
STAT 545A
Class meeting #9
Wednesday, October 3, 2012

Dr. Jennifer (Jenny) Bryan

Department of Statistics and Michael Smith Laboratories

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/

Review of last class

lattice graphics: to get good results, you only need to learn
basic commands and arguments

To get great results, you need to be courageous and specify
lots of seemingly arcane arguments, redefine lists of graphics
parameters, and redefine panel functions. BUT it’s not as
hard as it seems! Walk before you run. But get moving.

Typical workflow: “so so” plot using built-in facilities.
Gradually take control of what you need to change by first
doing nothing (i.e. specifying the graphics parameters or the
panel function but specify the default!), then baby step up to
the full glorious figure you want.

Review of last class

Another fruitful approach: find a plot in Sarkar’s or
Murrell’s book (or in this class), go get the code that
produced it and slowly “substitute” your data and desires
into the original

the “type” argument is extremely useful!

show.settings() and trellis.par.get() are useful for grasping
what default colors, symbols, etc. are, so you can take
control and substitute your own colors, symbols, etc.

high-volume scatterplots benefit from some fancier
treatment: hexagonal binning, 2-dimensional density
estimation

For next Wednesday:
I’d like you to start your page for the final project. At
the very least, give a brief description of what you
plan to do. Link to a data source. Pose some
questions you might try to answer or some issues
you hope to explore.

Ideally you will be making even more progress, i.e.
working on data acquisition, import, cleaning.

Now I will continue my efforts to turn you all
into professional R scripters

“Habits of highly effective programmers”

“Source is real.”

Philosophy practiced by the pros

“The source code is real. The objects
are realizations of the source code. Source
for EVERY user modified object is placed in a
particular directory or directories, for later
editing and retrieval.”

-- from the ESS manual

Jenny’s slight expansion ...
Actually, there are a few other things that are real, besides source
code.

Input data: perfectly preserved file of data as it came from it’s
“producer” (maybe revoke write permission?)

Clean data: plain text, delimited, clean data file that you created from
the mess you got above (maybe revoke write permission?)

Figures: lots of them, with meaningful names, stored to file(s) using a
command (not the mouse)

Important statistical results: stored to file with a command in the
plainest form possible, i.e. plain text if feasible or as R objects
otherwise

The other philosophy

R objects are real. Figures you see popping up on your
screen are real. The R code you typed at the command
line late last night is real.

R objects are created by typing at the command line and
are changed using fix() or are recreated. R workspaces
are saved and reloaded. Etc.

I cannot responsibly recommend this approach.

If you’re in this class, you’re the kind of person for whom
this approach is not robust.

Why “source code is real”?
• “Objects are real” comes more naturally to those

accustomed to a GUI, to Excel, etc.

• “Source is real” places emphasis on the logic of your
analysis, not on the specific numerical result obtained by
applying it to a dataset.

• “Source is real” leaves us in a much better position to
replicate the analysis -- perhaps with the same data,
perhaps not -- or to use it as the starting point for a new
analysis.

• “Source is real” approach has a built-in mechanism for
documenting exactly what was done.

• Jenny’s modification to the philosphy acknowledges that we
don’t always want to go back and rerun everything.

“Source code is real”: how to implement

• Lowest-tech: Open a text editor and an R session. Write R
code in editor, copy to clipboard, paste into R. And/or
compose commands at the R prompt and copy the
“keepers” into a .R file in the editor.

• Much more pleasant and sustainable: Use a smart editor or
IDE that can send lines (or other logical chunks) of R code
to a live R session.

To be clear: An R transcript is NOT the same as R code.

> x=read.delim(<...>)
> y=x$lifeExp
> z=x$gdpPercap
> plot(y,z)

x <- read.delim(<...>)
plot(lifeExp ~ gdpPercap, x)

coding style & standards

Let us change our traditional attitude to the
construction of programs. Instead of imagining that
our main task is to instruct a computer what to
do, let us concentrate rather on explaining to
human beings what we want a computer to do.
- Donald E. Knuth

http://www.softwarequotes.com/showquotes.aspx?id=541&name=Knuth,Donald
http://www.softwarequotes.com/showquotes.aspx?id=541&name=Knuth,Donald

Why can’t I just “wing it”?

• Good practices make your analytical work

- Less prone to error

- Quicker and more pleasant

- Mastery of these skills gives you the psychic energy to
do the job right, i.e. not get lazy

- Easier for you to use, maintain, improve

- Easier for others to read, use, modify

• No better forum or time to make a serious investment in
your analytical “set-up”. Just Do It!

R style, standards, habits
• Google’s R style guide (and the discussion in the R

community); Hadley Wickham’s adaptation

• R Coding Conventions

• Gelman blogged about R style and about the divisive
issue of underscores versus dots (read the comments)

• Keynote talk by Martin Machler from useR 2004

• Hadley Wickham’s rubric for marking R code

• Chapter 2 in S Poetry

• Karl Broman’s Coding practices

• Conference report “Good Programming Practices in
Healthcare Creating Robust Programs” (mostly about
SAS but the rules on pages 3 and 4 are really good)

