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Review of last class

Demonstrated the bootstrap approach to “two groups” 
testing on the yeast growth data.

Got bootstrap p-values for a non-standard test statistic and 
also for classical test statistics. Results very compatible.

Saw some tricks for bootstrapping or, for that matter, any 
resampling or simulation type of work. Explicit loop 
avoidance techniques include [1] generating the data at 
once and [2] apply-type functions for computing bootstrap 
statistics. set.seed() useful for making stochastic work 
repeatable, which can be invaluable for debugging.



Review of last class (cont’d)
Tried out some robust regression techniques using the life 
expectancy data for Rwanda in the Gapminder dataset.

MM estimation is probably best general purpose option, 
implemented in lmrob() in robustbase package.

Revisited bootstrap for checking applicability of asymptotic 
standard errors and distribution. Results reassuring.

Brief remarks on data reshaping. Tips on avoiding it and on 
giving in and doing it “by hand” or with fancier functions and 
packages.



smoothing



Managing Inputs ... Nicer than Outputs
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Facilitate comparisons, identify trends.



Two quantitative variables: X and Y
• X ... ‘independent variable’, ‘covariate’, ‘predictor’, 

‘explanatory variable’

• Y ... ‘dependent variable’, ‘response’, ‘outcome’

• Regression ≈ study of the conditional expectation of Y 
given X=x

• Our focus: We believe f is smooth, but don’t wish to specify 
much else about f.

• Nonparametric regression, smoothing, etc.

yi = f (xi ) + εi



Two quantitative variables: X and Y
• X ... quantitative, often called the ‘independent variable’, 

‘covariate’, ‘predictor’, ‘explanatory variable’

• Y ... quantitative, often called the ‘dependent variable’, 
‘response’, ‘outcome’

• Regression refers generally to the study of the 
conditional distribution -- or, often, just the conditional 
expectation -- of Y given that X=x

 Y | X = x  Fθ ,δ
• Some parameters, referred to here as θ, are of direct 

interest.  Others, referred to here as δ, are of secondary or 
no interest at all (“nuisance parameter”).



Nature of the parameter space

• The nature of the parameter (θ, δ) is one of the defining 
characteristics of the regression model

- (θ, δ) ∈ Rp ⇒ parametric model

- (θ, δ) ∈ Rp ⊗ (sthg complicated, such as a function 
space) ⇒ semi-parametric model

- (θ, δ) ∈ (sthg complicated) ⇒ nonparametric model

• Examples of the ‘complicated’ spaces above:  all possible 
distributions, all possible distributions with mean zero, 
etc.



Narrowing focus to expectation
• Next half-course covers generalized linear models, so I 

will not.

• Frees us to focus on the conditional expectation of  Y 
given X = x

• Common scenario: parameter β is of primary interest and 
parameter(s) relating to the distribution of the error term 
ε are a nuisance.

• It is very common for β ∈ Rp, in which case assumptions 
about ε will determine whether the model is parametric or 
semi-parametric. 

YX= x = f (x;β) + ε x ,E(ε x ) = 0



Nature of the regression function

• The nature of the regression function f(x; β) is one of the 
defining characteristics of the regression model

- f linear in β ⇒ linear model

- f not linear in β ⇒ nonlinear model

y = β0 + β1x + β2x
2 + ε

Note: this IS a linear model.



Nonlinear regression
• Consider the case where the regression function -- the 

conditional expectation of Y given X = x -- is nonlinear in 
the parameter β:

YX= x = f (x;β) + ε x ,E(ε x ) = 0

• ‘Nonlinear regression’ is a huge area.  Helpful to distinguish 
at least two broad classes within that:

• Parametric nonlinear regression, e.g.

• Nonparametric regression, aka ‘smoothing’

f (xi ) = β0 + β1xi
β2



Smoothing methods / nonparametric 
regression
• Kernel-based methods

- will tie in nicely to kernel-based density estimation

• Local polynomials (e.g. loess)

• Splines -- WILL NOT COVER



yi = xiβ + εi

linear model
so plain yet so useful
why must I move on?



nonlinear f
my head hurts already

what’s in it for me?

yi = f (xi ) + εi



Nonlinear models allow us to explore a larger portion of the space 
of ‘all possible models’ and, therefore, increase the chance that we’ll 
study a model that’s ‘close enough’ to the truth to actually learn 
something useful.

All possible models for Y|X=x

linear, ε ~ N

linear, E(ε)=0

nonlinear, parametric

nonparametric, 
smooth

✧Please note: THIS IS JUST A CARTOON!  Not to be over-interpreted.

truth?



