/isbn/9781584884866
http://www.stat.auckland.ac.nz/%257Epaul/RGraphics/rgraphics.html
http://www.stat.auckland.ac.nz/%257Epaul/RGraphics/rgraphics.html
http://books.google.com/books?id=78P4zntHHVQC&lpg=PP1&dq=inauthor%25253APaul%252520inauthor%25253AMurrell&lr=&as_drrb_is=q&as_minm_is=0&as_miny_is=&as_maxm_is=0&as_maxy_is=&as_brr=0&pg=PP1%23v=onepage&q=&f=false
http://books.google.com/books?id=78P4zntHHVQC&lpg=PP1&dq=inauthor%25253APaul%252520inauthor%25253AMurrell&lr=&as_drrb_is=q&as_minm_is=0&as_miny_is=&as_maxm_is=0&as_maxy_is=&as_brr=0&pg=PP1%23v=onepage&q=&f=false

Code you see in this lecture can be found in these files:
bryan-a0l-10-baseGraphicsStepByStep.R

bryan-a0l-1| |-baseGraphicsPlotGapminderOneYear.R
bryan-a0|-12-baseGraphicsSoln.R
bryan-a0l-30-makeGapminderColorScheme.R
bryan-a0|-50-basicColorDemo.R

in this directory:
http://www.stat.ubc.ca/~jenny/notOcto/STAT 545A/examples/gapminder/code/

http://www.stat.ubc.ca/~jenny/notOcto/STAT545A/examples/gapminder/code/
http://www.stat.ubc.ca/~jenny/notOcto/STAT545A/examples/gapminder/code/

A |B ‘solution’ using base or traditional R graphics.

85 -
80 -
75 -
70 -
65 -
60 -
55 -
50 -
45
40

Life expectancy at birth (years)

35 -
30 -

Africa
Americas
Asia
Europe
Oceania

25
20 -

I 1

T T T T T T
200 400 1000 2000 4000 10000 20000 40000

Income per person (GDP/capita, inflation—adjusted $)

The animation is lost when exported to PDF.

http://www.stat.ubc.ca/~jenny/notOcto/STAT545A/examples/gapminder/figs/animation/gapminder.gif
http://www.stat.ubc.ca/~jenny/notOcto/STAT545A/examples/gapminder/figs/animation/gapminder.gif

step-by-step development of the Gapminder
figure/animation using base R graphics commands

(JYear <- max(gDatSyear))
plot(lifeExp ~ gdpPercap,

subset =

lifeExp
60

gDat,

year == jYear)

80

70
|

50

40

& o o)
o© o 05 o ©® OOO o

o o o%g Ogoo:QO °° o °

(9 %) 0 © @)

oé%ié‘» 39" %)
© o
©Q O
%o
o)
@ o
® O
00 o
@0 ©
® ° o

@ o)
o o}
@0

o
®
T o

o

[[[[[[
0 10000 20000 30000 40000 50000

gdpPercap

take control of whitespace around plot
op <- par(mar = c(5, 4, 1, 1) + 0.1)
plot(lifeExp ~ gdpPercap, gDat,

subset = year == jYear)

par(op)

lifeExp

I ®)
| |

| | | |
0 10000 20000 30000 40000 50000

40

gdpPercap

70 80
[e] o(bo
(o]
0 %°
B
o0&
W
3

lifeExp
60

50
0¥ ¢© 0%
¥ 8°000 6 %0008 o

40

T T T T T
10000 20000 30000 40000 50000

o_

gdpPercap

plot(lifeExp ~ gdpPercap, gDat,
subset = year == jYear)

80
o %
®

70

liteExp
60

50

40

I I I I I I
0 10000 20000 30000 40000 50000
gdpPercap

take control of whitespace around plot
op <- par(mar = c(5, 4, 1, 1) + 0.1)
plot(lifeExp ~ gdpPercap, gDat,

subset = year == jYear)
par(op)

By default, base R graphics commands leave an excessive
amount of whitespace around the plot. This -- and many other
things -- will need explicit management via the par() command.

par() is used to set and query base R graphics parameters.
Read the documentation for par()!

To exert fine control over base R graphics, you will use
par() alot. Which should tip you off why most figure-lovers
are turning to lattice and ggplot2 these days.

Nonetheless, let’s keep going. It's “best practice” to capture
the current value of par when you begin to modify (current
value is returned by the modification / new assighment) and
then to restore that value when you're done. | will
suppress this repetitive bit of code from here on.

take control of axis labels,

orientation of tick labels

jXlab <- "Income per person (GDP/capita, inflation-adjusted $)"
jY¥lab <- "Life expectancy at birth (years)”

plot(lifeExp ~ gdpPercap, gDat,

subset = year == jYear,
las = 1, xlab = jXlab, ylab = jYlab)
CS) <900 0 %O O
80_ OO o OO o . (0] O 00 OOO o . o
o O o o 0
o&o %o Og odDO o oo ° °
Q) o @V o & ©
S 70 go © ° 0
>
e SIS
| %o
® 0%
S 60 o o
© & ©
rS) 90 o)
8_ ooOo
x
o e ° o
(O]
E 50_ OQ) 10 ©
®0
%DO
(e}
o
8@ O
40 - o
[[[[[[
0 10000 20000 30000 40000 50000

Income per person (GDP/capita, inflation—-adjusted $)

take control of axis labels
jXlab <- "Income per person (GDP/capita, inflation-adjusted $)"
jYlab <- "Life expectancy at birth (years)”
plot(lifeExp ~ gdpPercap, gDat,
subset = year == jYear,
las = 1, xlab = jXlab, ylab = jYlab)

If you give good variable names, the default axis labels will
be good enough most of the time.

When preparing a figure for a talk or paper, you will want
to exert greater control.

Collect these sorts of Magic Text Strings at the top of a
script that makes a Very Important Figure, for ease of
modification and code re-use.

take control of axis labels,

orientation of tick labels

jXlab <- "Income per person (GDP/capita, inflation-adjusted $)"
jYlab <- "Life expectancy at birth (years)”

plot(lifeExp ~ gdpPercap, gDat,

subset = year == jYear,
las = 1, xlab = jXlab, ylab = jYlab)
CS) o oO 0 %O 0]
80_ OO o OO o . (0] O 00 OOO o . o
o O o o 0
o&o %o Og OCPO o oo ° °
Q) o @V o & ©
o 70 §o © ° el
e
< © o
B | %o
5 0%
360 o o
© & ©
rS) 90 o)
8_ oooo
X
o e ° o
(O]
E 50_ OQ) 10 ©
®0
%DO
o)
o
8@ O
40 0
I I I I I I
0 10000 20000 30000 40000 50000

Income per person (GDP/capita, inflation—-adjusted $)

Recall your frustrations with axis manipulation!?

For example, it would be nice if there can be more grid lines on the x-
axis. It is easy to do on the original scale, but not on the log scale.

The X axis is not uniformly distributed

Also, | could not figure out how display the countries which have small
populations on the graphs. | did not find out the actual range of Income per
Person, | just applied the Logarithmic function on Income per Person.

some countries have an extreme amount of income
relative to the other countries

For example, | do not know how to use log scale but still label the
axis with original values.

*Note: These frustrations expressed by past STAT 545A students.Your mileage may vary.

Ree 0 &0
8, &,
80 - 88 @ 80 - goé’o@%o -
o® © % 950 o % o® © % 950 o %
o o o o o
ooo OOOOOO ° ©° oo oooooo o o
° 5 o o o % & ° © 00 o Cob o o °
— o ® o —~ o
0.0 o 0.0 o
% o Joo & g° <$O % o o g ° (@o
© 70 & © o © 70 8 o o
> >
< °) < ©)
= o o o o = o o 0o o
S o o o ° el o o o °
© o ° o o o o o
> o > o
S 60 o © o o o' 60 6 o © o o
© [¢] © © © o o o
"6' (o} ° [0} (¢] 6 © o o °
8 o o © 8 o o ©
x © >< [¢]
) oo o) o oo o
0} (o) o % [0 © o OO
= o = _ o
= 50 o o = 50 o
o o o o o o
o (o] [e) o o @] o) ©
o
o o o
oo o ©O o OO o O (¢]
40 o 40 o
T T T T T T T T T T T
500 1000 2000 5000 10000 20000 50000 7 8 9 10 11

Income per person (GDP/capita, inflation—-adjusted $)

log transform the x = gdpPercap
axis using the 'log' argument
plot(lifeExp ~ gdpPercap, gDhat,
subset = year == jYear,
las = 1, xlab jXlab, ylab =
log = 'x")

log transform the x =
'by hand'

plot(lifeExp ~ log(gdpPercap),
year
Xlab =

axis
subset =
las = 1,

Income per person (GDP/capita, inflation—adjusted $)

jYlab,

gdpPercap

gDat,

jYear,

jXlab, ylab = jYlab)

log transform the x = gdpPercap
axis using the 'log' argument
plot(lifeExp ~ gdpPercap, gDat,

subset = year == jYear,
las = 1, xlab = jXlab, ylab =
log = 'x")

\

This is the preferred way to log transform the x
variable. Works same way for y variable.

Results in axis tick marks and labels that are
easier for reader to understand, i.e. are based on

the original scale.

log transform
axis 'by hand'

las =1

jYlab,

ab, ylab jYlab)

Recall the frustration over drawing and sizing circles!?