http://google-styleguide.googlecode.com/svn/trunk/google-r-style.html
http://google-styleguide.googlecode.com/svn/trunk/google-r-style.html
http://www.mail-archive.com/r-help@r-project.org/msg67183.html
http://www.mail-archive.com/r-help@r-project.org/msg67183.html
http://stat405.had.co.nz/r-style.html
http://stat405.had.co.nz/r-style.html
https://docs.google.com/document/edit?id=1esDVxyWvH8AsX-VJa-8oqWaHLs4stGlIbk8kLc5VlII
https://docs.google.com/document/edit?id=1esDVxyWvH8AsX-VJa-8oqWaHLs4stGlIbk8kLc5VlII
http://www.stat.columbia.edu/~cook/movabletype/archives/2007/09/style_guide_for.html
http://www.stat.columbia.edu/~cook/movabletype/archives/2007/09/style_guide_for.html
http://andrewgelman.com/2012/08/migrating-from-dot-to-underscore/
http://andrewgelman.com/2012/08/migrating-from-dot-to-underscore/
http://andrewgelman.com/2012/08/migrating-from-dot-to-underscore/
http://andrewgelman.com/2012/08/migrating-from-dot-to-underscore/
http://www.ci.tuwien.ac.at/Conferences/useR-2004/Keynotes/Maechler.pdf
http://www.ci.tuwien.ac.at/Conferences/useR-2004/Keynotes/Maechler.pdf
http://hadley.github.com/stat405/assessment/code-rubric.pdf
http://hadley.github.com/stat405/assessment/code-rubric.pdf
http://www.burns-stat.com/pages/spoetry.html
http://www.burns-stat.com/pages/spoetry.html
http://www.biostat.wisc.edu/~kbroman/teaching/statprog/coding_ho.pdf
http://www.biostat.wisc.edu/~kbroman/teaching/statprog/coding_ho.pdf
http://www.lexjansen.com/pharmasug/2011/tt/pharmasug-2011-tt05.pdf
http://www.lexjansen.com/pharmasug/2011/tt/pharmasug-2011-tt05.pdf
http://www.lexjansen.com/pharmasug/2011/tt/pharmasug-2011-tt05.pdf
http://www.lexjansen.com/pharmasug/2011/tt/pharmasug-2011-tt05.pdf

1.	

Rule of Modularity: Write simple parts connected by
clean interfaces.

2.	

Rule of Clarity: Clarity is better than cleverness.

3.	

Rule of Composition: Design programs to be
connected to other programs.

4.	

Rule of Separation: Separate policy from mechanism;
separate interfaces from engines.

5.	

Rule of Simplicity: Design for simplicity; add
complexity only where you must.

6.	

Rule of Parsimony: Write a big program only when it
is clear by demonstration that nothing else will do.

7.	

Rule of Transparency: Design for visibility to make
inspection and debugging easier.

8.	

Rule of Robustness: Robustness is the child of
transparency and simplicity.

9.	

Rule of Representation: Fold knowledge into data so
program logic can be stupid and robust.

10.	

 Rule of Least Surprise: In interface design, always
do the least surprising thing.

11.	

 Rule of Silence: When a program has nothing
surprising to say, it should say nothing.

12.	

 Rule of Repair: When you must fail, fail noisily and
as soon as possible.

13.	

 Rule of Economy: Programmer time is expensive;
conserve it in preference to machine time.

14.	

 Rule of Generation: Avoid hand-hacking; write
programs to write programs when you can.

15.	

 Rule of Optimization: Prototype before polishing.
Get it working before you optimize it.

16.	

 Rule of Diversity: Distrust all claims for “one
true way”.

17.	

 Rule of Extensibility: Design for the future,
because it will be here sooner than you think.

Coding conventions

• Trust me -- certain practices will make your coding life
much more pleasant

• Use indenting

• Use spaces around binary operators and after commas

• Wrap your lines

• Use comments (and indent properly)

• Develop naming conventions for yourself

• Lots of this is automatic or very very easy with the right
editor/IDE setup, e.g. Emacs Speaks Statistics or
Rstudio ... they didn’t build this stuff in for jollies, people!
It’s useful.

Load special libraries at top and remind yourself why
needed

Store useful info in comments; useful for quick “look up”
later and for sanity checking when re-running analyses;
DO NOT rely on this for anything truly important
because it’s not automatically updated!

Line wrapping Indenting, e.g. inside
functions or if/then

Spaces around
binary operators
and after commas

Comments, properly indented

Naming conventions
(iAlwaysDoItLikeThis)

I use “camelCase” to make identifier names.
The Google style guide forbids it! Illustrates that, in
many details, there is no One True Way.
Pick a convention you like and then BE CONSISTENT.*

* at least most of the time ☺

http://en.wikipedia.org/wiki/CamelCase
http://en.wikipedia.org/wiki/CamelCase

Homework before next class:

Read at least two of the documents suggested about R
style (or locate and suggest others!).

Develop a modest goal for partial implementation of
“good” R style and start trying to achieve that.

Write a short blurb or review (a couple sentences is
OK) about each piece you read, describing it or
critiquing it or recounting how easy/hard/valuable/
useless implementation seems to be. Is it about nitty-
gritty code style or is it more about an approach
programming? Is it fun or boring to read? You get the
idea.

Sidebar: How to comment, reflect on an activity
or reading

Taken from introductory lecture from UBC CS
Prof Tamara Munzner for CPSC 533 Information
Visualization. which, by the way, looks like a cool
course.

View as a chance to demonstrate what you’ve
learned and/or the thoughtfulness with which
you approached the task/reading

Also an opportunity to share information with
your fellow students

Read this bit on your own!

End of sidebar: How to comment, reflect on an activity or reading

xyplot(gDat[,5]~log(gDat[,6]),subset=gDat[,2]==1957)

log(gDat[, 6])

gD
at

[,
5]

30

40

50

60

70

6 7 8 9 10 11

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●
● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

xyplot(lifeExp ~ gdpPercap, gDat,
 subset = year == 1957,
 scales = list(x = list(log = 10)))

gdpPercap

life
Ex
p

40

50

60

70

80

10^2.5 10^3.0 10^3.5 10^4.0 10^4.5

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

● ●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

Which figure and code would you
rather try to decipher late at night?

Give good names, use
them, use spaces,

Don’t use Magic Numbers

According to Wikipedia, Magic Numbers are “unique
values with unexplained meaning or multiple
occurrences which could (preferably) be replaced
with named constants”

Why do we avoid them?
To make code more transparent.
To make code easier to maintain.
To make code more reusable.

http://sourcemaking.com/refactoring/replace-magic-number-with-symbolic-constant
http://sourcemaking.com/refactoring/replace-magic-number-with-symbolic-constant
http://en.wikipedia.org/wiki/Magic_number_(programming)
http://en.wikipedia.org/wiki/Magic_number_(programming)

Two kinds of Magic Numbers and how to handle properly:

• constant(s) that can be derived, e.g. the number of
observations in the data matrix or the row
corresponding to “Afghanistan” in 1962 or the range of
gdpPercap. Fix: derive them once transparently in a
prominent place (top of script?) and store as well-
named variable.