Some pros and cons

Parametric regression 
function

Nonparametric 
regression function

Pros

Easy to write down
Easy to fit

Efficient, if model correct
Parameters often have meaning
Can easily incorporate prior/

external info

So flexible!
Less biased, most of the time

Leads to appealing figures 
accessible to many 

Cons
Almost certainly doesn’t 

contain true data-generating 
model

Hard to store, communicate, 
utilize the fitted result

Path to inference not so clear

✧Please note: Broad generalities but their usefulness seems to outweigh any potential harm.



my husband, Jim
weight loss bet w/ friend Craig
late August 2011 to New Year’s Eve 2011
winner = he who loses most as a percentage of starting weight
Craig won, by the way :(
data collection continues ....

before
during



after!
after!

censored!
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> peek(wDat)
          date   jim craig
55  2011-10-20 163.4 164.8
105 2011-12-09 151.6 148.0
131 2012-01-04 149.0 150.8
170 2012-02-12 152.2 155.0
174 2012-02-16 152.0 151.8
233 2012-04-15 152.2 157.6
249 2012-05-01 152.6 156.6

> dim(wDat)
[1] 413   3

most natural way 
to record the data 
is ... short and fat

“extended formula interface” in lattice lets us do 
fake grouping / superposition

xyplot(craig + jim ~ date, wDat,
       grid = TRUE, auto.key = TRUE,
       xlab = jXlab, ylab = jYlab)



> peek(wDat)
          date   jim craig
55  2011-10-20 163.4 164.8
105 2011-12-09 151.6 148.0
131 2012-01-04 149.0 150.8
170 2012-02-12 152.2 155.0
174 2012-02-16 152.0 151.8
233 2012-04-15 152.2 157.6
249 2012-05-01 152.6 156.6

> dim(wDat)
[1] 413   3

most natural way 
to record the data 
is ... short and fat

“extended formula interface” in lattice lets us do 
fake multi-panel conditioning too
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jim

xyplot(craig + jim ~ date, wDat,
       grid = TRUE, auto.key = TRUE, outer = TRUE,
       xlab = jXlab, ylab = jYlab, pch = 1)



> peek(wDat)
          date   jim craig
55  2011-10-20 163.4 164.8
105 2011-12-09 151.6 148.0
131 2012-01-04 149.0 150.8
170 2012-02-12 152.2 155.0
174 2012-02-16 152.0 151.8
233 2012-04-15 152.2 157.6
249 2012-05-01 152.6 156.6

> dim(wDat)
[1] 413   3

> peek(xDat)
          date    wt   who
85  2011-11-19 156.4   jim
235 2012-04-17 152.8   jim
243 2012-04-25 153.6   jim
276 2012-05-28 154.4   jim
359 2012-08-19 154.4   jim
555 2012-01-15 150.2 craig
773 2012-08-20 158.8 craig

> dim(xDat)
[1] 826   3

## reshape the data
xDat <- with(wDat,
             data.frame(date = date,
                        wt = c(jim, craig),
                        who = factor(rep(c("jim", "craig"),
                                     each = nrow(wDat)))))

low-tech ‘manual’ data 
reshaping



> peek(xDat)
          date    wt   who
85  2011-11-19 156.4   jim
235 2012-04-17 152.8   jim
243 2012-04-25 153.6   jim
276 2012-05-28 154.4   jim
359 2012-08-19 154.4   jim
555 2012-01-15 150.2 craig
773 2012-08-20 158.8 craig

> dim(xDat)
[1] 826   3

store tall in tall 
and skinny format 
to facilitate data 
aggregation and 
visualization

proper grouping / superposition via ‘groups’

xyplot(wt ~ date, xDat,
       groups = who,
       grid = TRUE, auto.key = TRUE,
       xlab = jXlab, ylab = jYlab, pch = 1)

we
ig

ht
 (l

bs
)

150

160

170

180

190

Oct Jan Apr Jul Oct

craig
jim



> peek(xDat)
          date    wt   who
85  2011-11-19 156.4   jim
235 2012-04-17 152.8   jim
243 2012-04-25 153.6   jim
276 2012-05-28 154.4   jim
359 2012-08-19 154.4   jim
555 2012-01-15 150.2 craig
773 2012-08-20 158.8 craig

> dim(xDat)
[1] 826   3

store tall in tall 
and skinny format 
to facilitate data 
aggregation and 
visualization

proper multi-panel conditioning via ‘y ~ x | z’

xyplot(wt ~ date | who, xDat,
       grid = TRUE,
       xlab = jXlab, ylab = jYlab, pch = 1)
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Selected methods for smoothing / 
nonparametric regression
• Kernel-based methods

• Local polynomials (e.g. loess)

• (Splines)

Duration of eruption (min)
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Duration of eruption (min)
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Old Faithful geyser data (faithful)

Key concept: Moving or running average
        = avg of y’s from all observations with x’s falling in a 
window around x0 (e.g. nearest 10 observations or obs 
where x ∈ x0 ± sthg)
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Key innovation for kernel smoothing: Use a weighted moving 
average.  The kernel specifies the weights.  The weight of a point 
close x0 is generally greater than that of a point that is far.