When | was trying to relate the population size to the size of points, it takes me about | hour;
because | need to scale the population properly. | use two scale method.
tHHt 1) size=10*[pop-min(pop)]/[max(pop)-min(pop)]
HH#H 2) size= sqrt(pop)/4000

Find the right function or parameter to determine
Method(2) works better. the radius of the circle symbols

Found the use of "symbols" and its documentation helps me to set circles and
colors!!! | can set different colors for different countries, but the same
country always uses the same color.The size of circles is increasing function
of its population of "current data" or "the most recent available data".... | feel
very lucky to find 'symbols’.

Finally, | tried to vary the size of the dots. The basic principle was simple, because there is a parameter tc
the 'points’ function to scale the size of the marker (‘cex’).What took me a surprisingly long time was
getting the formula for the size of the marker 'right'.

| tried various ratios, scalings, and log transforms, and most of them yielded points that were far too
uniform in size. Eventually, | decided that making this proportional to the ratio of population to the
smallest value was the right approach, but that the proportion should be in area of the marker.Taking a
square root and scaling it to keep the circles from getting too big ended up with effect pretty similar to
GapMinder. This feature alone probably took me an hour.

*Note: These frustrations expressed by past STAT 545A students.Your mileage may vary.

The next task: conveying two more pieces of
information
* color < continent / country

* circle size <> population

Big picture: It’s quite easy to depict a 4-
dimensional dataset with a scatterplot.

map pop into circle radius
jPopRadFun <- function(jPop) { # make area scale with pop
sgrt (jPop/pi)

}
plot (jJPopRadFun(pop) ~ pop, gDbhat) # looks promising
with(subset(gbhat, year == jYear),

symbols (x = gdpPercap, y = lifeExp,
circles = jPopRadFun(pop), add = TRUE,
inches = 0.7,
fg = jDarkGray, bg = color))

It can be surprisingly vexing to transform a variable into ... for
example, circle radii or colors ... for an effective display!
Expect to give this careful attention.

map pop into circle radius

jPopRadFun <- function(jPop) { # make area scale with pop
sgrt (jPop/pi)

}

2
area = 7r

area < pop

7‘=\/p0p/7l'

Try to find a principled way to proceed. In this case, | claim
that area of circle should correspond to population, which
implies the above transformation.

map pop into circle radius

jPopRadFun <- function(jPop) { # make area scale with pop
sgrt (jPop/pi)
}
plot(jJPopRadFun(pop) ~ pop, gDat) # looks promising
c)oo
’51_ ocp@

5000

o_

I I I I I I I
0.0e+00 2.0e+08 4.0e+08 6.0e+08 8.0e+08 1.0e+09 1.2e+09

pop

Plot this for a sanity check before throwing into main figure
command.

map pop into circle radius

jPopRadFun <- function(jPop) { # make area scale with pop
sgrt (jPop/pi)

}

plot (jJPopRadFun(pop) ~ pop, gDbhat) # looks promising

with(subset(gbhat, year == jYear),

symbols (x = gdpPercap, y = lifeExp,
circles = jPopRadFun(pop), add = TRUE,
inches = 0.7,

fg = jDarkGray, bg = color))

The symbols() command plots ... symbols! You can specify a
shape, e.g. circle, and more, e.g. size.

| won’t talk about this a lot because we risk getting hyper-
specific about the Gapminder example.

Frankly, this doesn’t come up often in real life for me.

with (subset (gbhat, year == jYear),
symbols (x = gdpPercap, vy = lifeExp,
circles = jPopRadFun(pop),
inches = 0.7,
fg = jDarkGray, bg = color,
las = 1, xlab = jXlab, ylab = jYlab,
log = 'x'))

Error in plot.window(...) : Logarithmic
axlis must have positive limits

with (subset (gbhat, year == jYear),
symbols (x = gdpPercap, vy = lifeExp,
circles = jPopRadFun(pop),
inches = 0.7,
fg = jDarkGray, bg = color,
las = 1, xlab = jXlab, ylab = jYlab,
log = 'x'))

Morally, the above should work. But, in practice,
it does not. | suppose due to the fact that the
circle centres are in ‘legal’ places, but the entire
circle is not.

More hints about what’s irritating about base
graphicsYou have to do everything yourself.

use 'plot()' to set things up and then add other elements
plot(lifeExp ~ gdpPercap, gbat, subset = year == jYear,
las = 1, xlab = jXlab, ylab = jYlab,
log = 'x', type = "n")
with(subset (gbhat, year == jYear),
symbols(x = gdpPercap, y = lifeExp,
circles = jPopRadFun(pop), add = TRUE,
inches = 0.7,

fg = jDarkGray, bg = color))

80

(o)) ~
o o
l l

Life expectancy at birth (years)

o)
o
l

(@)

40

| | |
500 1000 2000 5000 10000 20000 50000

Income per person (GDP/capita, inflation—adjusted $)

use 'plot()' to set things up and then add other elements
plot(lifeExp ~ gdpPercap, gbat, subset = year == jYear,
las = 1, xlab = jXlab, ylab = jYlab,
log = 'x', type = "n")
with(subset (gbhat, year == jYear),
symbols(x = gdpPercap, y = lifeExp,
circles = jPopRadFun(pop), add = TRUE,
inches = 0.7,
fg = jDarkGray, bg = color))

This is a typical workflow in ambitious plots made with
base R graphics commands: call plot() to set up a
coordinate system and do precious little else. Then call
other functions to add desired elements.

Sort by year (increasing) and population (decreasing)
Why? So larger countries will be plotted "under" smaller ones.
ghat <- with(gDat, gDat[order(year, -1 * pop),1])

Sidebar: | changed the order of the rows in the
dataset to address overplotting. Example
where the result (a figure) is unavoidably
sensitive to the row order of the input data.

80 - . O&
\ (o] OOQ °
°e

70

60

Life expectancy at birth (years)

50

40

| T T T T T T
500 1000 2000 5000 10000 20000 50000

Income per person (GDP/capita, inflation—adjusted $)

use 'plot()' to set things up and then add other elements
plot(lifeExp ~ gdpPercap, gbat, subset = year == jYear,
las = 1, xlab = jXlab, ylab = jYlab,
log = 'x', type = "n")
with(subset (gbhat, year == jYear),
symbols(x = gdpPercap, y = lifeExp,
circles = jPopRadFun(pop), add = TRUE,
inches = 0.7,

fg = jDarkGray, bg = color))

80

(o)) ~
o o
l l

Life expectancy at birth (years)

o)
o
l

(@)

40

| | |
500 1000 2000 5000 10000 20000 50000

Income per person (GDP/capita, inflation—adjusted $)

use 'plot()' to set things up and then add other elements
plot(llfeExp ~ gdpPercap, gbhat, subset = year == jYear,
las = 1, xlab = leab ylab = jYlab,
log = 'x', type = "n")
with(subset (gbhat, year == jYear),
symbols (X = gdpPercap, y = lifeExp,
circles = jPopRadFun(pop), add = TRUE,
inches = 0.7,

fg = jDarkGray, bg = color))

| have added a variable that holds the color | wish each circle to be filled with.
Telling symbols() to use that color is trivial. Creating the color scheme and
constructing this color variable is not. Shown later.

> peek(gDat)

continent country color year pop lifeExp gdpPercap
1356 Europe Belgium #6DAD35 1962 9218400 70.250 10991.207
137 Africa Congo, Rep. #F7AE55 1967 1179760 52.040 2677.940
418 Africa Namibia #FDBA67 1972 821782 53.867 3746.081
118 Africa Comoros #FDD6A2 1992 454429 57.939 1246.907
168 Africa Djibouti #FDDCAF 1992 384156 51.604 2377.156
1319 Asia Yemen, Rep. #A883B8 2007 22211743 62.698 2280.770

963 Asia Cambodia #B797C6 2007 14131858 59.723 1713.779

suppress the automatic axes (tick marks)
1in anticipation of taking direct control

plot(lifeExp ~ gdpPercap, gDat, subset = year == jYear,
las = 1, xlab = jXlab, ylab = jYlab,
log — 'X', type — llnll,
xaxt = "n", yaxt = "n")

with(subset(gbhat, year == jYear),

symbols (x = gdpPercap, y = lifeExp,
circles = jPopRadFun(pop), add = TRUE,
inches = 0.7,
fg = jDarkGray, bg = color))

Life expectancy at birth (years)

Income per person (GDP/capita, inflation—adjusted $)

suppress the automatic axes (tick marks)
1in anticipation of taking direct control

plot(lifeExp ~ gdpPercap, gDat, subset = year == jYear,
las = 1, xlab = jXlab, ylab = jYlab,
lOg — 'X', type — llnlI,
xaxt = "n", yaxt = "n")

with(subset(gbhat, year == jYear),

symbols (x = gdpPercap, y = lifeExp,
circles = jPopRadFun(pop), add = TRUE,
inches = 0.7,

fg = jDarkGray, bg = color))

Another example of suppressing default plot
elements. Fancy figures made with R graphics often
have this counter-intuitive feel: two steps backward,
then one step forward. Then another forward and

so on. More ways to suppress stuff include ‘ann =
FALSE’ and ‘bty ="n’".

Axis tick marks & labels are back!
Reference grid has appeared.