• constant(s) that need to be set, e.g. the size of a
plotting symbol. Fix: set them once transparently in a
prominent place (top of script?) and store as well-
named variable.

nY is a constant that can
be derived; learn important
constants from the data,
give them good names, use
them downstream

> ## creating a matrix, so I can demo apply
> (jCountries <- sort(c('Canada', 'United States', 'Mexico')))
[1] "Canada" "Mexico" "United States"

> tinyDat <- subset(gDat, country %in% jCountries)

> (nY <- length(unique(tinyDat$year))) # 12 years
[1] 12

> jLifeExp <- matrix(tinyDat$lifeExp, nrow = nY)

> colnames(jLifeExp) <- jCountries

> rownames(jLifeExp) <- tinyDat$year[1:nY]

> jLifeExp
 Canada Mexico United States
1952 68.750 50.789 68.440
1957 69.960 55.190 69.490
1962 71.300 58.299 70.210
1967 72.130 60.110 70.760
1972 72.880 62.361 71.340
1977 74.210 65.032 73.380
1982 75.760 67.405 74.650
1987 76.860 69.498 75.020
1992 77.950 71.455 76.090
1997 78.610 73.670 76.810
2002 79.770 74.902 77.310
2007 80.653 76.195 78.242

jYear, jXlim, jYlim, jPch,
etc. are constants that
need to be set. BUT it’s
easy to imagine using
different values. So set
them once, stored as a
well-named variable, and
it will be easy to change
later.

demo with just one year
(jYear <- max(gDatOrdered$year))

the most basic plot
xyplot(lifeExp ~ gdpPercap, gDatOrdered, subset = year == jYear)

take control of the axis limits
(i <- i + 1)
jXlim <- c(200, 58000)
jYlim <- c(21, 88)
xyplot(lifeExp ~ gdpPercap, gDatOrdered,
 subset = year == jYear,
 xlab = jXlab, ylab = jYlab,
 xlim = jXlim, ylim = jYlim)

shade the plot symbols according to country BUT now use our color
scheme (and change the plotting symbol to something fillable and
make the symbol outline transparent)
enact the color using the group argument
jDarkGray <- 'grey20'
jPch <- 21
jGapminderPars <-
 list(superpose.symbol = list(pch = jPch, col = jDarkGray, cex = 2,
 fill = countryColors$color[match(levels(gDatOrdered$country),
 countryColors$country)]))
(i <- i + 1)
xyplot(lifeExp ~ gdpPercap, gDatOrdered, subset = year == jYear,
 xlab = jXlab, ylab = jYlab,
 scales = list(x = list(log = 10)),
 xlim = jXlim, ylim = jYlim,
 xscale.components = xscale.components.log10,
 type = c("p", "g"),
 group = country,
 par.settings = jGapminderPars)

> set.seed(1903)
> (countriesToKeep <- as.character(sample(levels(gDat$country),
+ size = nC)))
[1] "Norway" "Chad" "Eritrea" "Germany" "Costa Rica"
[6] "Jamaica" "Cuba" "Nepal"

> jYear <- 2007

> jDat <-
+ droplevels(subset(gDat, country %in% countriesToKeep & year == jYear))

> jDat <- jDat[order(jDat$gdpPercap),]

> str(jDat)
'data.frame':!8 obs. of 6 variables:
 $ country : Factor w/ 8 levels "Chad","Costa Rica",..: 4 7 1 6 3 2 5 8
 $ year : int 2007 2007 2007 2007 2007 2007 2007 2007
 $ pop : num 4906585 28901790 10238807 2780132 11416987 ...
 $ continent: Factor w/ 4 levels "Africa","Americas",..: 1 3 1 2 2 2 4 4
 $ lifeExp : num 58 63.8 50.7 72.6 78.3 ...
 $ gdpPercap: num 641 1091 1704 7321 8948 ...

> jDat
 country year pop continent lifeExp gdpPercap
504 Eritrea 2007 4906585 Africa 58.040 641.3695
1080 Nepal 2007 28901790 Asia 63.785 1091.3598
276 Chad 2007 10238807 Africa 50.651 1704.0637
792 Jamaica 2007 2780132 Americas 72.567 7320.8803
396 Cuba 2007 11416987 Americas 78.273 8948.1029
360 Costa Rica 2007 4133884 Americas 78.782 9645.0614
576 Germany 2007 82400996 Europe 79.406 32170.3744
1152 Norway 2007 4627926 Europe 80.196 49357.1902

set.seed() is the proper way to make
something random AND repeatable.

How I organize my work
Contents of /Users/jenny/research/conibear

How I organize my work

• Directory name = last name of collaborator, if relevant,
or one word that evokes the statistical project

• Subdirectories

- code (R and Perl code, anything executed at the Unix
command line during data cleaning /processing, etc.)

- data (raw data from the outside world, “prepared”
data after I’ve whipped it into shape)

- figs (figures, usually in PDF form, with painfully
informative names)

How I organize my work
• Subdirectories cont’d

- prose (key emails, internal documentation and
explanations, interim reports of analyses, talks,
manuscripts, final publications)

- results (mission critical intermediate and final
results, generally in plain text delimited form,
occasionally R objects, very rarely R workspaces)

- webSupp (support for any web resource related to
the project, such as sharing material with collaborators
or web supplements for publications; lots of soft links
to files found in other subdirectories)

the code subdirectory

• Use .R as the suffix for plain text files holding R code

• Break your code into down into sensible pieces

• Use highly informative names, possibly with numbering to
harmonize logical and alphanumeric order

the code subdirectory
Data cleaning and prep

“Getting to know you”
figures

First real analysis

Getting analytical results
into a useful form

Analyzing the analytical
results, including making
more figures

Key functions

Code snippets you aren’t
currently using

the old sub-subdirectory

Where files go to die ... but can still be
resurrected!

Applies to code, data, figs, results, etc.

File obsolete material away religiously or you will
confuse yourself.