6. Kernel Methods 
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FIGURE 6.1. In each panel 100 pairs x,, yi are generated at random from the 
blue curve with Gaussian errors: Y = sin(4X) + E ,  X - U [0, 11, E N N (0,113). In 
the left panel the green curve is the result of a-30-nearest-neighbor running-mean 
smoothe~. The red point is the fitted constant f ( so) ,  and the orange shaded circles 
indicate those observations contributing to the fit at $0. The solid orange region 
indicates the weights assigned to observations. In the right panel, the green curve 
is the kernel-weighted average, using an Epamechnikov kernel with (half) window 
width X = 0.2. 

Figure from “The Elements of Statistical Learning”, by by Hastie, 
Tibshirani, and Friedman (2001), Springer-Verlag.



Some kernels
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168 6. Kernel Methods 

FIGURE 6.2. A comparison of three popular kernels for local smoothing. 
has been calibrated to integrate to I .  The tri-cube kernel is compact and h~ 
continuous derivatives at the boundary of its support, while the Epanechnikl 
nel has none. The Gaussian kernel is continuously diflerentiable, but has 2 
support. 

Figure from “The Elements of Statistical Learning”, by by Hastie, 
Tibshirani, and Friedman (2001), Springer-Verlag.

Some 
popular 
kernel 
functions

http://compdiag.molgen.mpg.de/docs/talk_05_01_04_stefanie.pdf
http://compdiag.molgen.mpg.de/docs/talk_05_01_04_stefanie.pdf


Recall kernel density estimation? 

Well, here’s a kernel smoother:

f̂b (x) = 1
nb

K x − xi
b

⎛
⎝⎜

⎞
⎠⎟i∑ =

1
n

wii∑
where the weight wi  is given by

wi =
1
b
K x − xi

b
⎛
⎝⎜

⎞
⎠⎟

f is a density

f is the regression 
function

f̂b (x) = 1
nb

K x − xi
b

⎛
⎝⎜

⎞
⎠⎟i∑ yi =

1
n

wii∑ yi

where the weight wi  is given by

wi =
1
b
K x − xi

b
⎛
⎝⎜

⎞
⎠⎟



Themes of kernel-based methods
• A kernel density estimator is a glorified histogram.

• A kernel smoother is a glorified ‘moving average’.

• Key concept: instead of the ‘hard’ contribution made by 
each point in a histogram or moving average (two 
options: contributes / does not contribute), contribution 
of each point to the density estimate or regression 
function varies with distance, i.e. is high in neighborhood 
of the point and low elsewhere 

- The kernel function describes exactly how this 
contribution varies with distance.

- Introduces a smoothing parameter, denoted b earlier. 
Often called the bandwidth in this context. 
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Produced from code at the R graph gallery

Illustration of kernel density estimation

http://addictedtor.free.fr/graphiques/RGraphGallery.php?graph=30
http://addictedtor.free.fr/graphiques/RGraphGallery.php?graph=30


Kernel smoother

• Moving average corresponds to a rectangular or nearest-
neighbor kernel.

• Qualities we often like in a kernel

- Compact support: Otherwise every point makes a 
contribution to the regression function everywhere.

- Smooth.

• Far more crucial than choice of kernel is ... choice of 
bandwidth.

- Subjective method: eye ball it!

- Cross validation -- and even the bootstrap -- can be 
extremely useful here.



Nadaraya-Watson estimator

f̂b (x) =
wii∑ yi
wii∑

Modifies the ‘moving average’ estimator to make it a 
more truly a moving average.  When forming the 
estimate at x, the effective weights will sum to one.

Using this modification, here’s the typical kernel 
smoother, again:

f̂b (x) =
Kb (x, xi )yii∑
Kb (x, xi )i∑

where Kb (x, xi ) = K
x − xi
b

⎛
⎝⎜

⎞
⎠⎟



Epanechnikov kernel

K(zi ) =
3
4

(1− z2 ) if z < 1

0 otherwise

⎧
⎨
⎪

⎩⎪

Optimal choice under some standard assumptions.  
Minimizes asymptotic mean integrated squared error.

*Despite its optimality, in R it is much easier to find software for Gaussian kernel.



Packages and functions for kernel smoothing

ksmooth, a really basic function, only does 
rectangular and Gaussian kernel. Don’t use this. 
Even the help file says that!

KernSmooth package (only seems to offer Gaussian 
kernel).

sm package (only seems to offer Gaussian kernel).

lpridge package offers Epanechnikov kernel.



6. Kernel Methods 

Nearesl-NBighbw Kemd Epanechnlkov Kernel 
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FIGURE 6.1. In each panel 100 pairs x,, yi are generated at random from the 
blue curve with Gaussian errors: Y = sin(4X) + E ,  X - U [0, 11, E N N (0,113). In 
the left panel the green curve is the result of a-30-nearest-neighbor running-mean 
smoothe~. The red point is the fitted constant f ( so) ,  and the orange shaded circles 
indicate those observations contributing to the fit at $0. The solid orange region 
indicates the weights assigned to observations. In the right panel, the green curve 
is the kernel-weighted average, using an Epamechnikov kernel with (half) window 
width X = 0.2. 

