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SUMMARY

Even simple examples of finite mixture models can fail to fulfil the regularity conditions that
are routinely assumed in standard parametric inference problems. Many methods have been in-
vestigated for testing for homogeneity in finite mixture models, for example, but all rely on
regularity conditions including the finiteness of the Fisher information and the space of the mix-
ing parameter being a compact subset of some Euclidean space. Very simple examples where
such assumptions fail include mixtures of two geometric distributions and two exponential dis-
tributions, and, more generally, mixture models in scale distribution families. To overcome these
difficulties, we propose and study an EM-test statistic, which has a simple limiting distribution
for examples in this paper. Simulations show that the EM-test has accurate type I errors and is
more efficient than existing methods when they are applicable. A real example is also included.

Some key words: Chi-squared limiting distribution; Compactness; Exponential mixture; Finite mixture model; Homo-
geneity; Likelihood ratio test; Score test.

1. INTRODUCTION

1·1. Examples
Many first-order asymptotic results for standard parametric models are based on the fact that

the asymptotic distribution of the score vector is very tractable. However, even for very simple
mixture models the behaviour of the score and the shape of the loglikelihood function can be very
different from that expected from standard first-order results. Consider, for example, a mixture
distribution with density function given by

f(x; Ψ) =
∫
f(x; θ)dΨ(θ) = (1− α)f(x; θ1) + αf(x; θ2), (1)
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2 P. LI, J. CHEN AND P. MARRIOT

where f(x; θ) is a density function belonging to some parametric family of distributions and
Ψ = (1− α)I(θ1 6 θ) + αI(θ2 6 θ) with θj ∈ Θ, j = 1, 2 and 0 6 α 6 1. We call 1− α and
α mixing proportions, θ1 and θ2 mixing parameters, and Θ the mixing parameter space. The
score function with respect to α at α = 0 is

∂

∂α
log f(x; Ψ)

∣∣∣
α=0

=
f(x; θ2)
f(x; θ1)

− 1.

If the variance of this score, i.e. the Fisher information at α = 0, is not finite, then standard
asymptotic results based on the finiteness of the Fisher information must be re-examined.

Example 1. Let X1, . . . , Xn be a random sample from the mixture of exponentials (1−
α)Ex(1) + αEx(θ), where Ex(θ) denotes the exponential distribution with mean θ. The score
statistic for α at α = 0 and given θ has the form

S(θ) =
n∑
i=1

{θ−1 exp(−θ−1Xi)
exp(−Xi)

− 1
}
,

which is a centred density ratio. Under the homogeneous model where α = 0, however, we find

E{S2(θ)} =
{
{n(1− θ)2}/{θ(2− θ)}, θ < 2,

∞, θ > 2.

Hence the only way to ensure a finite Fisher information is to require Θ ⊂ (0, 2).
Standard first-order asymptotic theory leads one to expect that the shape of the loglikelihood

function is mostly determined by the expected or observed Fisher information. However, this
intuition can be misleading with models which do not satisfy the regularity conditions considered
in this paper. The loglikelihood function for simple mixture models such as (1) in fact can be very
far from quadratic; see Anaya-Izquierdo & Marriott (2007a, b) and Marriott (2007). Furthermore,
this shape can be dominated by a few highly influential observations even when the model is
correctly specified (Marriott, 2007).

Example 2. Consider a simple normal mixture model by (1− α)N(0, 1) + αN(µ, 1) with
µ ∈ Θ ⊂ R where R is the set of real numbers. It is common to consider the likelihood ratio test
for the hypothesisH0 : αµ = 0 based on a random sampleX1, . . . , Xn. Hartigan (1985) showed
that the likelihood ratio statistic goes to infinity in probability as n→∞ when Θ = R. That is,
the classical chi-squared limiting distributional result of Wilks (1938) is not applicable.

These two examples illustrate how standard asymptotic results derived from many testing
procedures are only applicable to models that satisfy Assumptions A1-A5 in Appendix, and
Assumption 1. the Fisher information E[{f(X; θ)/f(X; θ0)− 1}2] is finite under the homoge-
neous model f(x; θ0) for all θ ∈ Θ.
Assumption 2. Θ is a compact subset of some Euclidean space.

This paper looks at ways of developing testing procedures which have standard χ2 behaviour
even when Assumptions 1 and 2 fail.

1·2. Testing for homogeneity
For clarity we concentrate on the case of testing the hypothesis of homogeneity against the

alternative of a two-component mixture. As pointed out in Anaya-Izquierdo & Marriott (2007a)
this can be challenging since the mixture can be close to the unmixed model in two quite distinct
ways, either that the two components θ1 and θ2 in (1) are both close to θ, or that the components
are far from each other but the mixing parameter α is very close to 0 or 1. It is in the second case
that the Fisher information in the α-parameter direction causes most problems. Furthermore if
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Biometrika style 3

this mixing parameter is much smaller than the inverse of the sample size then it is effectively
not estimable.

A test of homogeneity for models of the form (1) is a test of the null hypothesis

H0 : α(1− α)(θ1 − θ2) = 0

against the alternative where α(1− α)(θ1 − θ2) 6= 0. As a result of symmetry, we may and will
assume 0 6 α 6 1/2 instead of 0 6 α 6 1.

Finding an effective and convenient method for the test of homogeneity has challenged statis-
ticians for a long time; see Titterington et al. (1985, Ch. 5) and McLachlan & Peel (2000, Ch.
6). Although Bickel & Chernoff (1993) and Liu & Shao (2004) successfully derived the limiting
distribution of the likelihood ratio statistic under the specific model in Example 2, the general
problem under more useful models where Θ is not a compact subset of some Euclidean space
remains open. Recent advances are mostly obtained under Assumption 2 (Dacunha-Castelle &
Gassiat, 1999; Chen & Chen, 2001; Liu & Shao, 2003). In addition, either explicitly or implic-
itly, these results rely on Assumption 1. To better explore the problem, we show what happens
when a score test is attempted.