85
80 -
75
70
65
60 -
55
50 O
45 - ‘ °
40
35
30
25
20

Life expectancy at birth (years)

| |
200 400 1000 2000 4000 10000 20000 40000

Income per person (GDP/capita, inflation—-adjusted $)

jX1lim <- c(200, 50000)
jY¥lim <- c(21, 84)
gdpTicks <- c¢(200, 400, 1000, 2000, 4000, 10000, 20000, 40000)
lifeExpTicks <- seq(from = 20, to = 85, by = 5)
jGray <- 'grey80'
plot(lifeExp ~ gdpPercap, <same old stuff here>,
xlim = jXlim, ylim = jYlim)
axis(side = 1, at = gdpTicks, labels = gdpTicks)
axis(side = 2, at = lifeExpTicks, labels = lifeExpTicks, las = 1)
abline(v = gdpTicks, col = jGray)
abline(h = lifeExpTicks, col = jGray)
with(subset(gbhat, year == jYear),
symbols (<same old stuff here>))

85 1
80
75
70
65
60
55
50 (<)

sl @ -

40

Life expectancy at birth (years)

35
30
25
20

| | | | | | | |
200 400 1000 2000 4000 10000 20000 40000

Income per person (GDP/capita, inflation—-adjusted $)

> sapply(gDat[c(' gdpPercap', '1lifeExp')], range)
gdpPercap lifeExp
[1,] 241.1659 23.599
[2,] 113523.1329 82.603
> sapply(gDhat[c('gdpPercap', '11feExp')], quantile,
+ probs = ¢(0.9, 0.95, 0.98))
gdpPercap lifeExp
90% 19449.14 75.0970
95% 26608.33 77.4370
98% 33682.22 79.3694

Once you take a certain amount of control, it’s almost
inevitable that you will have to finish the job. For
example, you may need to explicitly specify axis limits.
There will be some trial-and-error, but commands like
the above are helpful to get things rolling.

Recall your frustrations with a legend!?

| tried to add a legend for the colours and continents,
but it was quite the disaster. The function call seems
simple enough but it doesn’t behave as I'd expect.

legend (colors do not correspond to the data points

*Note: These frustrations expressed by past STAT 545A students.Your mileage may vary.

The year has been placed in the plot background. We
have a legend linking a color family to a continent.

85
80
75
70
65
60
55
50 - O
s @ -
40
35
30
25
20

Life expectancy at birth (years)

Africa
Americas
Asia
Europe
Oceania

I I I I I I I I
200 400 1000 2000 4000 10000 20000 40000

Income per person (GDP/capita, inflation—-adjusted $)

place YEAR as a watermark in background,
include a legend
yearCex <- 15
plot(lifeExp ~ gdpPercap, ...)
text(x = sqgrt(prod(jXlim)), y = mean(jY¥lim),
jYear, adj = c¢(0.5, 0.5), cex = yearCex, col = jGray)

<snip, snip>
legend(x = 'bottomright', bty = 'n’,

legend = names(colorAnchors),

fill = sapply(colorAnchors, function(z) z[1l]))

55

Life expectancy at birth (years)

Details on colorAnchors will
become clear when we go back
and construct the color scheme.

m Africa
®m Americas

m Asia

= Europe

®m (Qceania
I [[[I

| | |
200 400 1000 2000 4000 10000 20000 40000

N ND W W A A O
o 0o O o1 O O O
| | | | | | |

Income per person (GDP/capita, inflation—adjusted $)

The really last frontier: conveying one more
piece of information
* time < ‘frame’ in an animation

Big picture: It's guite-easy somewhat easy to
depict a 5-dimensional dataset with a series of
scatterplots.

writeToFile <- TRUE # write a figure file for each year?

for(jYear in sort(unique(gDatSyear))) {

plot(lifeExp ~ gdpPercap, ...)

<snip, snip>

symbols (gDatS$SgdpPercap[gDatSyear == jYear],
ghatSlifeExp[gDatSyear == jYear],
circles = sqgrt(gDat$pop[gDat$year == jYear]/pi),
add = TRUE, fg = jDarkGray,
bg = gDatScolor[gDhat$Syear == jYear],
inches = 0.7)

legend(x = 'bottomright', bty = 'n',
legend = names(colorAnchors),
fill = sapply(colorAnchors, function(z) z[1]))

if(writeToFile) {

dev.print (pdf,

file = pasteO(whereAmI,"figs/animation/bryan-a0l-baseGraphics-",

jYear, ".pdf"),
width = 9, height = 7)
}

Sys.sleep(0.5) # gives 'live' figures an
animated feel

}
Code developed earlier is easily inserted inside a loop

over year. Nice to build in a toggle for writing to file.
Construct informative file names programmatically.

writeToFile <- TRUE # write a figure file for each year?

for(jYear in sort(unique(gDatSyear))) {

op <- par(mar = c(5, 4, 1, 1) + 0.1)

plotGapminderOneYear(jYear, gDat, continentColors)

if(writeToFile) {

dev.print (pdf,
file = pasteO(whereAmI,"figs/animation/bryan-al0l-baseGraphics-",
jYear, ".pdf"),

width = 9, height = 7)

}
Sys.sleep(0.5) # gives 'live' figures an
animated feel
}
par(op)

After incremental, interactive development, figure-
making code is easily packaged in a function and
inserted inside a loop over year. Nice to build in a
toggle for writing to file. Construct informative file

names programmatically using paste() and relevant
variables, such as year.

- H = Ll 2%

FAVORITES Name

— .DS_Store
= All My Files . -
= Y » (] classBlog

@ jenny ¥ [] gapminder
] STATS45A .DS_Store

» |] code

» [data

v [figs

.DS_Store
v [] animation

.DS_Store
bryan-a0l-baseGraphics-1952.pdf
bryan-a0l-baseGraphics-1957.pdf
bryan-a0l-baseGraphics-1962.pdf
bryan-a0l-baseCraphics-1967.pdf
bryan-a0l-baseCraphics-1972.pdf
bryan-a0l-baseGraphics-1977.pdf
bryan-a0l-baseGraphics-1982.pdf
bryan-a0l-baseGraphics-1987.pdf
bryan-a0l-baseGraphics-1992.pdf
bryan-a0l-baseCraphics-1997.pdf
bryan-a0l-baseGraphics-2002.pdf
bryan-a0l-baseGraphics-2007.pdf
gapminder.qgif

| &

| ¥ | F | F | F || §

| ¥ | F | F | F | §

Figures are created for each year.
Filename tells me what the figure is.

| cannot stress enough how useful it is to

[1] write figures to file with a line of R code, not a
casual spontaneous mouse event

[2] give figure files excruciatingly informative names,
not “figurel” or “final version” or “figure for
meeting”’ or “scatterplot”

Your ability to navigate your own work products in
the future will be GREATLY enhanced by these
practices. | have learned this the hard way.

BEGIN: stitch figures together into an animation

setwd (pastel (whereAmI, "figs/animation/"))

system("convert -delay 100 -loop 0 *.pdf gapminder.gif")

NOTE: convert is part of ImageMagick

1 view the resulting gif animation with a browser or Xee

most browsers work and it can also be pasted into Keynote, which
suggests it might work in PowerPoint too?

END: stitch figures together into an animation

For a final touch, stitch together the year-by-
year ‘stills’ into a dorky animated GIF.

To be clear, | know this is low-tech and has
lots of short-comings. But | think it has
good hassle:result ratio.

Life expectancy at birth (years)

85

80 -
75 -
70 -
65 -
60 -
55 -
50 -
45 -
40 -
35 -
30 - ®m Africa
®m Americas
25 - =m Asia
m Europe
o0 — ®m (QOceania
I | | I | I | I
200 400 1000 2000 4000 10000 20000 40000

Income per person (GDP/capita, inflation—-adjusted $)

Greatest hits of the base R solution

plot(y ~ x, myData, :
subset = sthglogical) axis() legend()
par() abline()
text()
symbols() mtext()

using colors in R
mostly focused on base/traditional R graphics

will revisit when we cover lattice

> jDat

country
336 Congo, Dem. Rep.
1356 Sierra Leone
108 Bangladesh
816 Jordan
1416 South Africa
732 Iran
948 Malaysia
672 Hong Kong, China

year
2007
2007
2007
2007
2007
2007
2007
2007

pop continent

64606759
6144562
150448339
6053193
43997828
69453570
24821286
6980412

Africa
Africa

Asia
Asia

Africa

Asia
Asia
Asia

lifeExp

46
42

72
49

70.
.241
.208

74
82

.462
.568
64.
.535
. 339

062

964

gdpPercap

277
862
1391
4519

| randomly drew 8 countries and kept their

Gapminder data from 2007.

| sorted the rows by gdpPercap, so the
points are added to plots from left to right.

.5519
.5408
.2538
.4612
9269.
11605.
12451.
39724.

6578
7145
6558
9787

plot(lifeExp ~ gdpPercap, jbhat, log = 'x',
xlim = jXlim, ylim = jYlim,
main = "Start your engines ...'")

80
70 — ¢
60 —

50 - .

lifeExp

40 -

30

20 -
| T T |
200 500 2000 10000 50000

gdpPercap

plot(lifeExp ~ gdpPercap, jbhat, log = 'x',
xlim = jXlim, ylim = jYlim,
col = "red", main = 'col = "red"')

col = "red"

You can tell R the color

you want by name. 0

70 - -
60 -

50 - o

lifeExp

40 -

30 -

20
| T T |
200 500 2000 10000 50000

gdpPercap

plot(lifeExp ~ gdpPercap, jbhat, log = 'x',
xlim = jXlim, ylim = jY¥lim,
col = c¢c("red", "green"),
main = 'col = c("red", "green")')

col = c("red", "green")

Recycling happens.