Figure from “The Elements of Statistical Learning”, by by Hastie, 
Tibshirani, and Friedman (2001), Springer-Verlag.



> ## trying ksmooth out for first time
> jSmooth <-
+   ksmooth(faithful$eruptions, faithful$waiting,
+           kernel = "normal", bandwidth = 1)
> str(jSmooth)
List of 2
 $ x: num [1:272] 1.60 1.61 1.63 1.64 1.65 ...
 $ y: num [1:272] 53.6 53.6 53.6 53.6 53.6 ...

xyplot(waiting ~ eruptions, faithful,
       xlab = "Duration of eruption (min)",
       ylab = "Waiting time to next eruption (min)",
       main = "Kernel smoother, ...",
       panel = function(x, y, ...) {
         panel.grid(h = -1, v = -1)
         panel.xyplot(x, y, ...)
         for(i in seq_along(jBand)) {
           jSmooth <- ksmooth(x, y, kernel = "normal",
                              bandwidth = jBand[i])
           panel.lines(jSmooth$x, jSmooth$y,
                       col.line = jCols[i], ...)
         }
       },
       key = list(space = "right",
         text  = list(paste("b =", jBand)),
         lines = list(col = jCols[1:length(jBand)]))
       )

Kernel smoother, implemented by ksmooth, Gaussian kernel
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Kernel smoother, implemented by ksmooth, 'box' kernel
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Kernel smoother, implemented by lpepa (lpridge), Epanechnikov kernel
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Kernel smoother, implemented by ksmooth, Gaussian kernel
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Kernel smoother, implemented by lpepa (lpridge), Epanechnikov kernel
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Bandwidth selection via ...
1.“direct plug-in methodology ... 
as described by Ruppert, 
Sheather and Wand (1995)”, 
implemented by dpill in 
KernSmooth package
2.cross validation, implemented 
by h.select in sm package
3.cross validation, as reported in 
Faraway (2006)
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Gaussian kernel, b = 0.19
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Duration of eruption (min)

W
ai

tin
g 

tim
e 

to
 n

ex
t e

ru
pt

io
n 

(m
in

)

50

60

70

80

90

2 3 4 5

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●



Gaussian kernel, b = 0.42
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Local constant →local polynomial

• Kernel smoother fits a local constant.

• Why not fit local lines or polynomials?

- Built-in function loess does this

- Packages KernSmooth and locfit also fit local 
polynomials

- The weighting of observations via a kernel function 
persists in most of these local regression approaches

- Robust local regression is also a nice add-on



Key innovation for local polynomials: Use the predicted y 
from fitting a linear or quadratic function to the (x,y)’s in the 
“neighborhood” of x0.  Often a kernel is used to weight 
the observations. Sometimes a robust procedure is used 
to fit the regression.

Figure from “The Elements of Statistical Learning”, by by Hastie, 
Tibshirani, and Friedman (2001), Springer-Verlag.

N-W Kernel at BMlndary 

e 0 0  0 

Local Linear Regression at Boundary 

FIGURE 6.3. The loudly weighted average has bias problem at or near the 
boundaries of the domain. The true junction w approximately linear here, but 
most of the observations i n  the neighborhood have a higher mean than the target 
point, so despite weighting, their mean will be biased upwards. Bgl fitting a locally 
weighted linear regression (right panel), this bias is removed to fivst order 



Local polynomials

• Kernel smoothers can be quite biased near the edges

• Local linear fits work much better here

• Local linear fits are sometimes biased in the interior, in 
areas of curvature (“trimming the hills, filling the valleys”) 
-- local quadratic fits can do better here

• Bias-variance trade-off

- lower degree polynomials more biased, less variable

- higher degree are less biased, more variable

• Proposal: default to local linear, use higher degrees with 
good reason.



N-W Kernel at BMlndary 

e 0 0  0 

Local Linear Regression at Boundary 

FIGURE 6.3. The loudly weighted average has bias problem at or near the 
boundaries of the domain. The true junction w approximately linear here, but 
most of the observations i n  the neighborhood have a higher mean than the target 
point, so despite weighting, their mean will be biased upwards. Bgl fitting a locally 
weighted linear regression (right panel), this bias is removed to fivst order 

Figure from “The Elements of Statistical Learning”, by by Hastie, 
Tibshirani, and Friedman (2001), Springer-Verlag.



Local L~near ~n lntenor Local Quadratk! m Intenor 

FIGURE 6.5. Local linear fits exhibit bias i n  regzons of curvature of the t m e  
function. Local quadmtzc fits tend to elimznate thzs bzas. 

Figure from “The Elements of Statistical Learning”, by by Hastie, 
Tibshirani, and Friedman (2001), Springer-Verlag.