Example 1. (Continued) We wish to test the homogeneity null hypothesis H0 : α(θ − 1) = 0.
According to Davies (1977), for each given θ, we first calculate a score statistic as the derivative
of the loglikelihood function with respect to α at α = 0. As a general rule, the test statistic is
to be defined as supθ∈Θ n

−1/2S(θ)/
√

[E{S2(θ)]}. A test based on this statistics is not sensible
because the supremum is always attained in the range of θ < 2.

As one of the referees pointed out, a possible remedy when using the score test in Example
1 is self-normalization by the observed Fisher information. Giné et al. (1997) showed that the
self-normalized score will have a standard normal limiting distribution when S(θ) lies in the
domain of attraction of the normal law even if E{S2(θ)} =∞. As far as we know, the infinite
Fisher information problem has not been discussed before in the mixture model context. The
self-normalization technique may be useful but investigation of this is beyond the scope of this
paper.

2. THE EM-TEST AND ITS ASYMPTOTIC PROPERTIES

Let X1, . . . , Xn be a random sample of size n from a two-component mixture model (1) and
let

ln(α, θ1, θ2) =
n∑
i=1

log{(1− α)f(Xi; θ1) + αf(Xi; θ2)}

be the ordinary loglikelihood function. We define the penalized loglikelihood function

PLn(α, θ1, θ2) = ln(α, θ1, θ2) + p(α)

where p(α) is a penalty function on α. The exact form of the penalty function p(α) will be
discussed later but the idea is to bound away from cases where α is very close to zero or one.

We propose a procedure for testing for homogeneity which has been motivated by the form of
the EM-algorithm. For each fixed α = α0 ∈ (0, 0.5], for example 0.5, we compute a penalized
likelihood ratio statistic

Mn(α0) = 2{PLn(α0, θ̃01, θ̃02)− PLn(0.5, θ̃0, θ̃0)} (2)

with θ̃01 and θ̃02 being the maximizers of PLn(α0, θ1, θ2) and θ̃0 being the maximizer of
pln(0.5, θ, θ). It can be shown that under the null model f(x; θ0) the statistic Mn(α0) has a
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4 P. LI, J. CHEN AND P. MARRIOT

simple χ2-type limiting distribution even when Assumptions 1 and 2 are not satisfied. Thus it is
mathematically convenient to conduct a test based on Mn(α0).

If the data are from an alternative model with α different from α0, the test based on (2) is
likely to be inefficient. We solve this problem by updating the α values via an EM-iteration.
The mixture model can be regarded as a model for incomplete data, where the information on
the membership of observations are unknown. The EM-algorithm (Dempster et al., 1977) can be
used to update iteratively the fitted values of the mixing proportions α and the mixing parameters
(θ1, θ2). The EM-test for homogeneity follows this strategy to update the value of α0 to achieve
a better efficiency than that of Mn(α0). In addition, we choose a number of initial values of α0

to accelerate this process so that only a few iterations are necessary in order to capture the true
value of θ if the data are from the alternative model. We then use the maximum value of the
Mn(α0)-values as our test statistic.

The EM-test statistic is best explained by the procedure, initialized by choosing a number of α
values, α1, . . . , αJ , say, computing θ̃0 = arg maxθ PLn(0.5, θ, θ), and letting j = 1 and k = 0.

Step 1. Let α(k)
j = αj .

Step 2. Compute (θ(k)
j1 , θ

(k)
j2 ) = arg maxθ1,θ2 PLn(α(k)

j , θ1, θ2) and

M (k)
n (αj) = 2{PLn(α(k)

j , θ
(k)
j1 , θ

(k)
j2 )− PLn(0.5, θ̃0, θ̃0)}.

Step 3. For i = 1, . . . , n, compute the weights which are the conditional expectations in the
E-step.

w
(k)
ij =

α
(k)
j f(Xi; θ

(k)
j2 )

(1− α(k)
j )f(Xi; θ

(k)
j1 ) + α

(k)
j f(Xi; θ

(k)
j2 )

.

Now following the M-step, let

α
(k+1)
j = arg max

α
{(n−

n∑
i=1

w
(k)
ij ) log(1− α) +

n∑
i=1

w
(k)
ij log(α) + p(α)},

θ
(k+1)
j1 = arg max

θ1
{
n∑
i=1

(1− w(k)
ij ) log f(Xi; θ1)},

θ
(k+1)
j2 = arg max

θ2
{
n∑
i=1

w
(k)
ij log f(Xi; θ2)}.

Compute

M (k+1)
n (αj) = 2{PLn(α(k+1)

j , θ
(k+1)
j1 , θ

(k+1)
j2 )− PLn(0.5, θ̃0, θ̃0)}.

Let k = k + 1 and repeat Step 3 for a fixed number of iterations in k.
Step 4. Let j = j + 1, k = 0 and go to Step 1, until j = J .
Step 5. For each k, calculate the test statistic as

EM(k)
n = max{M (k)

n (αj), j = 1, . . . , J}.

When the number of EM-iterations tends to infinity under the assumption that the EM-
algorithm converges to a global maximum, the EM-test statistic becomes the modified likelihood
ratio test, see Chen (1998), Chen et al. (2001, 2004). The modified likelihood ratio test enjoys a
simple limiting distribution only under Assumptions 1 and 2. Therefore, although letting k =∞
may further increase the value of the EM-test statistic, its nice asymptotic properties become
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inapplicable for providing a critical value of the test. Without the penalty term p(α), the EM-
test reduces to the ordinary likelihood ratio test when k =∞. The likelihood ratio test has a
complicated limiting distribution which is available only under more restrictive conditions.

The mboxEM-test is partially motivated by the score test discussed in Liang & Rathouz (1999).
Their score test can be directly used for the models in Examples 1 and 2. In both tests, a pre-
chosen value of the mixing proportion is used. However, the EM-test iterates to find a more suit-
able mixing proportion which improves the power, while the score test has no such mechanism:
it uses a single α value regardless of the actual fitting of the data.