Rough data cleaning and prep

“Getting to know you”
figures & tables; diagnostics

Final data cleaning

Actual workhorse files;
making figures

Key functions; creating
general resources

Code snippets you aren’t
currently using

Good stackoverflow for further reading:
ESS workflow for R project/package development
Workflow for statistical analysis and report writing
How does software development compare with statistical programming/analysis?

Suggestions for statistical computing workflow [closed]

Bottom line: most projects break down at least into:
import
clean
analyze

Break your R code down accordingly.
Have some system and BE CONSISTENT.

http://stackoverflow.com/questions/3027476/ess-workflow-for-r-project-package-development
http://stackoverflow.com/questions/3027476/ess-workflow-for-r-project-package-development
http://stackoverflow.com/questions/1429907/workflow-for-statistical-analysis-and-report-writing
http://stackoverflow.com/questions/1429907/workflow-for-statistical-analysis-and-report-writing
http://stackoverflow.com/questions/2295389/how-does-software-development-compare-with-statistical-programming-analysis
http://stackoverflow.com/questions/2295389/how-does-software-development-compare-with-statistical-programming-analysis
http://stackoverflow.com/questions/9746063/suggestions-for-statistical-computing-workflow
http://stackoverflow.com/questions/9746063/suggestions-for-statistical-computing-workflow

My motivation for how I teach this course is exactly this:

to save a bunch of diverse grad students from figuring how to
“make this stuff work” ...

(or worse, to save them from NOT ever figuring it out or
figuring it out reeeeaaaalllly slowly).

Low-tech documentation of an analysis

Low-tech
documentation of an

analysis

project organization / literate programming /
reproducible research

version control / back up / archive

collaboration / open science

The Trifecta of Vexing Issues in
Scientific Statistical Computing

project organization / literate programming /
reproducible research

version control / back up / archive

collaboration / open science

The Trifecta of Vexing Issues in
Scientific Statistical Computing

Sweave
knitr

github
Rforge
sourceforge

git
subversion
mercurial

project organization / literate programming /
reproducible research

version control / back up / archive

collaboration / open science

The Trifecta of Vexing Issues in
Scientific Statistical Computing

Sweave
knitr

github
Rforge
sourceforge

git
subversion
mercurial

How JB is currently leaning

project organization / literate programming /
reproducible research

Sweave

http://www.statistik.lmu.de/~leisch/Sweave/
http://www.statistik.lmu.de/~leisch/Sweave/

“Sweave is a tool that allows to embed the R code for
complete data analyses in latex documents. The purpose
is to create dynamic reports, which can be updated
automatically if data or analysis change. Instead of
inserting a prefabricated graph or table into the report,
the master document contains the R code necessary to
obtain it. When run through R, all data analysis output
(tables, graphs, etc.) is created on the fly and inserted
into a final latex document. The report can be
automatically updated if data or analysis change, which
allows for truly reproducible research.”

from http://www.stat.uni-muenchen.de/~leisch/Sweave/

http://www.stat.uni-muenchen.de/~leisch/Sweave/
http://www.stat.uni-muenchen.de/~leisch/Sweave/
http://www.R-project.org/
http://www.R-project.org/
http://www.stat.uni-muenchen.de/~leisch/Sweave/
http://www.stat.uni-muenchen.de/~leisch/Sweave/

project organization / literate programming /
reproducible research

knitr

http://yihui.name/knitr/
http://yihui.name/knitr/

The knitr package was designed to be a transparent engine for
dynamic report generation with R, solve some long-­‐‑standing
problems in Sweave, and combine features in other add-­‐‑on
packages into one package (knitr ≈ Sweave + cacheSweave +
pgfSweave + weaver + animation::saveLatex +
R2HTML::RweaveHTML + highlight::HighlightWeaveLatex +
0.2 * brew + 0.1 * SweaveListingUtils + more).

http://jeromyanglim.blogspot.ca/2012/05/getting-started-with-r-markdown-knitr.html

http://jeromyanglim.blogspot.ca/2012/05/getting-started-with-r-markdown-knitr.html
http://jeromyanglim.blogspot.ca/2012/05/getting-started-with-r-markdown-knitr.html

http://rstudio.org/docs/authoring/using_markdown

http://rstudio.org/docs/authoring/using_markdown
http://rstudio.org/docs/authoring/using_markdown

http://rstudio.org/docs/r_markdown

http://rstudio.org/docs/r_markdown
http://rstudio.org/docs/r_markdown

project organization / literate programming /
reproducible research

version control / back up / archive

collaboration / open science

The Trifecta of Vexing Issues in
Scientific Statistical Computing

Sweave
knitr

github
Rforge
sourceforge

git
subversion
mercurial

How JB is currently leaning

http://www.carlboettiger.info/2012/05/06/research-workflow.html

http://www.carlboettiger.info/2012/05/06/research-workflow.html
http://www.carlboettiger.info/2012/05/06/research-workflow.html
http://www.carlboettiger.info/2012/05/06/research-workflow.html
http://www.carlboettiger.info/2012/05/06/research-workflow.html
http://www.carlboettiger.info/2012/05/06/research-workflow.html
http://www.carlboettiger.info/2012/05/06/research-workflow.html
http://www.carlboettiger.info/2012/05/06/research-workflow.html
http://www.carlboettiger.info/2012/05/06/research-workflow.html
http://www.carlboettiger.info/2012/05/06/research-workflow.html

project organization / literate programming /
reproducible research

version control / back up / archive

collaboration / open science

The Trifecta of Vexing Issues in
Scientific Statistical Computing

Sweave
knitr

github
Rforge
sourceforge

git
subversion
mercurial

How JB is currently leaning

http://stackoverflow.com/questions/2712421/r-and-version-control-for-the-solo-data-analyst

http://stackoverflow.com/questions/2712421/r-and-version-control-for-the-solo-data-analyst
http://stackoverflow.com/questions/2712421/r-and-version-control-for-the-solo-data-analyst

http://support.rstudio.org/help/kb/advanced/using-version-control-with-rstudio

http://support.rstudio.org/help/kb/advanced/using-version-control-with-rstudio
http://support.rstudio.org/help/kb/advanced/using-version-control-with-rstudio

project organization / literate programming /
reproducible research

version control / back up / archive

collaboration / open science

The Trifecta of Vexing Issues in
Scientific Statistical Computing

Sweave
knitr

github
Rforge
sourceforge

git
subversion
mercurial

How JB is currently leaning

Bottom line: do something deliberate that has a
good hassle: result ratio for you.