172 6. Kernel Methods 

Constant - Linear 
Quadratic 

FIGURE 6.6. The variances functions 111(~)11~ for local constant, linear and 
quadratic regression, for a metric bandwidth (A = 0.2) tri-cube kernel. 

Figure from “The Elements of Statistical Learning”, by by Hastie, 
Tibshirani, and Friedman (2001), Springer-Verlag.



 

β̂(x) = min−1 Kb (x, xi )(yi − Xβ)
i∑ 2

where the i-th row of X  might be 1 xi( )  or 1 xi xi
2( )

f̂b (x) = xβ̂(x)

where x is an appropriately defined row vector, such as 1 x( )  or 1 x x2( )

Local polynomial approach (using least squares)

N-W Kernel at BMlndary 

e 0 0  0 

Local Linear Regression at Boundary 

FIGURE 6.3. The loudly weighted average has bias problem at or near the 
boundaries of the domain. The true junction w approximately linear here, but 
most of the observations i n  the neighborhood have a higher mean than the target 
point, so despite weighting, their mean will be biased upwards. Bgl fitting a locally 
weighted linear regression (right panel), this bias is removed to fivst order 



Local polynomial approach (using least squares)

Let z = 1 x( )  or 1 x x2( ), i.e. the 'regression ready' predictor for the point x.

Let Z  be the n by 2 or 3 design matrix, with ith row 1 xi( )  or 1 xi xi
2( ).

Let W (x) be the n by n diagonal matrix with ith diagonal element Kb (x, xi ).
Then the local polynomial fit at x can be written as:

f̂b (x) = z(ZTW (x)Z )−1ZTW (x)y = li (x)yii∑

weighted least 
squares regression

linear in the observed 
response yi

The weights li(x) combine the weighting from the 
kernel function with that from the least squares fitting 
approach.  Sometimes called the equivalent kernel.



6. Kernel Methods 

Local Linear Equivalent Kernel at Boundary Local Linear Equivalenl Kernel in Interior 

FIGURE 6.4. The green points show the equivalent kernel l i ( ~ o )  for local re- 
gression. These are the weights i n  f^(zo) = EL, l,(zo)yi, plotted against their 
corresponding zi. For displag purposes, these have been resealed, since i n  fact 
they sum to 1. Since the orange shaded region is the ('scaled) equivalent kernel 
for the Nadamya-Watson local average, we see how local regression automati- 
cally modifies the weighting kernel to correct for biases due to asymmetry i n  the 
smoothing window. 

Figure from “The Elements of Statistical Learning”, by by Hastie, 
Tibshirani, and Friedman (2001), Springer-Verlag.



Local polynomial approach (using least squares)

“smoother matrix”

 The trace of the smoother matrix is used as the ‘effective degrees of 
freedom’ for the smoother.  Recall that the trace of the analogous 
‘hat’ matrix in linear regression is p = the number of parameters.
(A similar smoother matrix arises with splines as well.)
This ‘pseudo degrees of freedom’ can be used to calibrate different 
smoothers or as an alternative way to specify the amount of 
smoothing.

f̂b (x) = z(Z
TW (x)Z )−1ZTW (x)y = li (x)yii∑

f̂ = Sby

ŷ = X(XT X)−1XT y
fitted values in a plain vanilla linear model

the “hat matrix”



loess (and lowess)

• Local, weighted polynomial regression

• Require specification of a span = proportion of points 
that influence fit at any given point

• Use tricubic weighting

• lowess: an older function that provides a local linear 
(or constant) fit, superceded by loess

• loess: local linear or quadratic fit, can work with 
multiple predictors, can use some predictors globally, 
local fits can be least squares or something more robust, 



Usually, choice of kernel is 
not terribly interesting / 
crucial from the perspective 
of exploratory figures.

In contrast, the choice of 
bandwidth -- or whatever 
tuning parameter controls 
the amount of smoothing -- 
is quite critical.

Kernel smoother, implemented by ksmooth, Gaussian kernel
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b = 0.1
b = 0.35
b = 0.6
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approach

tuning 
parameter(s) that 

controls 
smoothness

some leads on 
actual functions or 

packages

kernel 
smoother

bandwidth
sd (or some other 

measure of spread) of 
the kernel

ksmooth()
KernSmooth

sm
lpridge

local 
polynomial 
regression

effective degrees of freedom
trace of the smoother matrix

span
degree of polynomial

loess()
locfit package



How to choose b?

We’d like to set b to minimize prediction error:

Nonparametric regression estimate of 
E(Y|X=x) for smoothing parameter value 
b

f̂b (x)

PE = E(Y − f̂b (X))
2

In practice, it is tempting to estimate PE with 
this simple-to-compute empirical quantity:

1
n

(yi − f̂b (xi ))
2

i∑



However, this is too naive. 

Average squared residual error will be too “optimistic”.

Average squared residual error will tend to underestimate 
prediction error.