Chen & Cheng (1995) and Lemdani & Pons (1995) proposed a constrained test based on

Rn(ε0) = 2
{

sup
α∈[ε0, 0.5], θ1, θ2

ln(α, θ1, θ2)− ln(0.5, θ̃0, θ̃0)
}

where ε0 ∈ (0, 1/2] is a fixed positive constant. There are some similarities between this method
and the EM-test, because the EM-test requires that the pre-chosen mixing proportions be larger
than zero. However, the EM-iteration allows us to recoup the mixture models with smaller mixing
proportions while the constrained method does not.

The computation of EM
(k)
n is very simple. In practice, when the sample size is small, one

might want to simulate the empirical critical values of the EM-test by a Monte Carlo or bootstrap
method. The computational advantage of the EM-test will make such a simulation easy.

Under very general conditions, for fixed finite k and any finite set of pre-chosen αj , the test
statistic EM

(k)
n has the limiting distribution 0.5χ2

0 + 0.5χ2
1. This is shown in the following theo-

rems, whose proofs are given in the Appendix.
THEOREM 1. Suppose that f(x; θ) satisfies Assumptions A1-A5 given in the Appendix, and

p(α) is a continuous function such that p(α)→ −∞ as α→ 0 and which attains its maximal
value at α = 0.5. Under the null distribution f(x; θ0), we have, for j = 1, . . . , J and any fixed
finite k,

α
(k)
j − αj = op(1), θ(k)

j1 − θ0 = Op(n−1/4), θ(k)
j2 − θ0 = Op(n−1/4),

m
(k)
j1 = (1− α(k)

j )(θ(k)
j1 − θ0) + α

(k)
j (θ(k)

j2 − θ0) = Op(n−1/2).

Based on the above result, we can easily derive the null distribution of EM
(k)
n .

THEOREM 2. Assume the same conditions as in Theorem 1, and that one of the αj’s is equal
to 0.5. Under the null distribution f(x; θ0), and for any fixed finite k, as n→∞,

EM(k)
n →0.5χ2

0 + 0.5χ2
1,

in distribution.
Remark 1. For each given α ∈ (0, 0.5], Mn(α) in (2) can be written as the sum of two terms,

one from the likelihood function and the other from the penalty term. Under the null model, the
first term has the same quadratic approximation for all α-values. However, different α-values
result in different sizes of the penalty function. Since the penalty p(α) attains its maximum at
α = 0.5, including α = 0.5 implies that the limiting distribution is determined by the quadratic
approximation only, and hence has the simplest form.

We emphasize here that Assumptions 1 and 2 are not required for the above results. Hence,
the EM-test is both convenient in applications and widely applicable.
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6 P. LI, J. CHEN AND P. MARRIOT

3. TWO PRECISION-ENHANCING MEASURES

Before the EM-test is fully implemented, we suggest two precision-enhancing measures to
improve its utility further. In applications, the limiting distribution of the test statistic is usually
used to provide a critical value for rejecting the null hypothesis. However, when the sample size
is not large, calibration via the limiting distribution may not be precise enough. One way of
improving this calibration precision is to choose a good penalty function.

For the validity of the asymptotic result, p(α) must decrease to −∞ when α→ 0 and must
be maximized at α = 1/2. For a finite sample size, the choice of the penalty function p(α)
may affect the accuracy of the null limiting distribution. It is important to choose a penalty
which best balances the Type I error and the power. Other considerations include computational
convenience. In the current paper, we find that the penalty function

p(α) = C log(1− |1− 2α|) (3)

for some positive C is a very good choice. Since

log(1− |1− 2α|) 6 log(1− |1− 2α|2) = log{4α(1− α)}

with the same value of constant C, this penalty is more severe than the penalty function
C log{4α(1− α)} introduced for the modified likelihood ratio test (Chen et al., 2001). The
difference is relatively small when α− 0.5 l 0, and large when α− 0.5 deviates from 0. As
a result, the current choice helps to reduce the Type I error without limiting the power of the EM-
test. In addition, when α l 0.5, log(1− |1− 2α|) l −|1− 2α|. The penalty (3) is therefore a
lasso-type penalty (Tibshirani, 1996); that is, it is a continuous function for all α, but not smooth
at α = 0.5. It has therefore similar properties to the lasso-type penalty for linear regression (Tib-
shirani, 1996), the probability of the fitted value of α being 0.5 is positive. In comparison, the
penalty log{4α(1− α)} is smooth at α = 0.5 and does not have this property.

These two penalty functions are special cases of C log(1− |1− 2α|h) for some 0 < h 6 2. A
choice of 0 < h < 1 may further improve the power of the EM-test. We recommend the choice
of h = 1 for the following reasons. First, when h = 1, in Step 3 of the algorithm the α values
can be easily updated as follows:

α
(k+1)
j =

min
{∑n

i=1
w

(k)
ij +C

n+C , 0.5
}
, n−1

∑n
i=1w

(k)
ij 6 0.5

max
{∑n

i=1
w

(k)
ij

n+C , 0.5
}
, n−1

∑n
i=1w

(k)
ij > 0.5

.

Secondly, there is a natural generalization of the current penalty function to the hy-
pothesis testing problem with more than two components. Note that log(1− |1− 2α|) =
min[log(2α), log{2(1− α)}]. For a mixture model with m components, the penalty function
can be set to be min{log(α1), . . . , log(αm)}. When h < 1, the penalty function loses the above
two properties.

The next precision enhancing measure is motivated by the following observation. It is sug-
gestive that (1− pn)χ2

0 + pnχ
2
1 with pn = pr(EM

(k)
n > 0) may approximate better the finite-

sample distribution than does the asymptotic limit given above. A good approximation for
pn might therefore be useful. Let µ(f) and σ2(f) be, respectively, the mean and variance
under the homogeneous model. Furthermore, let S = E[{X1 − µ(f)}2]− σ2(f) be an over-
dispersion measure, where the mixture model would only be justified when S > 0. Note that
Sn =

∑n
i=1(Xi − X̄)2/n− σ̂2(f) provides consistent estimation of the over-dispersion mea-

sure S, where σ̂2(f) is a consistent estimator of σ2(f). Intuitively, if Sn 6 0, the homogeneous
model should be not rejected and therefore we approximate pn by pr{Sn > 0}.
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In the following proposition, we use an Edgeworth expansion to find the leading term of this
probability. We omit the proof because it is a routine application of the techniques in Hall (1992,
p. 56).