80 -
70 -

60 —

lifeExp

50 o

40

30 -

20
| T T |
200 500 2000 10000 50000

gdpPercap

plot(lifeExp ~ gdpPercap, jbhat, log = 'x',
xlim = jXlim, ylim = jYlim,
col = 1:nC,

main = 'col = 1l:nC')
with(jDat,
text(x = gdpPercap, y = lifeExp, pos = 1))
col=1:nC
You can specify a color
: : 80 8
via an integer. .
5 70 - 4 Z
. . 60 — é
This specifies colors 3
within the current £ 50~ ; :
palette. 40 - 2
30 -
You're looking at the 0
default palette. 200 500 2000 10000 50000

gdpPercap

> palette()
[1] "black” "red"

[8] |lgrayll

View and modify the
palette with palette().

Read documentation to
see examples of
changing the active
palette.

The default palette is
ugly.

"green3" "blue"

"cyan" "magenta" "yellow"
col=1:nC
80 8
B e o
70 4 6
o 60 - 3
>
LL
L 50 :
1 o
40 2
30
2O_| | | | | | | |
200 500 2000 10000 50000

gdpPercap

jColors <- c('chartreuse3d', 'cornflowerblue',
'darkgoldenrodl’', 'peachpuff3',
'mediumorchid2', 'turquoise3',
'wheat4', 'slategray2')

plot(lifeExp ~ gdpPercap, jbat, log = 'x',
xlim = jXlim, ylim = jYlim,
col = jColors,
main = 'col = jColors') col =jCO|OI‘S
80
Express your inner artist! 70 -
_ 60 -
X
Save the colors you plan & _
to use to an R object, =
. 40 -
then pass to graphing
functions. 30 -
20 -

200 500 2000 10000 50000
gdpPercap

> colors()

[1] "white" "aliceblue” "antiquewhite”
[4] "antiquewhitel" "antiquewhite2” "antiquewhite3"
[7] "antiquewhite4™ "aquamarine" "aquamarinel"
[10] "aguamarine2" "agquamarine3" "agquamarine4"

<snip, snhip>

[643] "violetred2" "violetred3" "violetred4™
[646] "wheat" "wheatl" "wheat2"
[649] "wheat3" "wheat4" "whitesmoke"
[652] "yellow" "yellowl" "yellow2"
[655] "yellow3" "yvellow4d" "yellowgreen"

colors() will show you the 657 colors you can
refer to by name.

azured

antiquewhite4

bisque4

black

aquamarine4 blue

blue1

blue2

Page 1 out of 6

blue3

blue4

blueviolet

brown cadetblue4

brown1

brown2

brown3

brown4 chartreuse3
chartreuse4
chocolate
chocolate2

burlywood4 chocolate3

cadetblue chocolate4

corall

coral2

coral3

coral4

cornflowerblue

cornsilk4

cyan3 darkolivegreen darkorchid4
cyan4 darkred
darkblue

darkcyan

darkgoldenrod darkolivegreen4

darkorange1

darkgoldenrod3 darkorange?2 darkseagreen4

darkgoldenrod4 darkorange3 darkslateblue

darkorange4 darkslategray

darkgreen darkorchid

darkorchid1

darkorchid?2

darkmagenta darkorchid3 darkslategray4

A long time ago | made a 6 page document for
myself. Good times.

white

aliceblue

antiquewhite

antiquewhite1

antiquewhite2

antiquewhite3

antiquewhite4

aguamarine

aquamarine1

agquamarine2

aquamarine3d

azurei

azure?2

azure3

azure4d

beige

bisque

bisque1

bisque2

bisque3d

burlywood

burlywood1

blanchedalmond burlywood?2

burlywood3

cadetblue

Page 1 out of 6

cadetblue1

cadetblue?2

cadetblue3d

chartreuse

chartreuse1

chartreuse?2

chartreuse3

chocolate

chocolate1

chocolate2

coral

corall

coral2

cornflowerblue

cornsilk

cornsilki

cornsilk2

cornsilk3

cornsilk4

cyan

cyant

cyan2

darkgoldenrod

darkgoldenrod1

darkgoldenrod?2

darkgoldenrod3

darkgray

darkgrey

darkkhaki

darkolivegreen1
darkolivegreen2 darksalmon
darkolivegreen3 darkseagreen
darkseagreen1
darkorange darkseagreen2
darkorange1

darkseagreen3

darkorange?2

darkslategray1

darkslategray?2

darkslategray3

On a black background too, just in case!

@ white

@ aliceblue

@ antiquewhite
@ antiquewhite1
@ antiquewhite2
@ antiquewhite3
@ antiquewhite4
@ aguamarine
@ aquamarinet
@ aquamarine2
@ aguamarine3

@ azure
@ azurel
@ azure2
@ azure3
@ azure4
@ beige
@ bisque
@ bisquet
@ bisque2
@ bisque3
@ bisque4

@ blanchedalmond

@ burlywood

@ burlywood1
@ burlywood?2
@ burlywood3

@ cadetblue

@ cadetbluet
@ cadetblue2
@ cadetblue3

@ chartreuse

@ chartreuse
@ chartreuse?2
@ chartreuse3

@ chocolate
@ chocolate1
@ chocolate2

@ coral
@ corall
@ coral2

@ cornflowerblue
@ cornsilk

@ cornsilki

@ cornsilk2

@ cornsilk3

@ cornsilk4

@ cyan

@ cyani

@ cyan2

@ cyan3

@ darkgoldenrod

@ darkgoldenrod1
@ darkgoldenrod2
@ darkgoldenrod3

@ darkgray

@ darkgrey
@ darkkhaki

@ darkolivegreent
@ darkolivegreen2
@ darkolivegreen3

@ darkorange
@ darkorangef
@ darkorange?2

@ darksalmon
@ darkseagreen

@ darkseagreent
@ darkseagreen2
@ darkseagreen3

@ darkslategray1
@ darkslategray?
@ darkslategray3

@ darkturquoise

@ deepskyblue
@ deepskyblue
@ deepskyblue2

@ floralwhite

@ gainsboro
@ ghostwhite
@ gold

@ gold1

@ gold2

@ gold3

@ goldenrod

@ goldenrod1
@ goldenrod2
@ goldenrod3

@ gray

@ gray50
@ grays1

@ grays2
@ grays3
@ gray54
@ grays5
@ grays6
@ gray57
@ gray58
@ gray59
@ gray60
@ gray61
@ gray62
@ gray63
@ gray64
@ gray65
@ gray66
@ gray67
@ gray68
@ gray69
@ gray70
@ gray71
@ gray72
@ gray73
@ gray74
@ gray75
@ gray76
@ gray77
@ gray78
@ gray79
@ grays80
@ gray8i
@ gray82
@ grays3
@ grays4
@ grayss
@ grays6
@ grays7
@ grayss
@ grays89
@ gray90
@ gray91
@ gray92
@ gray93
@ gray94
@ gray9s
@ gray96
@ gray97
@ gray9s
@ gray99
@ gray100
@ green
@ greent

[R] Built—in Colour Names

@ green2

@ greenyellow
@ grey

@ greys0
@ grey51
@ grey52
@ grey53
@ grey54
@ grey55
@ grey56
@ grey57
@ grey58
@ grey59
@ grey60
@ grey61
@ grey62
@ grey63
@ grey64
@ grey65
@ grey66
@ grey67
@ grey68
@ grey69
@ grey70
@ grey71
@ grey72
@ grey73
@ grey74
@ grey75
@ grey76
@ grey77
@ grey78
@ grey79
@ greys0
@ greysi
@ greys2
@ greys3
@ greys4
@ greyss
@ greys6
@ greys7
@ greyss
@ greys9
@ grey90
@ greyoi
@ grey92
@ grey93
@ greyo4
@ grey9ds
@ grey96

@ grey97

@ grey9s

@ grey99

@ grey100

@ honeydew
@ honeydew1
@ honeydew?2
@ honeydew3
@ honeydew4
@ hotpink

@ hotpinki

@ hotpink2
@ hotpink3

@ indianred
@ indianred1
@ indianred2

@ ivory

@ ivory1

@ ivory2

@ ivory3

@ ivory4

@ khaki

@ khakit

@ khaki2

@ khaki3d

@ khaki4

@ lavender

@ lavenderblush
@ lavenderblush1
@ lavenderblush?2
@ lavenderblush3
@ lavenderblush4
@ lawngreen

@ lemonchiffon
@ lemonchiffon1
@ lemonchiffon2
@ Iemonchiffon3
@ lemonchiffon4
@ lightblue

@ lightblue1

@ lightblue2

@ lightblue3

@ lightcoral
@ lightcyan
@ lightcyan1
@ lightcyan2
@ lightcyan3

@ lightcyan4

@ lightgoldenrod

@ lightgoldenrod1
@ lightgoldenrod2
@ lightgoldenrod3
@ lightgoldenrod4

@ mediumaquamarine @ orchid3

@ mediumorchid
@ mediumorchid1
@ mediumorchid2

@ lightgoldenrodyellow:

@ lightgray
@ lightgreen
@ lightgrey
@ lightpink
@ lightpink
@ lightpink2
@ lightpink3

@ lightsalmon

@ lightsalmon1
@ lightsalmon?2
@ lightsalmon3

@ lightseagreen
@ lightskyblue

@ lightskybluet
@ lightskyblue2
@ lightskyblue3

@ lightslateblue
@ lightslategray
@ lightslategrey
@ lightsteelblue
@ lightsteelblue1
@ lightsteelblue2
@ lightsteelblue3

@ lightyellow
@ lightyellow1
@ lightyellow2
@ lightyellow3
@ lightyellow4
@ limegreen