Circular logic: use the observed data to build the predictor 
THEN use the same data to evaluate the performance of the 
predictor.

If we pick the amount of smoothing to minimize avg residual 
error, we will “connect the dots” (i.e. do no smoothing) and get 
a value of zero, which is just silly.

Oops!

1
n

(yi − f̂b (xi ))
2

i∑E(Y − f̂b (X))
2

What we want: What we might settle for:



Fundamental issue:

We need to use some data to build the predictor and 
other data to characterize its performance.

“Training vs. test”

Cross validation is an attractive approach.

1
n

(yi − f̂b (xi ))
2

i∑E(Y − f̂b (X))
2

What we want: What we almost settled for:

1
n

(yi − f̂b
−k (i ) (xi ))

2
i∑

Cross validation estimate of  prediction error:

prediction for obs i, based on a regression 
estimate that excluded the k(i)th part of the data



1
n

(yi − f̂b
−k (i ) (xi ))

2
i∑

Cross validation estimate of  prediction error:

prediction for obs i, based on a regression 
estimate that excluded the k(i)th part of the data

What’s the deal with the “k(i)th” part of the data?

If k(i) = i, we get “leave one out” cross validation.

If k(i) = a sub-sample of the dataset, of size ~ n/K, we 
get “K-fold” cross validation, e.g. “10-fold cross 
validation.”



CV (b) = 1
n

(yi − f̂b
−k (i ) (xi ))

2
i∑

Cross validation estimate of  prediction error 
associated with smoothing parameter value b:

Compute CV(b) for many values of b.

You should probably plot this.

The b value that minimizes CV(b), call it bCV, should receive 
serious consideration as the “best” value of b.



NONPARAMETRIC REGRESSION 

duration 

Figure from “Extending the Linear Model With R”.  Faraway, 
Julian (2006) Chapman & Hall/CRC Press.

This is our goal -- the error curve that relates 
the CV criterion to the tuning parameter b.



NONPARAMETRIC REGRESSION 

duration 

Figure from “Extending the Linear Model With R”.  Faraway, 
Julian (2006) Chapman & Hall/CRC Press.

bCV = 0.42

But also note how flat that curve is ... 
many values of b perform about the same.



Synthetic dataset from Faraway (2006).
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black line is the data-generating truth



loess is the smoother used by lattice when type 
includes “smooth”, so it’s easy to get loess fit at the 
default settings (span = 0.75).  Doesn’t this seem too 
smooth, though?

xyplot(y ~ x, exa, type = c('p','smooth'), grid = TRUE)
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=loess, span 0.75

Let’s implement the use of cross-validation 
to select the span.



K-fold: randomly divide 
data into K parts

> (n <- nrow(exa))                        # 256
[1] 256
> K <- 10
> set.seed(88)                           
> exa$foldLabels <- sample(rep(1:K, length = n), n, replace = FALSE)
> table(exa$foldLabels)

 1  2  3  4  5  6  7  8  9 10 
26 26 26 26 26 26 25 25 25 25 

> xyplot(y ~ x | factor(foldLabels), exa,
+        type = c('p', 'smooth'), span = 0.3,
+        layout = c(5, 2))
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train test



> theFit <- loess(y ~ x, exa, subset = foldLabels != 4,
+                 span = theSpan, degree = 1,
+                 control = loess.control(surface = "direct"))
> summary(theFit)
...
Number of Observations: 230 
Equivalent Number of Parameters: 10.72 
Residual Standard Error: 0.3062 
Trace of smoother matrix: 12.74 

Control settings:
  normalize:  TRUE 
  span!     :  0.15 
  degree   :  1 
  family   :  gaussian
  surface  :  direct

> thePred <- predict(theFit,
+                    newdata = subset(exa, subset = foldLabels == 4))
> sqrt(mean((exa$y[exa$foldLabels == 4] - thePred)^2))
[1] 0.3402023

Train: omit 'fold' 4
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Test: only use 'fold' 4
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> cvSquaredErrors <- 
+   sapply(1:K, function(k) {
+     cat(paste("fold =", k, "\n"))
+     theFit <- loess(y ~ x, exa, subset = foldLabels != k,
+                     span = theSpan, degree = 1,
+                     control = loess.control(surface = "direct"))
+     thePred <-
+       predict(theFit,
+               newdata = subset(exa, subset = foldLabels == k))
+     theSquaredError <- (exa$y[exa$foldLabels == k] - thePred)^2
+     return(theSquaredError)
+   })
fold = 1 
fold = 2 
fold = 3 
fold = 4 
fold = 5 
fold = 6 
fold = 7 
fold = 8 
fold = 9 
fold = 10 
> sapply(cvSquaredErrors, mean)           # avg sq err by fold
 [1] 0.11730766 0.09362097 0.07410273 0.11573757 0.08207289 0.06686242
 [7] 0.15973350 0.12620991 0.07783665 0.09710683
> sqrt(sapply(cvSquaredErrors, mean))     # sqrt(avg sq err by fold)
 [1] 0.3425021 0.3059754 0.2722182 0.3402023 0.2864837 0.2585777 0.3996667
 [8] 0.3552603 0.2789922 0.3116197
> (cvCrit <- mean(unlist(cvSquaredErrors)))
[1] 0.1008378
> sqrt(cvCrit)
[1] 0.3175497