PROPOSITION 1. Under the null hypothesis and if E(X6
1 ) <∞, then

pn = pr{Sn > 0} = 0.5 + (2πn)−1/2(a− b/6) + op(n−1/2), (4)

where

a = lim
n→∞

n1/2E
{ Sn√
{var(Sn)}

}
, b = lim

n→∞
n1/2E

{Sn − E(Sn)√
{var(Sn)}

}3
.

Furthermore, if E(X10
1 ) <∞, then the remainders term op(n−1/2) in (4) can be strengthened

to Op(n−3/2).
In the above proposition, the Edgeworth approximation relies on the condition E(X6

1 ) <∞.
There exists some distributions, such as the exponential distribution and the geometric distribu-
tion, which satisfy this condition or even the conditionE(X10

1 ) <∞, but do not satisfy Assump-
tion 1. The condition E(X6

1 ) <∞ is therefore not as restrictive as Assumption 1. The quantities
a and b may depend on unknown parameters, in which case we replace them by their consistent
estimates under the homogeneity model.

The penalty function p(α) clearly has effects on the probability of EM
(k)
n = 0, but this is not

reflected in the Edgeworth expansion. Simulations show that the expansion works well for the
penalty in (3) and a range of C values. A refined approximation which depends on the choice of
the penalty and the value of C is worth further investigation.

For many commonly used distributions, we can compute a and b analytically and the results
are presented in the Table 1. In the Poisson and binomial examples, we can replace the unknown
θ by its maximum likelihood estimate under the null model.

Table 1. Edgeworth approximations of pn for commonly used kernel functions.

Kernel Edgeworth approximation
N(µ, σ2

0) 0.5− 5/{6
√

(πn)}+Op(n−3/2)
Po(θ) 0.5− (5θ + 1)/{6θ

√
(πn)}+Op(n−3/2)

Bi(m, θ) 0.5− {θ(1− θ)(5m− 11) + 1}/[6θ(1− θ)
√
{πnm(m− 1)}] +Op(n−3/2)

Ex(θ) 0.5− 8/
√

(18πn) +Op(n−3/2)
σ2

0 in the normal kernel is assumed known

We recommend the use of penalty function (3) for the EM-test, together with its higher order
adjustment. These two practical considerations enhance the performance of the new method.

4. SIMULATION STUDY

Our simulation study examines many aspects of the EM-test and related issues. First, we exam-
ine the precision of the Edgeworth expansion for pn = pr(EM

(k)
n > 0). We considered null mod-

els with kernels N(0, 1), Po(5), Ex(5), and Bi(10,0.5). In each case, we generated random sam-
ples of sizes n = 100 and n = 200. We computed EM

(k)
n for k = 0, 1, 2 for each kernel using (3)

with C = 1, and for two sets of initial values for α: {0.1, 0.2, 0.3, 0.4, 0.5} and {0.1, 0.3, 0.5}.
The nonzero proportions of EM

(k)
n , k = 0, 1, 2 were calculated based on 20000 repetitions. Since

the results for two sets of initial α-values are almost identical, we only report the results based
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8 P. LI, J. CHEN AND P. MARRIOT

Table 2. Simulated nonzero proportions for the EM-test statistics.

Edgeworth Standard
Kernel EM

(0)
n EM

(1)
n EM

(2)
n approximation deviation

n = 100
N(0, 1) 0.449 0.449 0.449 0.453 0.0035
Po(5) 0.449 0.449 0.449 0.451 0.0035
Bi(10,0.5) 0.453 0.453 0.453 0.457 0.0035
Ex(5) 0.395 0.395 0.395 0.394 0.0035

n = 200
N(0, 1) 0.463 0.463 0.463 0.467 0.0035
Po(5) 0.465 0.465 0.465 0.465 0.0035
Bi(10,0.5) 0.467 0.467 0.467 0.470 0.0035
Ex(5) 0.423 0.423 0.423 0.425 0.0035

on the second set; see Table 2. Clearly, (4) provides a very good approximation to pn in all cases
considered.

Next, we compare the EM-test and the modified likelihood ratio test for the Poisson mixture
case. The mean values for the null distribution and the alternative distribution are chosen to be 5.
Four alternative models are selected so that 1− α = 0.5, 0.25, 0.1, 0.05 and the variances of the
mixing distributions are set to be ∆ = α(1− α)(θ1 − θ2)2 = 1.25; see Table 3 for details and for
the corresponding Kullback–Leibler information with respect to the null model. For the modified
likelihood ratio test, we used the penalty function p(α) = C log{4α(1− α)} with C = log(50).
The EM-test statistics were computed in the same way as before. The choice of C = log(50)
for the modified likelihood ratio test was made in accordance to the recommendations in Chen
et al. (2001); furthermore it worked well in our pre-trials, in that the two methods have close
nominal Type I errors in all cases considered. The EM-test statistics were computed with penalty
function (3) and C = 1. Although a specific reason for choosing C = 1 is lacking, we have
seen ample evidence that it is a sensible choice in a wide range of applications. It would be
ideal if a data-driven procedure with some theoretical justification could be found to justify this
choice, but, lacking that, we recommend a pilot simulation study or a literature search before
each application to ensure that C is chosen so that the Type I errors are no more than 5.5% when
the target is 5%.