Be open to upgrading your approach as time
goes on.

Keep your eyes and ears open re: developments
in this area!

Your R life, in general

• I keep a file that records everything about my current and,
sometimes, older R installations

• Top of /Users/jenny/resources/R/code/2012-04-setup.R:

installed binary of ...
R version 2.15.0 (2012-03-30)
Copyright (C) 2012 The R Foundation for Statistical Computing
ISBN 3-900051-07-0
Platform: x86_64-apple-darwin9.8.0/x86_64 (64-bit)

no longer needed ... set in .Rprofile
options(CRAN = "http://cran.stat.sfu.ca/")

install.packages(pkgs = "RColorBrewer")
install.packages(pkgs = "car")
installed dependencies MASS nnet survival

install.packages(pkgs = "R2HTML")

install.packages(pkgs = "latticeExtra")
I note this installed the dependency 'lattice'
huh? I guess my lattice was out of date?

install.packages(pkgs = "hexbin")

I always install packages
from here, with a line of
R code. Easy to see what
packages I use, get back
up and running after a
re-install, notes-to-self
about glitches, etc.

http://cran.stat.sfu.ca
http://cran.stat.sfu.ca

Your R life, in general

• I update R on an ‘as needed’ basis (probably should do
more often ...); my setup file makes it easy to get back in
business quickly because all add-ons are documented
there

• You can set up certain things you want for every R
session at startup in ~/.Rprofile

- A stackoverflow thread entitled “Expert R users,
what's in your .Rprofile?”

http://stackoverflow.com/questions/1189759/expert-r-users-whats-in-your-rprofile
http://stackoverflow.com/questions/1189759/expert-r-users-whats-in-your-rprofile

cat("\n Get some real work done, Jenny!\n\n")

add lattice to the default packages, set a CRAN mirror
oldPkgs <- getOption("defaultPackages")
oldRepos <- getOption("repos")
oldRepos["CRAN"] <- "http://cran.stat.sfu.ca/"
"http://cran.cnr.Berkeley.edu"
options(defaultPackages = c(oldPkgs, "lattice", "roxygen2"),
 repos = oldRepos)

source all JB-written helper / handy functions
foo <- list.files("~/resources/R/code/jHandy", full.names = TRUE)
foo <- foo[-grep(".R~", foo)] # omit backup files
for(i in foo) {
 cat("\n sourcing ", i, "\n")
 source(i)
}

reduce my problems with str'ed objects line wrapping in an
unattractive way
options(str = list(strict.width = "cut",
 digits.d = 3, vec.len = 4),
 devtools.path = "~/resources/R/librarySandbox")

if (interactive()) {
 suppressMessages(require(devtools))
}

there was a period when I also included
'device = "quartz"' here,
but that currently isn't necessary

lattice::lattice.options(default.theme = jTheme)

My current .Rprofile

 /Users/jenny/resources/R/code/jHandy:
 total used in directory 80 available 272603144
 drwxr-xr-x 12 jenny staff 408 May 16 15:50 .
 drwxr-xr-x 21 jenny staff 714 Oct 2 15:33 ..
 -rw-r--r-- 1 jenny staff 157 Mar 22 2010 jExtract.R
 -rw-r--r-- 1 jenny staff 1045 Jun 9 2011 jFactor.R
 -rw-r--r-- 1 jenny staff 45 Sep 15 2009 jPaste.R
 -rw-r--r-- 1 jenny staff 447 Jan 28 2011 jSubset.R
 -rw-r--r-- 1 jenny staff 2157 May 16 15:50 jTheme.R
 -rw-r--r-- 1 jenny staff 2089 May 16 15:47 jTheme.R~
 -rw-r--r-- 1 jenny staff 209 Oct 28 2011 jWriteTable.R
 -rw-r--r-- 1 jenny staff 209 Oct 28 2011 jWriteTable.R~
 -rw-r--r-- 1 jenny staff 209 Mar 5 2009 peek.R
 -rw-r--r-- 1 jenny staff 214 Mar 5 2009 refactor.R

Directory listing of jHandy

http://cran.stat.sfu.ca
http://cran.stat.sfu.ca
http://cran.cnr.Berkeley.edu
http://cran.cnr.Berkeley.edu

Full disclosure: one should probably convert
personal functions that are used throughout your
code into a proper R package

package management

a “library” is where R stores its packages

for years, I never messed with or questioned the
defaults ... a fine strategy for new users

at some point you may want to get fancier

Link to the R Installation and Administration Manual,
section 6 Add-on packages
http://cran.r-project.org/doc/manuals/R-admin.html#Add_002don-packages

Helpful documentation written for Johns Hopkins Biostat system re: "Creating a personal R package library"
http://www.biostat.jhsph.edu/bit/R-personal-library.html

How to manage multiple package locations (folders) in R?
http://stackoverflow.com/questions/7993061/how-to-manage-multiple-package-locations-folders-in-r

http://cran.r-project.org/doc/manuals/R-admin.html#Add_002don-packages
http://cran.r-project.org/doc/manuals/R-admin.html#Add_002don-packages
http://www.biostat.jhsph.edu/bit/R-personal-library.html
http://www.biostat.jhsph.edu/bit/R-personal-library.html
http://stackoverflow.com/questions/7993061/how-to-manage-multiple-package-locations-folders-in-r
http://stackoverflow.com/questions/7993061/how-to-manage-multiple-package-locations-folders-in-r

the default library on my system:
 /Library/Frameworks/R.framework/Versions/2.15/Resources/library

I keep two other libraries within my own user filespace

[1] for packages I download from CRAN
/Users/jenny/resources/R/libraryCRAN

[2] for packages I am developing
/Users/jenny/resources/R/libraryDev

To notify R about this I created a .Renviron file in my home directory
that contains this:
R_LIBS=~/resources/R/libraryCRAN:~/resources/R/libraryDev

> R.home(component = "home")
[1] "/Library/Frameworks/R.framework/Resources"

> .Library
[1] "/Library/Frameworks/R.framework/Resources/library"

> .libPaths()
[1] "/Library/Frameworks/R.framework/Versions/2.15/Resources/library"

library situation in a fresh default R installation (on Mac OS)

> R.home(component = "home")
[1] "/Library/Frameworks/R.framework/Resources"

> .Library
[1] "/Library/Frameworks/R.framework/Resources/library"

> .libPaths()
[1] "/Users/jenny/resources/R/libraryCRAN"
[2] "/Users/jenny/resources/R/libraryDev"
[3] "/Library/Frameworks/R.framework/Versions/2.15/Resources/library"

library situation for JB today

Getting data out of R

• write.table will be your main
function for this; it writes
plain text, human-readable
files.