@ linen

@ maroont

@ mediumpurple
@ mediumpurplet
@ mediumpurple2

@ mediumseagreen

@ palegoldenrod
@ palegreen

@ palegreent

@ palegreen2
@ palegreen3

@ paleturquoise
@ paleturquoiset
@ paleturquoise2
@ paleturquoise3
@ paleturquoise4
@ palevioletred

@ mediumspringgreen@ palevioletred1

@ mediumturquoise

@ mintcream
@ mistyrose

@ mistyrosel
@ mistyrose2
@ mistyrose3
@ mistyrose4
@ moccasin

@ navajowhite
@ navajowhitet
@ navajowhite2
@ navajowhite3

@ oldlace

@ olivedrab1
@ olivedrab2
@ olivedrab3

@ orange

@ orangel
@ orange?2
@ orange3

@ orchid
@ orchid1
@ orchid2

created by a STAT 545A student in past
you can also find lots of these on the interwebs

@ palevioletred2
@ palevioletred3

@ papayawhip
@ peachpuff

@ peachpuffi
@ peachpuff2
@ peachpuff3

@ peru
@ pink
@ pinki1
@ pink2
@ pink3

@ plum

@ plumi
@ plum2
@ plum3

@ powderblue

@ rosybrown

@ rosybrownt
@ rosybrown2
@ rosybrown3

@ salmon

@ salmont
@ salmon2
@ salmon3

@ sandybrown

@ scagreent
@ seagreen2
@ seagreend

@ scashell

@ scashelll
@ scashell2
@ scashell3
@ scashell4

@ siennai
@ sienna2
@ siennal

@ skyblue

@ skybluei
@ skyblue2
@ skyblue3

@ slateblue

@ slategray1
@ slategray?
@ slategray3

@ snow

@ snowt

@ snow2

@ snow3

@ snow4

@ springgreen

@ springgreeni
@ springgreen2

@ springgreen3d

@ steelblued
@ steelblue2
@ steelblue3

@ tan

@ tani
@ tan2
@ tan3

@ thistle
@ thistlel
@ thistle2
@ thistle3
@ thistle4
@ tomato
@ tomato1
@ tomato2

@ turquoise

@ turquoisel
@ turquoise2
@ turquoise3

@ violet

@ violetred1

@ wheat

@ wheat1

@ wheat?2

@ wheat3

@ wheat4

@ whitesmoke
@ yellow

@ yellowt

@ yellow2

@ yellow3

@ yellowgreen

[R] Plotting Symbols

©CoONOOLDAWN—
>— - —N<X=Z=<CH®OWLITOTO

KOO - O: 000000 D1 Ot —: = = — (D

O
A
+
X
O
\V4
X
%
d
@
X
H
b2y
(A
m
°
A
.
o
(J
@)
O
<
A
\V4

e d el —AAN<XS<C—~+~0W-SOTOS3 — X — —

-

O————MMMmMORI>>>I>>D>> LN
OO0 HVDxDMMDOYRITLTCCOCCTCQ XO:000002

ZIrXce—IOMMUOUOWX>»>E~>V Il A~ -
|

SO+~ 0Q O QO -

see help(points) for more details

symbols, too

Integer Sample line String
Fredetined
0 "blank"
1 "solid"
P "dashed"
B e "dotted"
d memememememes "dotdash"
9 meEsEsEs—————= "longdash"
6 -—-—-———-— — "twodash"
Custor
.................. nygn
- "F8"
e mes e — e "431313"
- == --— "22848222"

From Ch.3 of
Murrell ‘R Graphics’

http://www.stat.auckland.ac.nz/~paul/RGraphics/chapter3.html
http://www.stat.auckland.ac.nz/~paul/RGraphics/chapter3.html
http://www.stat.auckland.ac.nz/~paul/RGraphics/rgraphics.html
http://www.stat.auckland.ac.nz/~paul/RGraphics/rgraphics.html

From Ch.3 of

Temperature (°C) in 2003
expressionipaste ("Temperature (", degree, "C) in 2003"))

[
X=,—
n

i=1

expressioni(bar(x) == sum(frac(x[1]., n), 1==1, n))

B = (%) Xy

expressionthatibeta) == (X"t * X)~{-1} * X"t * vy)

zi =X+

expression(z[1] == sqrtix[1]"2 + y[1]"2))

From Ch. 4 of
Murrell ‘R Graphics’

Murrell ‘R Graphics’

20
19 —
10 A

5_

0 —

10

15 20

http://www.stat.auckland.ac.nz/~paul/RGraphics/chapter3.html
http://www.stat.auckland.ac.nz/~paul/RGraphics/chapter3.html
http://www.stat.auckland.ac.nz/~paul/RGraphics/rgraphics.html
http://www.stat.auckland.ac.nz/~paul/RGraphics/rgraphics.html
http://www.stat.auckland.ac.nz/~paul/RGraphics/chapter4.html
http://www.stat.auckland.ac.nz/~paul/RGraphics/chapter4.html
http://www.stat.auckland.ac.nz/~paul/RGraphics/rgraphics.html
http://www.stat.auckland.ac.nz/~paul/RGraphics/rgraphics.html

Honestly, hand-picking colors is not sustainable.
Time-consuming.

Most of us are actually terrible at it.

Trust a professional.

Consider the RColorBrewer package, based on the work
of Cynthia Brewer.

http://colorbrewer2.org/
http://colorbrewer2.org/

sequential

qualitative

diverging

Oranges

library(RColorBrewer)
display.brewer.all()

YIOrRd
YIOrBr
YIGnBu
YIGn
Reds
RdPu
Purples
PuRd
PuBuGn
PuBu
OrRd

Greys
Greens
GnBu
BuPu
BuGn
Blues

Set3
Set2i]

Pastel2
Pastel1
Paired

I
Set1 I ——— I I

Dark? | s Sy - —

Accent

Spectral IEE————
RAYIGn I
RAYIBu I
RAGy I
RdBu I
PuOr I
PRGN I
PiYG I
BrBG I

Brownto Blue.10
Brownto Blue.12
BluetoDarkOrange.12
BluetoDarkOrange.18

DarkRedtoBlue.12

DarkRedtoBlue.18

BluetoGreen.14

BluetoGray.8

BluetoOrangeRed.14

- Another source of color

- palettes suitable for

colorblind people is the
- package dichromat

library (RColorBrewer)
display.brewer.pal(n = 8, name = 'Dark2')

Dark2 (qualitative)

Focusing in on one of the qualitative palettes

plot(lifeExp ~ gdpPercap, jbat, log = 'x',
xlim = jXlim, ylim = jYlim,

col = brewer.pal(n = 8, name = "Dark2"),
main = 'col = brewer.pal(n = 8, name = "Dark2")',
cex.main = 0.75)

col = brewer.pal(n = 8, name = "Dark2'

RColorBrewer-based

color choices are more 80 - ’
sustainable, higher quality 70 - * .
than built-in or self-made g 60 - ’
color schemes. ® 50 - .

T 40 - ‘
But | still recommend 30 —
storing the scheme as an 0
object 200 1000 10000

gdpPercap

> (jColors <- brewer.pal(n = 8, name = "Dark2"))
[1] "#1B9E77" "#D95F02" "#7570B3" "#E7298A" "#66A61E" "#E6ABO02" "#A6761D"
[8] "#666666"

> plot(lifeExp ~ gdpPercap, jbat, log = 'x',

+ xlim = jXlim, ylim = jYlim,

+ col = jColors,

+ main = 'col = brewer.pal(n = 8, name = "Dark2")',
+ cex.main = 0.75)

Notice the form in which the
col = brewer.pal(n = 8, name = "Dark2' RCO I O rBrewe r CO I O rs are

80 - : stored.
70 -
60 —
50 - : Let’s demystify that
40 -
30
20 -

200 1000 10000

gdpPercap

lifeExp

> (jColors <- brewer.pal(n = 8, name = "Dark2"))
[1] "#1B9E77" "#D95F02" "#7570B3" "#E7298A" "#66A61E" "#E6ABO02" "#A6761D"
[8] "#666666"

These colors are expressed as Red-Blue-Green

hex | decimal (RBG) hexadecimal triples.

0

Parse like so: #rrbbgg.

Each element -- such as the ‘rr’ -- specifies the

intensity of a color component as a two digit

base |6 number.

W O|N|cn|Ln|h]|JWIDN|—

How to interpret a hexadecimal value
GE=9*16' +14*16°=9* |6+ 14 =158

o

N

Lowest value is 00 = 0.

W

~

Highest values is FF = 255.

| m|O|lO0O|lwm|[>|lo]lo|N]|laca|lL]lrx]|lw]|d]|—|O

ol

Some basic facts re: RBG hexadecimal triples.

“unsaturated”, shades of gray

o

N

W

~

hex decimal
0 0
I I
2 2
3 3
4 4
5 5
6 6
7 7
8 8
9 9
A
B
C
D
E
F

ol

color name| #rrggbb red green blue
white #FFFFFF | 955 755 755
grays0 | #7F7F7F | 127 | 127 | 127

black #000000 0 0 0

“saturated”, primary colors

color name| #rrggbb red green blue
blue #000OFF 0 0 755

green #0OO0FFOO 0 255 0

red #FFO000 7255 0 0

R is expecting colors to be specified in one of these ways:
- an integer, used as an index into current palette

- a character string, i.e. one of the color names in colors()
- 2 hexadecimal RGB triple

Under the hood, colors are always expressed in one of several
color models or color spaces. RGB is just one example.Another is

Hue-Saturation-Value (HSV).