We computed the null rejection rates based on 20000 repetitions and the powers based on
10000 repetitions. The results are reported in Table 4. We find that the null rejection rates of both
the modified likelihood ratio test and the EM-test in all cases are close to the nominal values.
The EM-tests are generally more efficient particularly when |α− 0.5| is relatively large. Using
the EM-tests with five initial α values does not noticeably improve its power. Also, EM

(1)
n and

EM
(2)
n have better powers compared to EM

(0)
n , but they do not differ much. Thus, we come to the

general recommendation of EM
(1)
n with α ∈ {0.1, 0.3, 0.5} paired with the penalty function (3)

and C = 1.
We also investigated the modified likelihood ratio test with (3) and C = 1, and found that the

modified likelihood ratio test and the EM-test have similar Type I and Type II errors in all cases.
This is not unexpected because the modified likelihood ratio test is the EM-test statistic with
k =∞. A crucial difference is that the asymptotic result of the EM-test is much more widely
applicable. The power comparisons between the EM-test and the modified likelihood ratio test
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Table 3. Parameters in the alternative models.

1− α θ1 θ2 ∆ 100KL

Poisson mixtures:
Model I 0.50 3.882 6.118 1.25 1.751
Model II 0.25 3.064 5.645 1.25 2.017
Model III 0.10 1.646 5.373 1.25 2.827
Model IV 0.05 0.127 5.256 1.25 5.081
Exponential mixtures:
Model I 0.50 3.129 6.871 3.50 1.008
Model II 0.25 2.128 5.957 2.75 0.956
Model III 0.10 0.757 5.471 2.00 1.252
Model IV 0.05 0.127 5.256 1.25 1.996
∆, variance of the mixing distribution;
KŁ, Kullback–Leibler information.

Table 4. Rejection rates of the EM-test and the modified likelihood ratio test under Poisson mix-
tures at the 5% level.

Model MLRT EM
(0)
n EM

(1)
n EM

(2)
n EM

(0)
n EM

(1)
n EM

(2)
n

n = 100
H0 5.0 5.1 5.2 5.2 5.1 5.1 5.1
I 49.4 49.0 49.0 49.0 49.0 49.0 49.0
II 51.9 51.8 51.8 51.9 51.8 51.8 51.8
III 53.8 57.1 57.3 57.4 56.8 57.1 57.2
IV 63.1 72.0 74.3 74.5 72.0 74.3 74.5

n = 200
H0 4.9 4.9 5.0 5.0 4.9 4.9 4.9
I 74.2 73.9 73.9 73.9 73.9 73.9 73.9
II 76.3 76.5 76.5 76.5 76.4 76.4 76.4
III 78.1 81.6 81.7 81.8 81.5 81.7 81.7
IV 87.0 91.5 92.2 92.4 91.5 92.2 92.4
Results in columns (3, 4, 5) used α = (0.1, 0.2, 0.3, 0.4, 0.5).
Results in columns (6, 7, 8) used α = (0.1, 0.3, 0.5).
MLRT: Modified likelihood ratio test.

under the binomial kernel and normal kernel are similar to what we have seen under the Poisson
kernel. For the sake of brevity, we do not present details here.

We now study the EM-test in cases where the asymptotic results of the modified likelihood
ratio test or the likelihood ratio test are not applicable. The exponential kernel is used in this
simulation. We set the mean of the mixture model to be 5 in all cases and the same parameter
values for alternative models as in Table 3. Although the limiting distributions of the likelihood
ratio statistic, denoted by Rn, and D-test (Charnigo & Sun, 2004) are not available, these tests
can be calibrated using simulated quantiles under the null models. Hence, they are included
in the simulation to serve as efficiency barometers. We use the notation d(2, n), d1(2, n) and
d2(2, n) for the D-test with weighting functions 1, x and x2, respectively. The modified likelihood
ratio test can also be calibrated by simulated quantiles, but it is bounded by the EM-test and the
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likelihood ratio test and therefore is not included. The constrained likelihood ratio test Rn(ε0) is
applicable under the same conditions as the EM-test. We find that it has large Type I errors unless
the lower bound for α, ε0, is relatively large. Through some pilot simulation studies, we found
that its Type I errors match those of EM-tests when ε0 = 0.45. We thus included the constrained
likelihood ratio test Rn(0.45) in our simulation.

Software for calculating the critical values of the D-test for the Ex(1) distribution can be
found at http://stat.cwru.edu/˜rjc12. For other null distributions, the transformations suggested
in Charnigo & Sun (2004) were used. First we computed EM

(k)
n for k = 0, 1, 2 with C = 1 and

α ∈ {0.1, 0.3, 0.5} first. Their Type I errors are also somewhat larger than the nominal values,
and we therefore also computed the EM-tests with C = 1.5. The null rejection rates of the EM-
tests, D-tests and constrained likelihood ratio test are calibrated by either limiting distributions
or by critical values obtained from references and are shown in Table 5. The EM-tests and the
constrained likelihood ratio test have reasonably accurate Type I errors. The D-test statistics may
not be sufficiently invariant to allow transformation of critical values between the Ex(1) and the
Ex(5) null distributions. Although the sizes of the EM-tests are slightly large, this effect is not
too severe with both C = 1 and C = 1.5. Both meet the recommendation criterion set earlier.

The power calculations of all methods were done using simulated quantiles to ensure objective
comparisons. In general, the efficiency of the EM-test is much better than that of other methods.
The D-test based on d(2, n) is less efficient than the EM-test when α is close to 0.5, but is more
efficient for alternatives when α is close to 1. This result may not be very useful because the
Type I error of the d(2, n) based D-test is hard to control. An interesting result is that the EM-test
is much more efficient than the likelihood ratio test when α is close to 0.5. As a result of the
penalty function, the EM-test is expected to lose power when α is close 0.

Table 5. Rejection rates of the D-test, the EM-test, the constrained likelihood ratio test and the
likelihood ratio test under exponential mixture alternatives at the 5% level.

C = 1 C = 1.5
Model d(2, n) d1(2, n) d2(2, n) em

(0)
n em

(1)
n em

(0)
n em

(1)
n Rn(0.45) Rn

n = 100
H0 12.2 5.1 4.0 5.8 6.0 5.3 5.4 5.5 –
I 17.6 30.1 32.6 33.6 33.4 34.1 34.0 34.6 29.8
II 22.1 30.7 30.3 31.0 30.8 31.3 31.3 31.2 27.9
III 35.4 31.9 24.3 29.2 29.6 27.6 27.9 24.9 32.6
IV 49.5 21.9 10.1 32.2 32.9 28.4 29.0 17.6 42.3

n = 200
H0 13.5 7.3 4.3 5.5 5.5 5.2 5.2 5.3 –
I 26.3 48.1 51.2 53.4 53.3 53.6 53.6 54.1 47.6
II 34.5 49.3 47.7 48.0 48.0 47.5 47.6 47.4 44.6
III 54.6 51.7 39.8 45.8 46.0 42.1 42.5 37.5 52.1
IV 66.4 34.9 12.4 46.8 48.6 42.2 43.6 22.5 61.5

5. REAL DATA EXAMPLES

Example 3. First, we apply the EM-test to the data studied in Proschan (1963). The data consist
of the times of successive failures for the air conditioning system of each member in a fleet of
13 Boeing 720 jet aircrafts. Proschan (1963) applied the Kolmogorov-Smirnov test to the pooled
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data, a total of 213 observations, to determine whether or not the exponential distribution offered
a good fit to the pooled failure times. At the level of 0.05, the Kolmogorov-Smirnov test failed
to reject the null hypothesis of exponential fit. However, the exponential distribution did not fit
the pooled failure times very well. Proschan (1963) plotted the log empirical survival curve for
the pooled data and the log theoretical survival curve under the exponential model and observed
that the empirical curve lies consistently below the theoretical curve when the failure time is less
than 150 and above the theoretical curve when the failure time is larger than 150.

Proschan (1963) further used a more refined analysis to show that the failure distribution for
each aircraft separately was exponential, but for some aircrafts the rates were different. It is there-
fore reasonable to assume the pooled failure times follow a mixture of exponential distributions.
Now we conduct a test of homogeneity for the pooled data. The maximum likelihood estimates
for (α, θ1, θ2) under the mixture model are (0.430, 128.286, 46.506). Since θ̂2/θ̂1 = 2.758 > 2,
most existing methods of testing the homogeneity are strictly not applicable because the density
ratio may have infinite second moment, and hence infinite Fisher information. In contrast, a rig-
orous EM-test can be conducted. According to our simulations, C = 1.5 is a good choice for the
level of modification for the pooled failure times. We computed the EM-statistics with C = 1.5
and three initial values (0.1,0.3,0.5) of α, and found em(0)

n = em
(1)
n = 6.221. With a sample size

of 213, according to Table 1, pn will be well approximated by 0.427. In view of the adjusted
limiting distribution 0.573χ2

0 + 0.427χ2
1, the asymptotic p-value for the EM-test is 0.005. For the

constrained likelihood ratio test, we have Rn(0.45) = 6.30 with the asymptotic p-value 0.005.
We also calculate the likelihood ratio statistic,Rn = 6.31. We simulated the quantiles of the like-
lihood ratio statistic with 10,000 repetitions and found the simulated p-value to be 0.019. For the
pooled failure data, therefore, the EM-test and the constrained likelihood ratio test give stronger
evidence than the likelihood ratio test for rejecting the homogeneous exponential fit.
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APPENDIX

Some notation and regularity conditions
The proofs are based on the following regularity conditions on the kernel density function.
Assumption A1: Wald’s integrability conditions. (i) E| log f(X; θ0)| <∞; (ii) for sufficiently

small ρ and for sufficiently large r, the expected values E log{1 + f(X; θ, ρ)} <∞ for θ ∈ Θ and
E log{1 + ϕ(X, r)} <∞, where f(x; θ, ρ) = sup|θ′−θ|6ρ f(x; θ′) and ϕ(x; r) = sup|θ|>r f(x; θ); (iii)
lim|θ|→∞ f(x; θ) = 0 for all x except on a set with probability zero.

Assumption A2: Smoothness. The kernel function f(x; θ) has common support and is three times con-
tinuously differentiable with respect to θ. The first two derivatives are denoted by f ′(x; θ) and f ′′(x; θ).

Assumption A3: Identifiability. For any two mixing distribution functions Ψ1 and Ψ2 with two support-
ing points such that

∫
f(x; θ)dΨ1(θ) =

∫
f(x; θ)dΨ2(θ), for all x, we must have Ψ1 = Ψ2.

Assumption A4: Uniform boundedness. Let

Yi(θ) =
f(Xi; θ)− f(Xi; θ0)

(θ − θ0)f(Xi; θ0)
, θ 6= θ0; Yi = Yi(θ0) =

f ′(Xi; θ0)
f(Xi; θ0)

(A1)

Zi(θ) =
Yi(θ)− Yi(θ0)

(θ − θ0)
, θ 6= θ0; Zi = Zi(θ0) =

f ′′(Xi; θ0)
2f(Xi; θ0)

. (A2)
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For some neighbourhood N(θ0) of θ0, there exists a g with finite expectation such that |Yi(θ)|3 6
g(Xi), |Zi(θ)|3 6 g(Xi) and |Z ′′i (θ)|2 6 g(Xi).

Assumption A5: Positive definiteness. The covariance matrix of (Yi, Zi) is positive definite.

Proofs of Theorems 1 and 2
A brief roadmap for the proofs is as follows. Lemma A1 shows that any estimator with α bounded away

from 0 or 1, and with a large likelihood value, is consistent for θ1 and θ2 under the null model, which can
be seen as the extension of the results in Wald (1949). Lemma A2 strengthens Lemma A1 by providing
specific convergence rates. Lemma A3 makes Lemmas A1 and A2 applicable to (α(k)

j , θ
(k)
j1 , θ

(k)
j2 ), by

showing that the EM-iteration keeps α(k)
j in a small neighbourhood of αj and therefore away from 0 or 1.