• I like to use the args above,
by default (why don’t I
package that as a handy
function? now I have!)

See Chapter 2 of
Spector (2008).

write.table(gDat,
 jPaste(whereAmI, "data/gapminderDataFiveYear.txt"),
 quote = FALSE, sep = "\t", row.names = FALSE)

country! year! pop! continent! lifeExp! gdpPercap
Afghanistan! 1952! 8425333! Asia! 28.801! 779.4453145
Afghanistan! 1957! 9240934! Asia! 30.332! 820.8530296
Afghanistan! 1962! 10267083! Asia! 31.997! 853.10071
Afghanistan! 1967! 11537966! Asia! 34.02!836.1971382
Afghanistan! 1972! 13079460! Asia! 36.088! 739.9811058
Afghanistan! 1977! 14880372! Asia! 38.438! 786.11336
Afghanistan! 1982! 12881816! Asia! 39.854! 978.0114388
Afghanistan! 1987! 13867957! Asia! 40.822! 852.3959448
Afghanistan! 1992! 16317921! Asia! 41.674! 649.3413952
Afghanistan! 1997! 22227415! Asia! 41.763! 635.341351
Afghanistan! 2002! 25268405! Asia! 42.129! 726.7340548
Afghanistan! 2007! 31889923! Asia! 43.828! 974.5803384
Albania! 1952! 1282697! Europe! 55.23!1601.056136
Albania! 1957! 1476505! Europe! 59.28!1942.284244
Albania! 1962! 1728137! Europe! 64.82!2312.888958
Albania! 1967! 1984060! Europe! 66.22!2760.196931

http://www.springerlink.com/content/t19776/?p=ad6463d79e364494b8248078d4fcc8c4&pi=1
http://www.springerlink.com/content/t19776/?p=ad6463d79e364494b8248078d4fcc8c4&pi=1

Getting data out of R

• I only use “exotic” import and export functionality with a
very good reason. What do I mean by exotic? importing/
exporting from/to .xls files, databases, etc.

• Why am I such a Luddite? I’ve been burned with R
changing, add-on R packages changing or vanishing, Excel
changing, Excel not being installed, maddening Mac/Windows
incompatibility issues in Excel, blah blah blah and now I
maniacally save all important input, intermediate, and output
files in the plainest form possible. Learn from me so that I
did not suffer in vain.

See Chapter 2 of
Spector (2008).

write.table(gDat,
 jPaste(whereAmI, "data/gapminderDataFiveYear.txt"),
 quote = FALSE, sep = "\t", row.names = FALSE)

http://www.springerlink.com/content/t19776/?p=ad6463d79e364494b8248078d4fcc8c4&pi=1
http://www.springerlink.com/content/t19776/?p=ad6463d79e364494b8248078d4fcc8c4&pi=1

Getting stuff out of R

• In certain situations, it is advisable to save R objects or,
very rarely, an entire R workspace. Examples:

- a vital, non-rectangular object, for example, a fitted
nonlinear model object or a classification & regression
tree

- an object you will continue to need that also took a
nontrivial amount of compute time to create

- a vital classed object you will continue to need whose
creation required some add-on software that might
change dramatically in the next version or that might
become “abandonware”

See Chapter 2 of
Spector (2008).

http://www.springerlink.com/content/t19776/?p=ad6463d79e364494b8248078d4fcc8c4&pi=1
http://www.springerlink.com/content/t19776/?p=ad6463d79e364494b8248078d4fcc8c4&pi=1

Getting stuff out of R

• In certain situations, it is advisable to save R objects or,
very rarely, an entire R workspace. Examples cont’d:

- a data.frame which holds factors for which you
exerted yourself to set the order of the levels, i.e. to
something other than the alphanumeric default
ordering (In this case I usually save as plain text with
write.table() AND as an R object with save() -- I wear
a belt and suspenders!)

• Relevant functions: save(), save.image(), load()

See Chapter 2 of
Spector (2008).

http://www.springerlink.com/content/t19776/?p=ad6463d79e364494b8248078d4fcc8c4&pi=1
http://www.springerlink.com/content/t19776/?p=ad6463d79e364494b8248078d4fcc8c4&pi=1

> jDat
 country year pop continent lifeExp gdpPercap
504 Eritrea 2007 4906585 Africa 58.040 641.3695
1080 Nepal 2007 28901790 Asia 63.785 1091.3598
<snip, snip>

> dput(jDat)
structure(list(country = structure(c(4L, 7L, 1L, 6L, 3L, 2L,
 5L, 8L), .Label = c("Chad", "Costa Rica", "Cuba", "Eritrea",
 "Germany", "Jamaica", "Nepal", "Norway"), class = "factor"),
 year = c(2007L, 2007L, 2007L, 2007L, 2007L, 2007L, 2007L,
 2007L), pop = c(4906585, 28901790, 10238807, 2780132, 11416987,
 4133884, 82400996, 4627926), continent = structure(c(1L,
 3L, 1L, 2L, 2L, 2L, 4L, 4L), .Label = c("Africa", "Americas",
 "Asia", "Europe"), class = "factor"), lifeExp = c(58.04,
 63.785, 50.651, 72.567, 78.273, 78.782, 79.406, 80.196),
 gdpPercap = c(641.3695236, 1091.359778, 1704.063724, 7320.880262,
 8948.102923, 9645.06142, 32170.37442, 49357.19017)), .Names =
 c("country", "year", "pop", "continent", "lifeExp", "gdpPercap"),
 row.names = c(504L, 1080L, 276L, 792L, 396L, 360L, 576L, 1152L),
 class = "data.frame")