Turns out RGB is a rather lousy color model (arguably, so it HSV).
Good for generating colors on a computer screen but doesn’t
facilitate color picking with respect to human perception.

ZLeileis et al advocate using Hue-Chroma-Luminance (HCL)
triplets.“Less flashy (than HSV) and more perceptually balanced.”
Check out their interesting paper and the colorspace R package.

: N . grayscale
HSV . N
rainbow ¢ i -
HSV ¢
heat = 5 HCL

0
1
80

. .. heat

50
0

40

w
.p._
w

0.000 D.E;OS 0.610 0.015 0.020 0.025 0.030

Fig. 1. Bivariate density estimation of duration (x-axis) and waiting time (y-axis) for Old Faithful geyser eruptions. The palettes employed are
(counterclockwise from top left) an HSV-based rainbow, HSV-based heat colors, HCL-based heat colors and grayscales.

childhood mortality in Nigeria

original HSV
palette

what a red-
green
colorblind
person would
see

proposed HCL 5
palette #1|

proposed HCL .
palette #2

abDove av
- 2 00 02 H g

below avg

Fig. 2. Posterior mode estimates for childhood mortality in Nigeria. The color palettes employed are (from top to bottom) an HSV-based rainbow and two
HCL-based diverging palettes. In the right panels red-green contrasts are collapsed to emulate protanopic vision

HSV HCL

CDU/CSU SPD CDU/CSU

>

Griine FDP
Linke Linke
CDU/CSU FDP SPD GrLi CDU/CSU FDP SPD GrLi
Schleswig-Holstein Schleswig—Holstein | 1 1]
Hamburg Hamburg = 1 —]

Niedersachsen Niedersachsen

Bremen Bremen

Mordrhein-Westfalen Mordrhein-Westfalen

Hessen
Rheinland-Pfalz

Hessen | | | | | |
Rheinland-Pfalz | [1] [T

Bayern Bayern

Baden-Wirttemberg Baden-Warttemberg

Saarland Saarland
Mecklenburg-Vorpommern Mecklenburg-Vorpommern L 1 1 1
Brandenburg Brandenburg |] 1 |
Sachsen—-Anhalt Sachsen—Anhalt [1 1]
Berlin Berlin | L1 | | |
Sachsen Sachsen | [] [] |
Thiringen Tharingen | | B 1 |

Fig. 7. German election 2005 with HSV-based (left) and HCL-based (right) qualitative palette. Top: Pie chart for seats in the parliament. Bottom: Mosaic
display for votes by province.

Hair Hair
Black Brown Red Blond Black Brown Red Blond
[| =
= =
e e
m [vs)
-4 2
L L
1)) [eh]
3 =
m o
T T
[= c
S
] U]

Fig. 8. Further examples for HSV-based (left) and HCL-based (right) palettes. Top: Scatter plot with three clusters and qualitative palette. Bottom: Extended
mosaic display for hair and eye color data with diverging palette.

Leileis,A., Hornik, K., & Murrell, P. (2009). Escaping
RGBIland: Selecting colors for statistical graphics.

Computational Statistics & Data Analysis, 53(9),
3259-3270.doi:10.1016/j.csda.2008.11.033

The R system for statistical computing (R Development Core Team, 2008) provides an open-source implementation of
HCL (and other color spaces) in the package colorspace, originally written by Ross IThaka. The coordinate transformations
mentioned above are contained in C code within colorspace that are easy to port to other statistical software systems.
Version 1.0-0 of colorspace (Ihaka et al., 2008) also includes an implementation of all palettes discussed above. (Originally,
the code for the palettes was in the ved package, Meyer et al. (2006) but it was recently moved to colorspace to be more easily
acessible.) Qualitative palettes are provided by rainbow_hc1 () (named after the HSV-based function rainbow () in base
R). Sequential palettes based on a single hue are implemented in the function sequential_hcl () while heat_hcl ()
offers sequential palettes based on a range of hues. Diverging palettes can be obtained by diverge_hcl (). Technical
documentation along with a large collection of example palettes is available via help("rainbow_hcl", package =
"colorspace"). Furthermore, R code for reproducing the example palettes in Figs. 4-6 (and some illustrations) can be
accessed via vignette("hcl-colors", package = "colorspace").

The default color palettes in the ggplot2 package (Wickham, 2008) are also based on HCL colors, using similar ideas to

those discussed in this article.

http://cran.r-project.org/web/packages/colorspace/index.html

http://cran.r-project.org/web/packages/colorspace/index.html
http://cran.r-project.org/web/packages/colorspace/index.html

Bottom-line:
Consider going beyond the R’s default colors, color

palettes, and color palette-building functions. They're
pretty bad.

Ready-made palettes exist in RColorBrewer and
dichromat and HCL-color-model based tools exist in
colorspace for building your own palettes.

The example up til now is unrealistic (who really wants
each point to have its own color?) and elementary (it’s not
that hard to get that far by yourself).

Typical task: encode the information in a factor with color.

How to do!?

we paused here ... continuing in next class

>

(JLevels <- pasteO("grp", 1:3))

[1] n grpl n n grpz n n grp3 n

>

jDatSgroup <- factor(sample(jLevels, nC, replace = TRUE))

> jDat

country year pop continent lifeExp gdpPercap group
336 Congo, Dem. Rep. 2007 64606759 Africa 46.462 277.5519 qgrpl
1356 Sierra Leone 2007 6144562 Africa 42.568 862.5408 grp2
108 Bangladesh 2007 150448339 Asia 64.062 1391.2538 grp3
816 Jordan 2007 6053193 Asia 72.535 4519.4612 grpl
1416 South Africa 2007 43997828 Africa 49.339 9269.6578 grpl
732 Iran 2007 69453570 Asia 70.964 11605.7145 grp3
948 Malaysia 2007 24821286 Asia 74.241 12451.6558 grpl
672 Hong Kong, China 2007 6980412 Asia 82.208 39724.9787 grp2
> (JjColors <- data.frame(group = jLevels,

+

color I(brewer.pal(n = 3, name = 'Dark2'))))

group color
grpl #1B9E77
grp2 #D95F02
grp3 #7570B3

| randomly created a grouping factor, with 3 levels:
grpl, grp2, and grp3.

In a separate data.frame, I've associated those levels with
colors drawn from the Dark2 RColorBrewer palette.

> (jLevels <- pasteO("grp", 1:3))

[1] n grpl n n grpz n n grp3 n

> jDatSgroup <- factor(sample(jLevels, nC, replace = TRUE))
> jDat

country year pop continent lifeExp gdpPercap group
336 Congo, Dem. Rep. 2007 64606759 Africa 46.462 277.5519 grpl
1356 Sierra Leone 2007 6144562 Africa 42.568 862.5408 grp2
108 Bangladesh 2007 150448339 Asia 64.062 1391.2538 grp3
816 Jordan 2007 6053193 Asia 72.535 4519.4612 grpl
1416 South Africa 2007 43997828 Africa 49.339 9269.6578 grpl
732 Iran 2007 69453570 Asia 70.964 11605.7145 grp3
948 Malaysia 2007 24821286 Asia 74.241 12451.6558 grpl
672 Hong Kong, China 2007 6980412 Asia 82.208 39724.9787 grp2

> (JjColors <- data.frame(group = jlLevels,

+ color I(brewer.pal(n = 3, name = 'Dark2'))))
group color

1 grpl #1B9E77

2 grp2 #D95F02

3 grp3 #7570B3

Example of protecting a variable with I() that | want to
keep as character, i.e. want to suppress R’s tendency to
convert to factor.

> jDat

country year pop continent lifeExp gdpPercap group
336 Congo, Dem. Rep. 2007 64606759 Africa 46.462 277.5519 grpl
1356 Sierra Leone 2007 6144562 Africa 42.568 862.5408 grpl
108 Bangladesh 2007 150448339 Asia 64.062 1391.2538 grpl
816 Jordan 2007 6053193 Asia 72.535 4519.4612 grp2
1416 South Africa 2007 43997828 Africa 49.339 9269.6578 grp2
732 Iran 2007 69453570 Asia 70.964 11605.7145 grpl
948 Malaysia 2007 24821286 Asia 74.241 12451.6558 grp3
672 Hong Kong, China 2007 6980412 Asia 82.208 39724.9787 grp3
> (JjColors <- data.frame(group = jLevels,
+ color = I(brewer.pal(n = 3, name = 'Dark2'))))

group color
1 grpl #1B9E77
2 grp2 #D95F02
3 grp3 #7570B3

> match(jDatSgroup, jColorsS$group)
[11 11122133

> jColorsS$Scolor[match(jDatSgroup, jColorsS$Sgroup)]

[1] "#1B9E77" "#1B9E77" "#1B9E77" "#D95F02" "#D95F02" "#1B9E77" "#7570B3"
[8] "#7570B3"

match() gets you a vector of indices which can then be
used to index the vector colors. Part of R’s toolkit for
“table look-up” operations.

plot(lifeExp ~ gdpPercap, jbhat, log = 'x',
xlim = jXlim, ylim = jYlim,
col = jColorsScolor[match(jDatSgroup, jColorsSgroup)],

main = 'col = jColorsScolor[match(jDatS$Sgroup, jColorsSgroup)]',
cex.main = 0.5)
legend(x = 'bottomright',
legend = as.character(jColors$group),
col = jColorsS$Scolor, pch = 16, bty = 'n', xjust = 1)

col = jColors$color[match(jDat$group, jColors$group)]

80 - ©
70 - .
60 -
50 - .

40 - : -

30 - * grpz
20 - grp3

200 1000 10000
gdpPercap

lifeExp

jDatVersion2 <- merge(jDat, jColors)
plot(lifeExp ~ gdpPercap, jDatVersion2, log = 'x',
xlim = jXlim, ylim = jYlim,
col = color,
main = 'col = jDatVersion2$color',
cex.main = 1)
legend(x = 'bottomright',

legend = as.character(jColorsS$group), COl — jDatverSiOn2$CO|Or
col = jColorsS$Scolor, pch = 16, bty = 'n'")

80 - ’
If you're willing to bring 70 - °
color info into the
data.frame, merge() makes
this incredibly easy. 40 - . grp1

30 - ° grpa

PY ‘
> jDatVersionZ[c('country','gdpPercap','lifeExp','group','color'tj g;rr)\-

country gdpPercap lifeExp group color

1 Congo, Dem. Rep. 277.5519 46.462 grpl #1B9ET77 | | | | | | | |
2 Sierra Leone 862.5408 42.568 grpl #1B9E77

3 Bangladesh 1391.2538 64.062 grpl #1B9E77 22()() 1 ()()() 1 ()()()()

4 Iran 11605.7145 70.964 grp2 #D95F02

5 Jordan 4519.4612 72.535 grp2 #D95F02

6 South Africa 9269.6578 49.339 grpl #1B9E77 g;(ip)F’EBf()EiF)

7 Malaysia 12451.6558 74.241 grp3 #7570B3

8 Hong Kong, China 39724.9787 82.208 grp3 #7570B3

My recommendations:

Use RColorBrewer or dichromat for your schemes (or as the
basis of complicated schemes -- see Gapminder example next).

Store your scheme in an R object, like a vector or data.frame.
Will be handy for code re-use, making legends, keeping colors
consistent over several figures, etc.

Use match() to map a factor into colors or, often more useful,
merge() to integrate the color variable with the data itself. The
need for you to get personally involved in this is greatly
reduced / delayed if you use lattice and the “groups” argument.
Suspect something similar is true for ggplot2. Another downside
of base graphics.

jDatVersion2 <- merge(jDat, jColors)

plot(lifeExp ~ gdpPercap, jDatVersion2, log = 'x',
xlim = jXlim, ylim = jYlim,
col = color,

main = 'col = jDatVersion2S$color',
cex.main = 1)
legend(x = 'bottomright', _ _
legend = as.character(jColorsS$group), COl —]DatverSIOn2$CO|Or
col = jColorsS$Scolor, pch = 16, bty = 'n')
80 - ’
70 - * .
legend() is ... how you o :
o 60 -
make a legend! Read the T,
— O
documentation and = 10 - e
gradually build up the ° grp]
30 - ° grp
legend you want. Too fiddly 50 - ° grp

200 1000 10000
gdpPercap

and figure-specific to
discuss here.

End: encoding the information in a
factor with color ‘by hand’.

Continent / country colors vexed almost
everyone in Assignment |.

“I failed to assign different colors to countries
from different continent”

| know there are six continents in total and the command col=1:6 represents 6 different
colors. But | really do not understand how to assign the different colors to each continent,

An extremely difficult step was to figure out how to relate the geographical are with the color coding.

I didn't use
continent at all.

began trying to figure out how to re-color each dot based on continent. This proved to be
beyond me at the moment, though | did end up with some interesting looking plots with
col=rainbow(##) (of course the colors were then meaningless, but still progress
nonetheless). | left the dots monotone, but | will try to figure out how to specify color by
parameter this weekend at some point.

*Note: These frustrations expressed by past STAT 545A students.Your mileage may vary.

Life expectancy at birth (years)

85

80
75
70
65
60
55
50 - O
45 °
40 o
35
30 m Africa
B Americas
25 W Asia
= FEurope
20 - m (Qceania
I I I I I I I I
200 400 1000 2000 4000 10000 20000 40000

Income per person (GDP/capita, inflation—adjusted $)

The Gapminder Color Scheme:
How did B construct it?

Gapminder Color Scheme

Africa Americas Asia Europe Oceania

Sao Tome ang -

Diibouti Trinidad and | Bahrain Iceland
Equatorial G Kuwait Monteneqro
| Comoros Jamaica .

smallest geuni_on _ Mongolia Slovenia
wagzilan
POop Ic\a/lagritius Panama (L)entlz:on Albania

\3abon | Urugua

Botswana Puerto Rico [. Croatia
Gambia Singapore 5 aH
| esotho . oshia an
\I_bmi_bia Costa Rica | Jordan Norwar
|iberia ; Israel

Mauritania | Nicaragua Finl

Con 0. Re Honq KOHQ, C in and
- =0NdO, NeD. | paraqyay

ge.tntral Afri Cambodia | Slovak Repub

.rlgzea El Salvador Denmark
Honduras Switzerland

largest
Pop

Austria

Bulgaria

Caveat: This took a lot of time, a lot of tricks.

| don’t regard this as a core basic skill of figure-
making in R.It’s rather advanced.

I'll show here for completeness, but we may not
even go through all of this in class.

Takeaway #1: start with a professional palette.

library(RColorBrewer)
display.brewer.all(type = "div")

spectral [N
RaviGn [N
RaviBu [
racy [
RaBu [N
ruor [N
pran [
v N
sBG N

colorAnchors <-
list(Africa = brewer.pal(n = 11, 'PuOr')[1l:5], # orange/brown/gold

Americas = brewer.pal(n = 11, 'RdY1Bu')[1l:5], # red
Asia = brewer.pal(n = 11, 'PRGn')[1l:5], # purple
Europe = brewer.pal(n = 11, 'Pi¥YG')[1l1l:7], # green
Oceania = brewer.pal(n = 11, 'RdY1lBu')[11:10]) # blue

Americas .IOceama . I
I

spectral [N

RaviGn [N

RdYIBU
racy [
rRosu [N
PuOr Afl‘lca
PRGN E Asia_
v N
-

EuroEe —

> colorAnchors
SAfrica
[1] "#7F3B08" "#B35806" "#E08214" "#FDB863" "#FEEOB6"

SAmericas
[1] "#A50026" "#D73027" "#F46D43" "#FDAE61" "#FEE090"

SAsia
[1] "#40004B" "#762A83" "#9970AB" "#C2A5CF" "#E7D4ES8"

SEurope
[1] "#276419" "#4D9221" "#7FBC41" "#B8E186" "#E6F5DO0"

SOceania
[1] "#313695" "#4575B4"

spectral [IRNIT e
ravien [N - N
I
RdYIBu Americas .IOceanla* I
racy [T - N
rosu [-
o e —
I
.
I
v IR o
srac [- N

turn those into a palette big enough to cover each country in a
continent
countryColors <- lapply(seq len(nCont), function(i) {

yo <- droplevels(subset(gDat, continent == cDatS$Scontinent[i]))

countriesBigToSmall <- rev(levels(reorder(yoScountry, yoSpop, max)))
Colongp < cnlorPamrnPalaottaoloconlordinchore [31 110)

~

return
mall)))))
b) Takeaway #2:
Above [Use colorRampPalette() or colorRamp() to
expand a professional palette (or excerpt
Isolate |thereof) into the full range of colors you
biggest [need.
Expand(| e with

one entry for each country. Store as a data.frame and
return.

*There’s a reason | use lapply in this way but let’s stay focused on the colors.

turn those into a palette big enough to cover each country in a
continent
countryColors <- lapply(seq len(nCont), function(i) {
yo <- droplevels(subset(gDat, continent == cDatS$Scontinent[i]))
countriesBigToSmall <- rev(levels(reorder(yo$country, yoS$Spop, max)))
colorFun <- colorRampPalette(colorAnchors[[1]])
return(data.frame(continent = cDatScontinent[i],
country = I(countriesBigToSmall),
color = I(colorFun(length(countriesBigToSmall)))))

})

Above is essentially a loop over the continents™.

Isolate the countries for the continent and sort from
biggest to smallest.

Expand the previously set colorAnchors into a palette with

one entry for each country. Store as a data.frame and
return.

*There’s a reason | use lapply in this way but let’s stay focused on the colors.

turn those into a palette big enough to cover each country in a

continent

countryColors <- lapply(seq len(nCont), function(i) {
yo <- refactor(subset(gDat, continent == cDatS$Scontinent[i]))
countriesBigToSmall <- rev(levels(reorder(yoScountry, yoSpop, max)))
colorFun <- colorRampPalette(colorAnchors[[i]])

return(data.frame(continent = cDat$continent[1i],
country = I(countriesBigToSmall),
color = I(colorFun(length(countriesBigToSmall)))))

})

The key functionality -- the interpolation of colors -- comes
from colorRampPalette().

Input = colors to interpolate
Output = a function (!) that takes an integer as input and

outputs a vector of colors with that length

A close relative is colorRamp(), which is helpful for mapping
the interval [0, |] to to colors. Will see later in course.

> countryColors[['Europe’']]

00 o O WDN -

W NhDDNMDNDMDDMNMDDMNMDDMNDMDDNMNMNNMMNDNMNRERPRFRRPRRRRRERERELO
S wVWooJoud WNREPOWVWOONOYOULE WDNBEFEL O

continent

Europe
Europe
Europe
Europe
Europe
Europe
Europe
Europe
Europe
Europe
Europe
Europe
Europe
Europe
Europe
Europe
Europe
Europe
Europe
Europe
Europe
Europe
Europe
Europe
Europe
Europe
Europe
Europe
Europe
Europe

country
Germany

Turkey

France

United Kingdom
Italy

Spain

Poland

Romania
Netherlands
Greece

Hungary
Portugal
Belgium

Serbia

Czech Republic
Sweden
Bulgaria
Austria
Switzerland
Denmark

Slovak Republic
Finland

Norway

Bosnia and Herzegovina

Croatia
Ireland
Albania
Slovenia
Montenegro
Iceland

color
#276419
#2C6A1A
#31701B
#36771C
#3B7D1D
#41831E
#468A1F
#4B9020
#529624
#599C28
#5FA12D
#66A731
#6DAD35
#74B33A
#7BB93E
#82BE45
#8AC34F
#92C858
#9ACDG62
#MA2D26B
#AAD875
#B2DD7E
#B9E188
#BFE492
#C6E79C
#CCE9A7
#D2ECB1
#D9EFBB
#DFF2C5
#E6F5D0

Each country is now
associated with a color.

Furthermore, this was
enacted within continent, so
all countries in, say, Europe,
will be some shade of green.

And last but not least, within
continent the dark colors are
for big countries and the
lighter colors are for small
ones. Another measure to
help see the small countries.

> i1 <= 2
> yo <- refactor(subset(gDat, continent == cDatScontinent[i]))
> countriesBigToSmall <- rev(levels(reorder(yoScountry, yoS$Spop, max)))

> countriesBigToSmall

[1] "United States" "Brazil" "Mexico"

[4] "Colombia" "Argentina" "Canada"

[7] "Peru" "Venezuela" "Chile"

[10] "Ecuador" "Guatemala" "Cuba”

[13] "Dominican Republic" "Bolivia" "Haiti"

[16] "Honduras" "E1l Salvador” "Paraguay"
[19] "Nicaragua" "Costa Rica" "Puerto Rico"
[22] "Uruguay"” "Panama" "Jamaica"

[25] "Trinidad and Tobago"

> colorFun <- colorRampPalette(colorAnchors[[i]])

> colorFun
function (n)

{

X <- ramp(seq.int(0, 1, length.out = n))

rgb(x[, 11, X[, 2], X[, 3], maxColorValue = 255)
}

<environment: 0x10219fed40>

The key functionality -- the interpolation of colors -- comes from colorRampPalette().

Input = colors to interpolate

Output = a function (!) that takes an integer as input and outputs a vector of colors
with that length

> colorAnchors
SAfrica

[1] "#7F3B08" "#B35806" "#E08214" "#FDB863"

SAmericas

[1] "#A50026" "#D73027" "#F46D43" "#FDAE6L"

SAsia

[1] "#40004B" "#762A83" "#9970AB" "#C2A5CF"

SEurope

[1] "#276419" "#4D9221" "#7FBC41" "#BSE186"

SOceania
[1] "#313695" "#4575B4"

This interpolation / expansion is
what colorRampPalette() helps
you to do.

"#FEEOBG6 "

"#FEE090"

"#ETD4ES8"

"#E6F5D0 "

> countryColors[['Europe’]]
continent

Europe
Europe
Europe

Europe
Europe

country
Germany
Turkey
France

Montenegro
Iceland

color
#276419
#2C6A1A
#31701B

#DFF2C5
#E6F5D0

I would like to stack these up, row-wise, into a data.frame that
holds my color scheme

countryColors <- do.call(rbind, countryColors)

str (countryColors)

'data.frame':142 obs. of 3 variables:
$ continent: Factor w/ 5 levels "Africa","Americas",..: 1 1 1 111 1111...
S country :Class 'AsIs' <chr [1:142] "Nigeria" "Egypt" "Ethiopia Congo, De..
S color :Class 'AsIs' <chr [1:142] "#7F3B08" "#833D07" "#873F07" "#8B4107"..

do.call() trick helps us re-assemble the continent specific
color schemes into one united color scheme.

> peek(countryColors)

continent country color
22 Africa Senegal #DO0730F
27 Africa Guinea #E18417
38 Africa Mauritania #FAB25B
50 Africa Equatorial Guinea #FDD9AS
82 Asia Bangladesh #5B1567
121 Europe Hungary #5FA12D

134 Europe Bosnia and Herzegovina #BFE492

This is what
countryColors

holds.

Gapminder Color Scheme

Africa Americas Asia Europe Oceania
Sao Tome ang !
[E)iibouti = Trinidad and | Bahrain Iceland
quatoria Kuwait
 Comoros Jamaica : Montenegro
smallest geunign _ Mongolia Slovenia
wazilan Panama _

Pop I(\a/lagritius (L)enlj)z:on Albania
1 &Gabon | Uruqua
Guinea—Bissal guay West Bank an Ireland
Botswana Puerto Rico . Croatia
Gamé:ia Singapore y
| esotho - Bosnia and H
\I_bmi_bi 3 Costa Rica | Jordan Norwar
|iberia ; Israel
Mauritania __-caragua o
Congo, Rep. Hong Kong, C| Finland
| <ONgo, Nep Paraguay
Central Afri Cambodia | Slovak Repub
Eritrea El Salvad
T_c»bgo Clilelols Denmark
Sie¥?a Leone | Honduras Switzerland

Austria

Bulgaria

largest
Pop

write.table(countryColors,

pastel (whereAmI, "data/gapminderCountryColors.txt"),
quote = FALSE, sep = "\t", row.names = FALSE)

write.table(cDat,

pastel(whereAmI, "data/gapminderContinentColors.txt"),
quote = FALSE, sep = "\t", row.names = FALSE)

Write the country color scheme to file, for re-
use in all my “solutions”. A very useful practice
in many graphics-heavy analyses.

Read them back in whenever you need.

use the color scheme created in
bryan-a0l-30-makeGapminderColorScheme.R
continentColors <-
read.delim(pastel(whereAmI, "data/gapminderContinentColors.txt"),
as.is = 3) # protect color

countryColors <-

read.delim(pastel(whereAmI, "data/gapminderCountryColors.txt"),
as.is = 3) # protect color

> peek(countryColors)

merge() merges the data
(gDat) and the color scheme
(countryColors) on the
common variables, making
the variable color available
for plot(), symbols(), etc.

continent country color
5 Africa South Africa #8F4407
15 Africa Cote d'Ivoire #B75C07
18 Africa Malawi #C2650A
27 Africa Guinea #E18417
52 Africa Sao Tome and Principe #FEEO0B6
81 Asia Pakistan #540F60
98 Asia Sri Lanka #ADS8ABD
> peek(gDat)
country year pop continent lifeExp gdpPercap
189 Bulgaria 1992 8658506 Europe 71.190 6302.6234
194 Burkina Faso 1957 4713416 Africa 34.906 617.1835
571 Germany 1982 78335266 Europe 73.800 22031.5327
768 Israel 2007 6426679 Asia 80.745 25523.2771
779 Italy 2002 57926999 Europe 80.240 27968.0982
842 Korea, Rep. 1957 22611552 Asia 52.681 1487.5935
1519 Tanzania 1982 19844382 Africa 50.608 874.2426
> gDat <- merge(gDat, countryColors)
> peek(gDat)
country continent year pop lifeExp
109 Belgium Europe 1952 8730405 68.000
255 Central African Republic Africa 1962 1523478 39.475
788 Jamaica Americas 1987 2326606 71.770
1147 Norway Europe 1982 4114787 75.970
1153 Oman Asia 1952 507833 37.578
1572 Tunisia Africa 2007 10276158 73.923
1656 Vietnam Asia 2007 85262356 74.249

gdpPercap

8343.
.069
. 237
.635
.230
.923
.576

1193
6351
26298
1828
7092
2441

105

color
#6DAD35
#F5AA4E
#FDD788
#B9E188
#D9C2DE
#DA7D12
#6F247B

> gbhat <- merge(gDhat,

plot(lifeExp ~ gdpPercap, gapDat,

with(subset(gapDat, year
gdpPercap, Vv

symbols (x
circles
inches

fqg

> peek(gDat)

109
255
788
1147
1153
1572
1656

0.7,

jDarkGray, bg

countryColors)

country continent

Belgium

Central African Republic
Jamaica

Norway

Oman

Tunisia

Vietnam

Europe
Africa
Americas
Europe
Asia
Africa
Asia

year
1952
1962
1987
1982
1952
2007
2007

cel)

jYear),
lifeExp,
jPopRadFun (pop),

color))

add

TRUE,

85
80
75
70
65
60 -
55

45 -
40 -
35 -

Life expectancy at birth (years)

50 o

30 = Africa
= Americas
25 = Asia
= Europe
20 - m QOceania
2CI)O 4(|)0 10|00 20|00 40|00 10(IJOO 20CI)OO 40(|)00
Income per person (GDP/capita, inflation—adjusted $)
pop lifeExp gdpPercap color
8730405 68.000 8343.105 #6DAD35
1523478 39.475 1193.069 #F5AA4E
2326606 71.770 6351.237 #FDD788
4114787 75.970 26298.635 #B9E188
507833 37.578 1828.230 #D9C2DE
10276158 73.923 7092.923 #DA7D12
85262356 74.249 2441.576 #6F247B

Core ideas for color schemes:

Use RColorBrewer or dichromat palettes as the basis for your
schemes. And/or use colorspace package to develop more complicated
schemes.

colorRampPalette() and colorRamp() help you interpolate colors.
Store the scheme as a data.frame, associating each level of the relevant
factor with a color. Save it to file for re-use throughout a multi-script

analysis.

Use that scheme with merge() to populate a color vector in the main
data.frame. This will then be available when calling graphics functions.

Use the scheme again to make a legend.

Note this template generalizes to line types, etc.