Theorems 1 and 2 then follow easily.
LEMMA A1. Suppose that Assumptions A1-A3 hold. Let (ᾱ, θ̄1, θ̄2) be estimators of (α, θ1, θ2) such

that δ 6 ᾱ 6 0.5 for some δ ∈ (0, 0.5]. Assume that

ln(ᾱ, θ̄1, θ̄2)− ln(0.5, θ0, θ0) > c > −∞.

Then, under the null distribution f(x; θ0), θ̄1 − θ0 = op(1) and θ̄2 − θ0 = op(1).

Proof. The parameter space under the full model (1) with the restriction δ 6 ᾱ 6 0.5 becomes Λ =
[δ, 0.5]×Θ×Θ. The parameter value of a null model belongs to {(α, θ0, θ0) : δ 6 α 6 0.5}.

First, for some positive constants ε and r, let

A(α; ε, r) = {(α′, θ1, θ2) ∈ Λ; |α′ − α| 6 ε, |θ1| > r, |θ2| > r},

ψ(x;α, ε, r) = sup{α′f(x; θ′1) + (1− α)f(x; θ2, ) : (α′, θ′1, θ
′
2) ∈ A(α; ε, r)}.

By Assumptions A1 and A2, it is obvious that, for all small enough ε and large enough r,

E{logψ(X;α, ε, r)} < E{log f(X; θ0)}

under the null distribution f(x; θ0). Hence, by the law of large numbers,

pr[sup{ln(α′, θ′1, θ
′
2) : A(α; ε, r)} − ln(α, θ0, θ0) > c]→ 0

almost surely for any c > −∞. By compactness, there exist αj , j = 1, . . . , J , such that [δ, 0.5] ⊂ A =
∪Jj=1A(αj ; ε, r) and each A(αj ; ε, r) has the above property. Therefore

pr[sup{ln(α′, θ′1, θ
′
2) : (α′, θ′1, θ

′
2) ∈ A} − ln(α, θ0, θ0) > c]→ 0.

The same conclusion and proof are applicable to

B(α, θ1; ε, r) = {(α, θ′1, θ2) ∈ Λ; |α′ − α| 6 ε, |θ′1 − θ1| < ε, |θ2| > r}

and hence also to B = ∪{B(α, θ1; ε, r) : δ 6 α 6 1− δ, |θ1| 6 r}. In words, the loglikelihood at any
parameter point with either θ1 or θ2 very large trails the loglikelihood at the true parameter point by an
infinite amount.

What remains is to prove the same conclusion for parameter points in the compact complement of
A ∪B but outside any small neighbourhood of (α, θ0, θ0). However, this is the same as the classical
consistency result of Wald (1949). �

LEMMA A2. Suppose the conditions of Theorem 1 on f(x; θ) and p(α) hold. Let (ᾱ, θ̄1, θ̄2) be estima-
tors of (α, θ1, θ2) such that, under the null hypothesis, θ̄1 − θ0 = op(1), θ̄2 − θ0 = op(1), δ 6 ᾱ 6 0.5,
for some δ ∈ (0, 0.5]. If, for all n and X1, . . . , Xn,

PLn(ᾱ, θ̄1, θ̄2)− pln(0.5, θ0, θ0) > c > −∞,

then, under the null distribution f(x; θ0), θ̄1 − θ0 = Op(n−1/4), θ̄2 − θ0 = Op(n−1/4), m̄1 = (1−
ᾱ)(θ̄1 − θ0) + ᾱ(θ̄2 − θ0) = Op(n−1/2).
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Proof. For i = 1, . . . , n, let Wi = Zi − βYi with β = E(Y1Z1)/E(Y 2
1 ). Furthermore, let m̄ = m̄1 +

βm̄2 with m̄2 = (1− ᾱ)(θ̄1 − θ0)2 + ᾱ(θ̄2 − θ0)2.
Since θ̄1 and θ̄2 are in a small neighbourhood of θ0, in probability, by Taylor expansion, we obtain

2{PLn(ᾱ, θ̄1, θ̄2)− pln(0.5, θ0, θ0)}
6 2{ln(ᾱ, θ̄1, θ̄2)− ln(0.5, θ0, θ0)}

6 2
n∑
i=1

(m̄Yi + m̄2Wi)−

(
m̄2

n∑
i=1

Y 2
i + m̄2

2

n∑
i=1

W 2
i

)
{1 + op(1)}+ op(1)

6
{(
∑n
i=1Wi)+}2∑n
i=1W

2
i

+
(
∑n
i=1 Yi)

2∑n
i=1 Y

2
i

+ op(1). (A3)

We do not have cross terms in the second line because Yi and Wi are uncorrelated. The last inequality
follows from the property of the quadratic function and the nonnegativeness of m̄2.

Together with the condition that PLn(ᾱ, θ̄1, θ̄2)− PLn(0.5, θ0, θ0) > c, the above inequality implies
that

2m̄2

n∑
i=1

Wi − m̄2
2(

n∑
i=1

W 2
i ){1 + op(1)} = Op(1).

Since
∑n
i=1Wi = Op(n1/2) and

∑n
i=1W

2
i = Op(n), we obtain m̄2 = Op(n−1/2). Since δ 6 ᾱ 6 0.5

for some δ ∈ (0, 0.5], we further conclude that θ̄1 − θ0 = Op(n−1/4), θ̄2 − θ0 = Op(n−1/4). Similarly,
we have m̄1 = Op(n−1/2) and therefore m̄1 = Op(n−1/2). �

Now we show that, under the null model, the EM-iteration changes the fitted value of α by op(1). Let
(ᾱ, θ̄1, θ̄2) be some estimators of (α, θ1, θ2) with the same asymptotic properties as before, and let

w̄i =
ᾱf(Xi; θ̄2)

(1− ᾱ)f(Xi; θ̄1) + ᾱf(Xi; θ̄2)
.

We further define

Rn(α) =

(
n−

n∑
i=1

w̄i

)
log(1− α) +

n∑
i=1

w̄i log(α)

and Hn(α) = Rn(α) + p(α). The EM-test updates α by searching for ᾱ∗ = arg maxαQn(α).
LEMMA A3. Suppose that the conditions of Lemma A2 hold and ᾱ− α0 = op(1) for some α0 ∈

(0, 0.5]. Under the null distribution f(x; θ0), we have |ᾱ∗ − α0| = op(1).

Proof. For i = 1, . . . , n, let

δ̄i = (1− ᾱ)
{f(Xi; θ̄1)
f(Xi; θ0)

− 1
}

+ ᾱ
{f(Xi; θ̄2)
f(Xi; θ0)

− 1
}

= m̄1Yi + (1− ᾱ)(θ̄1 − θ0)2Zi(θ̄1) + ᾱ(θ̄2 − θ0)2Zi(θ̄2),

where Yi and Zi are defined in (A1) and (A2). Thus,

max
16i6n

|δ̄i| 6 |m̄1| max
16i6n

|Yi|+ m̄2 max
16i6n

{ sup
θ∈N(θ0)

|Zi(θ)|}.

By Assumption A4 and a result on order statistics in Serfling(1980, p. 90), we have

max
16i6n

{ sup
θ∈N(θ0)

|Zi(θ)|} = op(n1/2), max
16i6n

|Yi| = op(n1/2).

Consequently, we have maxi |δi| = op(1).
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Expanding f(Xi; θ̄j) at θ̄j = θ0, for j = 1, 2, we obtain

w̄i − ᾱ = ᾱ(1− ᾱ)
f(Xi; θ̄2)− f(Xi; θ̄1)

(1− ᾱ)f(Xi; θ̄1) + ᾱf(Xi; θ̄2)

=
ᾱ(1− ᾱ)

1 + δi
{(θ̄2 − θ̄1)Yi + (θ̄2 − θ0)2Zi(θ̄2)− (θ̄1 − θ0)2Zi(θ̄1)}.

Hence, putting α̃ = n−1
∑n
i=1w̄i, we have

|α̃− ᾱ| =
{

(θ̄2 − θ̄1)
n∑
i=1

Yi + (θ̄2 − θ0)2
n∑
i=1

Zi(θ̄2)− (θ̄1 − θ0)2
n∑
i=1

Zi(θ̄1)
}
Op(n−1) = op(1).

By this result and the assumption that ᾱ− α0 = op(1), we have α̃− α0 = op(1) and hence it suffices to
prove that ᾱ∗ − α̃ = op(1).

As Rn(α) is a binomial loglikelihood, it attains its maximum at α̃ and decreases on both sides. For any
ε > 0 and α > α̃+ 2ε, by the mean value theorem,

Rn(α)−Rn(α̃) 6 Rn(α̃+ 2ε)−Rn(α̃+ ε) = εR′n(ξ),

for some ξ ∈ [α̃+ ε, α̃+ 2ε]. It is easy to verify that R′n(ξ)→ −∞ in probability as n→∞ uniformly
for ξ in this range. On the other hand, we have

p(α)− p(α̃) = p(α)− p(α0) + op(1) = Op(1).

Hence, with probability approaching 1,

Qn(α)−Qn(α̃) = Rn(α)−Rn(α̃) + {p(α)− p(α̃)} → −∞,

uniformly for any α > α̃+ 2ε. Hence, we must have that ᾱ∗ < α̃+ 2ε in probability. Similarly, ᾱ∗ >
α̃− 2ε in probability. Therefore, we have that ᾱ∗ = α̃+ op(1) as claimed. �

We now prove Theorems 1 and 2 by showing that the slightly more general results in previous lemmas
are applicable.

Proof of Theorem 1. By the property of EM algorithm (Dempster et al., 1977), the definition of α(k)
j ,

for any finite k, we have

PLn(α(k)
j , θ

(k)
j1 , θ

(k)
j2 ) > PLn(αj , θ

(0)
j1 , θ

(0)
j2 ) > PLn(αj , θ0, θ0).

Therefore

ln(α(k)
j , θ

(k)
j1 , θ

k)
j2)− ln(αj , θ0, θ0) > p(αj)− p(α(k)

j ) ≥ p(αj)− p(0.5) > −∞.

By Lemma A1 and α(0)
j = αj , we have shown that θ(0)

j1 and θ0)
j2 are consistent for θ0. As a result, the

conclusions of Lemmas A2 and A3 apply. Hence, we find

α
(1)
j − αj = op(1), θ(1)

j1 − θ0 = Op(n−1/4), θ(1)
j2 − θ0 = Op(n−1/4).

The above results for k = 1 are then used to show the same conclusions for k = 2. By mathematical
induction, the conclusion of the theorem is true for all finite k. �

Proof of Theorem 2. By the properties proved in Theorem 1, the inequality (A3) is applicable. Hence,
for any (j, k), we have

2{PLn(α(k)
j , θ

(k)
j1 , θ

(k)
j2 )− PLn(0.5, θ0, θ0)} 6

{(
∑n
i=1Wi)+}2∑n
i=1W

2
i

+
(
∑n
i=1 Yi)

2∑n
i=1 Y

2
i

+ op(1).

It is obvious that

2{sup
θ∈Θ

PLn(0.5, θ, θ)− PLn(0.5, θ0, θ0)} =
(
∑n
i=1 Yi)

2∑n
i=1 Y

2
i

+ op(1).
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Hence, we have

2{PLn(α(k)
j , θ

(k)
j1 , θ

(k)
j2 )− sup

θ∈Θ
PLn(0.5, θ, θ)} 6

{(
∑n
i=1Wi)+}2∑n
i=1W

2
i

+ op(1).

It is simple to show that

2{PLn(α(k)
j , θ

(k)
j1 , θ

(k)
j2 )− sup

θ∈Θ
PLn(0.5, θ, θ)} >

{(
∑n
i=1Wi)+}2∑n
i=1W

2
i

+ op(1)

when αj = 0.5. Thus,

EM(k)
n =

{(
∑
Wi)+}2∑
W 2
i

+ op(1).

Consequently, the limiting distribution is given by 0.5χ2
0 + 0.5χ2
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