> rm(jDat)

> jDat
Error: object 'jDat' not found

dput() especially helpful for creating self-contained
examples when asking for help

> jDat <- structure(list(country = structure(c(4L, 7L, 1L, 6L, 3L, 2L,
+ 5L, 8L), .Label = c("Chad", "Costa Rica", "Cuba", "Eritrea",
+ "Germany", "Jamaica", "Nepal", "Norway"), class = "factor"),
+ year = c(2007L, 2007L, 2007L, 2007L, 2007L, 2007L, 2007L,
+ 2007L), pop = c(4906585, 28901790, 10238807, 2780132, 11416987,
+ 4133884, 82400996, 4627926), continent = structure(c(1L,
+ 3L, 1L, 2L, 2L, 2L, 4L, 4L), .Label = c("Africa", "Americas",
+ "Asia", "Europe"), class = "factor"), lifeExp = c(58.04,
+ 63.785, 50.651, 72.567, 78.273, 78.782, 79.406, 80.196),
+ gdpPercap = c(641.3695236, 1091.359778, 1704.063724, 7320.880262,
+ 8948.102923, 9645.06142, 32170.37442, 49357.19017)), .Names =
c("country",
+ "year", "pop", "continent", "lifeExp", "gdpPercap"), row.names =
c(504L,
+ 1080L, 276L, 792L, 396L, 360L, 576L, 1152L), class = "data.frame")

> jDat
 country year pop continent lifeExp gdpPercap
504 Eritrea 2007 4906585 Africa 58.040 641.3695
1080 Nepal 2007 28901790 Asia 63.785 1091.3598
276 Chad 2007 10238807 Africa 50.651 1704.0637
792 Jamaica 2007 2780132 Americas 72.567 7320.8803
396 Cuba 2007 11416987 Americas 78.273 8948.1029
360 Costa Rica 2007 4133884 Americas 78.782 9645.0614
576 Germany 2007 82400996 Europe 79.406 32170.3744
1152 Norway 2007 4627926 Europe 80.196 49357.1902

dput() especially helpful for creating self-contained
examples when asking for help

I literally copied the
previous output from
dput() to create this
assignment statement.
Would allow someone else
to recreate jDat from just a
*.R file, versus sending a *.R
file and some raw,
importable data.

dput package:base R Documentation

Write an Object to a File or Recreate it

Description:

 Writes an ASCII text representation of an R object to a file or
 connection, or uses one to recreate the object.

Usage:

 dput(x, file = "",
 control = c("keepNA", "keepInteger", "showAttributes"))

 dget(file)

Arguments:

 x: an object.

 file: either a character string naming a file or a connection. '""'
 indicates output to the console.

 control: character vector indicating deparsing options. See
 '.deparseOpts' for their description.

Details:

 'dput' opens 'file' and deparses the object 'x' into that file.
 The object name is not written (unlike 'dump'). If 'x' is a
 function the associated environment is stripped. Hence scoping
 information can be lost.

 Deparsing an object is difficult, and not always possible. With
 the default 'control', 'dput()' attempts to deparse in a way that
 is readable, but for more complex or unusual objects (see 'dump',
 not likely to be parsed as identical to the original. Use
 'control = "all"' for the most complete deparsing; use 'control =
 NULL' for the simplest deparsing, not even including attributes.

 'dput' will warn if fewer characters were written to a file than
 expected, which may indicate a full or corrupt file system.

 To display saved source rather than deparsing the internal
 representation include '"useSource"' in 'control'. R currently
 saves source only for function definitions.

Getting tables out of R

Do not type statistical results into tables in LaTeX or
Word or ... (or, at least, that should be the exception, not
the rule).

You will make mistakes. You will grow weary of it each
time you need to update.

Automate.

Where might you want to put a table computed by R?

In Excel. Easy. Write to a delimited file and import. Done.

In a Word or Pages document, i.e. word processors that
have a real concept of a table.

In a Powerpoint or Keynote document. Ditto.

On the web.

In a LaTeX document.

For more than you ever wanted to know about this
subject, check out the CRAN Task View for Reproducible
Research.

http://cran.r-project.org/web/views/
http://cran.r-project.org/web/views/
http://cran.r-project.org/web/views/ReproducibleResearch.html
http://cran.r-project.org/web/views/ReproducibleResearch.html
http://cran.r-project.org/web/views/ReproducibleResearch.html
http://cran.r-project.org/web/views/ReproducibleResearch.html

Low-tech solution for Word and Keynote and probably
other similar programs

Write table to tab-delimited file
open in text editor, copy contents to clipboard
paste into table-type receptacle in work processing /
presentation software OR convert text to table

details will differ but should be workable in many contexts

figure out how to do this with the software you use!

Examples in excruciating detail:
In the script 01-initialClassListProcessing.R I tabulate the students in this
class by subject and degree:
cross-tabulate subject by degree
(jTab <- addmargins(table(cDat$specSubj, cDat$degree)))

write.table(jTab,
 file = paste(whereAmI,"results/whosInHere.txt",sep=""),
 quote = FALSE, sep = "\t")

! EXCH! MSC!PHD!UNCL! Sum
! 1! 1! 0! 0! 1! 3
Experimental Medicine! 0! 0! 1! 0! 0! 1
Forestry! 0! 0! 1! 0! 0! 1
Lib, Arch and Info Stud! 0! 0! 0! 1! 0! 1
Mathematics! 0! 0! 1! 0! 0! 1
Mechanical Engineering! 0! 0! 0! 1! 0! 1
Resource Mgmt/Envirn Stud! 0! 0! 0! 1! 0! 1
Statistics!0! 0! 13! 2! 0! 15
Sum!1! 1! 16! 5! 1! 24

Here’s what that file looks like in Emacs for me:

I see it has 10 rows and 7 columns. If counting that’s too
annoying, just guess high!