## pkg one CV as a function
cvFun <- function(jDat, span) {
  K <- length(unique(jDat$foldLabels))
  cvSquaredErrors <-
    sapply(1:K, function(k) {
      cat(paste("fold =", k, "\n"))
      theFit <- loess(y ~ x, jDat, subset = foldLabels != k,
                      span = span, degree = 1,
                      control = loess.control(surface = "direct"))
      thePred <-
        predict(theFit,
                newdata = subset(jDat, subset = foldLabels == k))
      return((exa$y[exa$foldLabels == k] - thePred)^2)
    })
  return(mean(unlist(cvSquaredErrors)))
}

jSpan <- seq(from = 0.05, to = 0.2, length = 10)

cvCrit <- sapply(seq_along(jSpan), function(i) {
  cat(paste("span =", jSpan[i], "\n"))
  return(cvFun(exa, jSpan[i]))
})

xyplot(cvCrit ~ jSpan, type = 'b',
       xlab = 'span', ylab = 'CV criterion',
       main = 'loess, degree = 1')

loess, degree = 1
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## since we know the truth, we can assess the error associated with
## each span
trueSqPredErr <-
  sapply(seq_along(jSpan), function(i) {
    cat(paste("span =", jSpan[i], "\n"))
    theFit <- loess(y ~ x, exa, span = jSpan[i], degree = 1,
                    control = loess.control(surface = "direct"))
    return(mean((exa$m - theFit$fitted)^2))
})

xyplot(trueSqPredErr + cvCrit ~ jSpan, type = 'b',
       scales = list(y = list(relation = 'free')),
       xlab = 'span', ylab = '', layout = c(1, 2),
       main = 'loess, degree = 1', outer = TRUE,
       panel = function(x, y, ...) {
         panel.xyplot(x, y, ...)
         panel.abline(v = jSpan, col = jGray)
       })

Minimizer of CV criterion 
also is the minimizer of 
true squared prediction 
error.  Illustrates the key 
idea of CV.

loess, degree = 1
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In defense of eyeball-o-metrics
• Methods that are more formal, more mathematical almost 

always make very specific assumptions.

• These assumptions are often quite inappropriate.

• So, you can assume a nice but wrong model, in order to 
permit you to Do The Math.

• Or, you can use common sense, years of experience, etc. to 
make a subjective choice.

• Both approaches are undoubtedly wrong and subjective.  In 
general, we cannot say which one is more wrong.

• Theoretical solutions are incredibly valuable for offering 
constructive insight into how/why a system works (or 
doesn’t!) but there is still a big role for judgement and 
common sense in real applications.



Summary on smoothing

Kernel smoothing is an extension of kernel density 
estimation; histogram --> kernel density estimate, 
moving average --> kernel smoother

Local polynomials are an extension of kernel 
smoothers

In the absence of any other direction, use loess to 
get a local linear fit



Summary on smoothing
Cross validation provides a good way to select tuning 
parameters; feel free to use pre-packaged CV 
implementations

Don’t let yourself completely off the hook for choosing 
the amount of smoothing that is appropriate to your 
goals; use your own brain and eyeballs

Note that CV is also used to estimate prediction error 
(as opposed to ‘model selection’ as done here, where 
we just seek to find the tuning parameter value that 
minimizes it) and there are some differences



References for smoothing, CV

• Faraway, Julian. Extending the Linear Model With R.  
Chapman & Hall/CRC 2006. Available via MyiLibrary.

• Hastie, T., Tibshirani, R., Friedman, J.  The Elements of 
Statistical Learning.  Springer 2001. Available via 
SpringerLink.

• Efron, B., Tibshirani, R.  An Introduction to the Bootstrap.  
Chapman & Hall/CRC 1998.

http://lib.myilibrary.com.ezproxy.library.ubc.ca/ProductDetail.aspx?id=34827
http://lib.myilibrary.com.ezproxy.library.ubc.ca/ProductDetail.aspx?id=34827
http://www.springerlink.com/content/978-0-387-84857-0/contents/
http://www.springerlink.com/content/978-0-387-84857-0/contents/


How to ‘trick’ lattice into exploring a 
tuning parameter ... degenerate shingles

Degenerate shingle

Range

Pa
ne
l

1

2

3

4

5

6

0.0 0.2 0.4 0.6 0.8 1.0

Typical usage of a shingle

Range

Pa
ne
l

1

2

3

4

5

6

0.0 0.2 0.4 0.6 0.8 1.0

> testShingle1 <- equal.count(exa$x)
> summary(testShingle1)