For Keynote: I create a new empty table with enough
rows and columns.

For Keynote: I copy the contents of my plain text, tab
delimited file into the clipboard.

I select the upper left cell of the empty table and paste.
I do not select the whole table.
I do not double click into the cell, thereby putting the
cursor there.
I repeat: I select the upper left cell and then paste.

Voilà!
EXCH MSC PHD UNCL Sum
1 1 0 0 1 3

Exper
iment
al
Medic
ine

0 0 1 0 0 1
Fores
try

0 0 1 0 0 1
Lib,
Arch
and
Info
Stud

0 0 0 1 0 1
Mathe
matic
s

0 0 1 0 0 1
Mecha
nical
Engin
eerin
g

0 0 0 1 0 1
Resou
rce
Mgmt/
Envir

0 0 0 1 0 1
Stati
stics

0 0 13 2 0 15
Sum 1 1 16 5 1 24

For Word: I create a new empty table with enough rows
and columns.

I copy the contents of my plain text, tab
delimited file into the clipboard.......

For Word:
I select the whole table and paste.
I do not select a single cell.
I do not click into a cell, thereby putting the cursor there.
I repeat: I select the whole table and then paste.

Voilà!

For Word, version 2: I copy the contents of my plain text, tab
delimited file into the clipboard.

I paste into Word. I select all of what I pasted.

With the mouse (!), Table --> Convert --> Convert Text to Table ...
(dialog box where you can adjust number of rows/columns, specify
the delimiter, etc.) --> OK

Voilà!

Getting tables out of R
I’ve showed you a low-tech solution for Word and
Keynote. Can someone work on PowerPoint?

Good but old thread on how to copy from R to the
clipboard; first time I’ve ever seen something work better
on Windows! Still relevant? I don’t know know; am on
Mac.

The R2wd package looks intriguing but I would worry
about fiddliness: “R2wd: Write MS-Word documents from
R. This package uses the statconnDCOM server to
communicate with MS-Word via the COM interface.”

http://tolstoy.newcastle.edu.au/R/help/04/04/0454.html
http://tolstoy.newcastle.edu.au/R/help/04/04/0454.html
http://cran.r-project.org/web/packages/R2wd/index.html
http://cran.r-project.org/web/packages/R2wd/index.html

Use one of these packages to write HTML tables: xtable,
Hmisc, R2HTML, hwriter

I use R2HTML

How to create an HTML table

http://cran.r-project.org/web/packages/xtable/index.html
http://cran.r-project.org/web/packages/xtable/index.html
http://cran.r-project.org/web/packages/Hmisc/index.html
http://cran.r-project.org/web/packages/Hmisc/index.html
http://cran.r-project.org/web/packages/R2HTML/index.html
http://cran.r-project.org/web/packages/R2HTML/index.html
http://cran.r-project.org/web/packages/hwriter/index.html
http://cran.r-project.org/web/packages/hwriter/index.html

Example of using
R2HTML to take a
class list as a
data.frame, find
student photos and
student work
automatically, and
create this table.

I used R2HTML create this web table of STAT courses

whereAmI <- "/Users/jenny/adminService/2011-06-statWebCourseTable/"
library(R2HTML)

cDat <- read.table(file = jPaste(whereAmI, "data/academicCalendarEnhanced.txt"),
 sep = "|", colClasses = "character", header = TRUE,
 quote = "\"")

targDir <- jPaste(whereAmI, "results/R2HTML/")
dir.create(targDir)

file.symlink(from = jPaste(.Library, "/R2HTML/output/R2HTML.css"),
 to = targDir)
if get warnings about files and directories existing ... ignore

target <- HTMLInitFile(outdir = targDir,
 filename = "statCourseWebTable",
 Title = "UBC Statistics Courses",
 useLaTeX = FALSE, useGrid = FALSE)

insert basic content for a new course page
system(paste("cat",
 jPaste(whereAmI, "data/coursePageInnards.html"),
 ">>",
 jPaste(targDir, "statCourseWebTable.html")))

HTMLhr(file = target, Size = "1")

HTML(cDat, file = target,
 Border = 2, innerBorder = 1, row.names = FALSE)

HTMLEndFile()

Code that created web
table of STAT courses

Use one of these packages to write LaTeX tables: xtable,
Hmisc

I don’t use these because I’ve abandoned LaTeX (!), at
least for now.

How to create a LaTeX table

http://cran.r-project.org/web/packages/xtable/index.html
http://cran.r-project.org/web/packages/xtable/index.html
http://cran.r-project.org/web/packages/Hmisc/index.html
http://cran.r-project.org/web/packages/Hmisc/index.html

Saving analytical results, when
write.table() isn’t appropriate
• sink() will divert your R output to a file

> sink(jPaste(whereAmI, "sinkDemo.txt"))
> t.test(pheno ~ chromo, kDat)
> wilcox.test(pheno ~ chromo, kDat)
> ks.test(kDat$pheno[kDat$chromo == 6], kDat$pheno[kDat$chromo == 7])
> sink()

Notice the
results aren’t
showing up!

! Welch Two Sample t-test

data: pheno by chromo
t = 1.4982, df = 158.612, p-value = 0.1361
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
 -0.0714768 0.5206902
sample estimates:
mean in group 6 mean in group 7
 8.767099 8.542492

! Wilcoxon rank sum test with continuity correction

data: pheno by chromo
W = 29063, p-value = 0.1896
alternative hypothesis: true location shift is not equal to 0

! Two-sample Kolmogorov-Smirnov test

data: kDat$pheno[kDat$chromo == 6] and kDat$pheno[kDat$chromo == 7]
D = 0.0964, p-value = 0.3933
alternative hypothesis: two-sided

Contents of “sinkDemo.txt”

sink()

• Not a great general purpose, long-run strategy, but useful
sometimes

• Must write and debug your code first, then implement
sink(), since you “fly blind” while the sink is in place

• Reminds me of the ‘correct’, but annoying way to make
PDF files

• Nice when you are ‘source()’ing code and/or running R
non-interactively

• Helpful for writing key facts and numbers to file that
must be incorporated into written English (vs. a table)