Intervals:
      min     max count
1 0.00475 0.28815    73
2 0.15405 0.42875    73
3 0.29735 0.58345    73
4 0.44065 0.72895    73
5 0.58475 0.89115    73
6 0.74025 0.99725    73

Overlap between adjacent intervals:
[1] 36 37 36 37 36
> plot(testShingle1,
+      main = "Typical usage of a shingle")

> nLevels <- length(levels(testShingle1))
> jIntervals <- cbind(rep(0, nLevels), rep(1, 
nLevels))
> testShingle2 <- shingle(exa$x, jIntervals)
> summary(testShingle2)

Intervals:
  min max count
1   0   1   256
2   0   1   256
3   0   1   256
4   0   1   256
5   0   1   256
6   0   1   256

Overlap between adjacent intervals:
[1] 256 256 256 256 256
> plot(testShingle2, main = "Degenerate shingle")

“Mechanics” Sidebar
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=bandwidth 0.07

truth
ksmooth, normal kernel

How the degenerate 
shingle comes in

## kernel smoothing w/ different bandwidths
nBw <- 4
jBw <- seq(from = 0.02, to = 0.07, length = nBw)
jIntervals <- cbind(rep(0, nBw), rep(1, nBw))
exa$xShingle <- shingle(exa$x, jIntervals)

xyplot(y ~ x | xShingle, exa,
       panel = function(x, y, ...) {
         panel.xyplot(x, y, cex = 0.3, col = jGray, ...)
         z <- ksmooth(x, y, "normal", jBw[packet.number()])
         panel.lines(z$x, z$y, lwd = 2, ...)
         panel.xyplot(x, exa$m, type = 'l', col = 'black')
       },
       strip = strip.custom(var.name = 'bandwidth',
         factor.levels = as.character(round(jBw, 4)),
         strip.levels = c(TRUE, TRUE),
         fg = jGray, sep = "="),
       key = list(space = 'top',
         lines = list(col = c('black',
                        trellis.par.get()$superpose.line$col[1]),
           lwd = c(trellis.par.get()$superpose.line$lwd[1], 2)),
         text = list(c('truth','ksmooth, normal kernel'))))

Sidebar
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=bandwidth 0.0367
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=bandwidth 0.0533
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=bandwidth 0.07

truth
ksmooth, normal kernel

## kernel smoothing w/ different bandwidths
nBw <- 4
jBw <- seq(from = 0.02, to = 0.07, length = nBw)
jIntervals <- cbind(rep(0, nBw), rep(1, nBw))
exa$xShingle <- shingle(exa$x, jIntervals)

xyplot(y ~ x | xShingle, exa,
       panel = function(x, y, ...) {
         panel.xyplot(x, y, cex = 0.3, col = jGray, ...)
         z <- ksmooth(x, y, "normal", jBw[packet.number()])
         panel.lines(z$x, z$y, lwd = 2, ...)
         panel.xyplot(x, exa$m, type = 'l', col = 'black')
       },
       strip = strip.custom(var.name = 'bandwidth',
         factor.levels = as.character(round(jBw, 4)),
         strip.levels = c(TRUE, TRUE),
         fg = jGray, sep = "="),
       key = list(space = 'top',
         lines = list(col = c('black',
                        trellis.par.get()$superpose.line$col[1]),
           lwd = c(trellis.par.get()$superpose.line$lwd[1], 2)),
         text = list(c('truth','ksmooth, normal kernel'))))

How the different 
bandwidths come in

Sidebar



Same idea, but with 
loess and span

x

y
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=span 0.75

truth
loess, local linear

## local linear fits
jSpan <- seq(from = 0.1, to = 0.75, length = nBw)

xyplot(y ~ x | xShingle, exa,
       panel = function(x, y, ...) {
         panel.xyplot(x, y, cex = 0.3, col = jGray, ...)
         z <- loess(y ~ x, span = jSpan[packet.number()],
                    degree = 1)
         panel.lines(z$x, z$fitted, lwd = 2, ...)
         panel.xyplot(x, exa$m, type = 'l', col = 'black')
       },
       strip = strip.custom(var.name = 'span',
         factor.levels = as.character(round(jSpan, 4)),
         strip.levels = c(TRUE, TRUE),
         fg = jGray, sep = "="),
       key = list(space = 'top',
         lines = list(col = c('black',
                        trellis.par.get()$superpose.line$col[1]),
           lwd = c(trellis.par.get()$superpose.line$lwd[1], 2)),
         text = list(c('truth','loess, local linear'))))
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Two inter-related goals

• Foster your development of a personal philosophy on 
data analysis, especially exploratory analysis.

• Strengthen your data analysis skills.

You’ll leave this course with (at least the beginnings of) 
a confident, deliberate attitude about how to approach 
data analysis and a base level of practical skills to put 
your attitude into action.

My hope:


