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Abstract

A fundamental and challenging problem in the application of finite mixture

models is to make inference on the order of the model. In this paper, we

develop a new penalized likelihood approach to the order selection problem.

The new method deviates from the information-based methods such as AIC

and BIC by introducing two penalty functions which depend on the mixing

proportions and the component parameters. The new method is shown to be

consistent and have other good properties. Simulations show that the method

has much better performance compared to a number of existing methods. We

further demonstrate the new method by analyzing two well known real data

sets.

Short Title: ORDER SELECTION

1. Introduction. Making inference on the number of components of

the model is a fundamental and challenging problem in the application of

finite mixture models. A mixture model with a large number of components

can provide a good fit to the data, but has poor interpretive values. Complex

models as such are not favoured in applications in the name of parsimony,

and for the sake of preventing over-fitting of the data.

A large number of statistical methods for order selection have been pro-
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posed and investigated in the past a few decades. One off-the-shelf method

is to use information theoretic approaches such as the Akaike information

criterion (AIC, Akaike 1973) and the Bayesian information criterion (BIC,

Schwarz 1978). Leroux (1992) discussed the use of AIC and BIC for order se-

lection in finite mixture models. Another class of methods are designed based

on some distance measure between the fitted model and the non-parametric

estimate of the population distribution; see Chen and Kalbfleisch (1996) and

James, Priebe and Marchette (2001). One may also consider testing the hy-

pothesis on the order of finite mixture models. The most influential methods

in this class include the C(α) test by Neyman and Scott (1966) and methods

based on likelihood ratio techniques, which include Ghosh and Sen (1985),

McLachlan (1987), Dacunha-Castelle and Gassiat (1999), Chen and Chen

(2001), Chen, Chen and Kalbfleisch (2001, 2004). Charnigo and Sun (2004)

propsed an L2-distance method for testing homogeneity in continuous finite

mixture models. The recent paper by Chambaz (2006) studies the asymp-

totic efficiency of two generalized likelihood ratio tests. Ishwaran, James and

Sun (2001) proposed a Bayesian approach.

In this paper, we develop a new order selection method combining the

strength of two existing statistical methods. The first was proposed by Chen

and Kalbfleisch (1996) which has simple and interesting statistical properties.

The second is the variable selection method in the context of regression, such

as LASSO (Tibshirani, 1996) and SCAD (Fan and Li, 2001). We formulate

the problem of order selection as a problem of arranging subpopulations (i.e.

mixture components) in a parameter space. When the fitted mixture model

contains two subpopulations that are close to each other to some degree,
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an SCAD-type penalty will merge them. Our procedure starts with a large

number of subpopulations and ends up with a mixture model with lower

order by merging close subpopulations.

We prove that the new method is consistent in selecting the most parsi-

monious mixture models. The new method is less computing intensive than

many existing methods since the order is determined through a single opti-

mization procedure. Our simulation results are exciting. The new method

has a much higher probability of selecting finite mixture models with the

proper order when compared to a number of existing methods in the situa-

tions that we considered.

The paper is organized as follows. Section 2 introduces the finite mix-

ture model. The new method for order selection is described in Section 3.

Asymptotic properties of the new method are studied in Section 4. In Sec-

tion 5, a computational algorithm is outlined for numerical solution of the

optimization problem. The performance of the new method is compared to

a number of existing methods through simulations in Section 6. To further

demonstrate the use of the new method, a number of well-known real data

sets are analyzed in Section 7. A summary and discussion are given in Section

8.

2. The finite mixture model. Let F = {f(y; θ); θ ∈ Θ} be a known

family of parametric (probability) density functions with respect to a σ-

finite measure ν. Let Θ be a one-dimensional compact parameter space and

Θ ⊆ R. The compactness assumption of Θ is merely a technical requirement

used in many papers such as Ghosh and Sen (1985) and Dacunha-Castelle

and Gassiat (1999). It is not restrictive in applications since a reasonable
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range of the parameter θ can often be specified. The density function of a

finite mixture model based on the family F is given by

f(y; G) =

∫

Θ

f(y; θ) dG(θ) (1)

where G(·) is called the mixing distribution and is given by

G(θ) =
K

∑

k=1

πkI(θk ≤ θ). (2)

The I(·) is an indicator function, and θk ∈ Θ, 0 ≤ πk ≤ 1 for k = 1, 2, . . . , K.

We denote the class of all finite mixing distributions with at most K support

points as

MK = {G(θ) =

K
∑

k=1

πkI(θk ≤ θ) : θ1 ≤ θ2 ≤ . . . ≤ θK ,

K
∑

k=1

πk = 1, πk ≥ 0}.

Note that the class MK implicitly also contains finite mixing distributions

with fewer than K support points. In fact, M1 ⊆ M2 ⊆ . . . ⊆ MK−1 ⊆
MK . The lower order models are represented in MK by allowing the θk’s to

coincide with one another while still maintaining separate πk’s. The class of

all finite mixing distributions is given by M =
⋃

K≥1 MK .

Let K0 be the true number of support points of the finite mixing distri-

bution G in (2). The true value K0 is the smallest number of support points

for G such that all the component densities f(y; θk)’s are different and the

mixing proportions πk’s are non-zero. We denote the true mixing distribution

G0 as

G0(θ) =

K0
∑

k=1

π0kI(θ0k ≤ θ) (3)

where θ01 < θ02 < . . . < θ0K0
are K0 distinct interior points of Θ, and

0 < π0k < 1, for k = 1, 2, . . . , K0, when K0 ≥ 2. Note that when K0 = 1, the
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population becomes homogeneous. In this case, we denote the true density

function of the random variable Y by f(y; θ0). We also assume that θ0 is an

interior point of Θ.

3. The new order selection method. Even though the true order of

the finite mixture model, i.e. K0, is not known, we assume that some infor-

mation is available to provide an upper bound K for K0. Let Y1, Y2, . . . , Yn

be a random sample from (1) and hence the log-likelihood function of the

mixing distribution with order K is given by

ln(G) =
n

∑

i=1

log f(yi; G).

By maximizing ln(G) over MK , the resulting fitted model may over-fit the

data with some small values of the mixing proportions (over-fitting type I),

and/or with some component densities close to each other (over-fitting type

II). These are main causes of difficulties in the order selection problem. Our

new approach works by introducing two penalty functions to prevent these

two types of overfitting.

Denote ηk = θk+1 − θk, for k = 1, 2, . . . , K − 1. Also, corresponding to

the ordered support points of the true mixing distribution G0 in (3), denote

η0k = θ0,k+1−θ0k, for k = 1, 2, . . . , K0−1, when K0 ≥ 2. Define the penalized

log-likelihood function as

l̃n(G) = ln(G) −
K−1
∑

k=1

pn(ηk) + CK

K
∑

k=1

log πk (4)

for some CK > 0 and a non-negative function pn(·). Motivated by LASSO

(Tibshirani, 1996) and SCAD (Fan and Li, 2001), the penalty function pn(ηk)

is designed so that if any ηk has a small fitted value before penalty, its fitted
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value after penalty has a positive chance to be 0. In other words, it prevents

the type II over-fitting. The second penalty function in (4) is motivated from

Chen and Kalbfleisch (1996). It makes fitted values of πk’s stay away from

0 and hence prevents the type I over-fitting. Its additional utility is to make

some fitted values of ηk close to 0 when K > K0 asymptotically, which in

turn activates the utility of pn(ηk).

The new order selection method then selects Ĝn that maximizes l̃n(G)

over the space MK . When some fitted values of ηk are 0, a mixture model

with order lower than K is obtained. We call Ĝn as the maximum penal-

ized likelihood estimator (MPLE), and we show it has desirable asymptotic

properties in the next section.

4. Asymptotic properties. Being consistency is often considered

as a minimum requirement of a statistical method. In the current context,

the consistency expresses itself in two folds. As an estimator of the mixing

distribution G0, the MPLE Ĝn is consistent, but this fact does not imply

the order of Ĝn is consistent for K0. We establish both consistencies in this

section. Let us first list the following conditions on the penalty function

pn(·).

P0. For all n, pn(0) = 0, and pn(η) is a non-decreasing function of η on

(0,∞). It is twice differentiable for η except for a finite number of

points.

P1. For any η ∈ (0,∞), we have pn(η) = o(n), pn(η) → ∞, and

cn = max{n−1|p′′n(η0k)| : 1 ≤ k ≤ (K0 − 1)} = o(1).

P2. Let Nn = {η; 0 < η ≤ n−1/4 log n}, we have limn→∞ infη∈Nn

p′n(η)√
n

= ∞.

6



P3. There exist positive constants δn = o(1), dn = o(n) such that for all

η > δn, pn(η) = dn → ∞ as n → ∞.

Since the user has the option of choosing the most appropriate penalty

function, the conditions on pn(η) are reasonable as long as the functions

satisfying these conditions exist. The following three penalty functions were

proposed for variable selection in the regression context.

(a) L1-norm penalty: pn(η) = γn

√
n|η|.

(b) Hard penalty: pn(η) = γ2
n − (

√
n|η| − γn)2 I{√n|η| < γn}.

(c) SCAD penalty: Let (·)+ be the positive part of a quantity.

p′n(η) = γn

√
n I{

√
n|η| ≤ γn} +

√
n(aγn −√

n|η|)+

(a − 1)
I{

√
n|η| > γn}

which is a quadratic spline function, and a > 2.

The L1-norm penalty is used in LASSO by Tibshirani (1996). The other two

are discussed in Fan and Li (2001, 2002) and they satisfy conditions P0-P3

with proper choice of the tuning parameter γn.

We now present the asymptotic properties of the MPLE Ĝn in two general

settings: when the true mixing distribution G0 in (3) is degenerate, i.e. K0 =

1, and when K0 ≥ 2. To focus on main results, we leave regularity conditions

on the kernel density f(x; θ) and the proofs in Appendix.

Theorem 1 (Consistency of Ĝn when K0 = 1). Suppose the kernel density

f(y; θ) satisfies the regularity conditions A1-A5, and the penalty function pn(·)
satisfies conditions P0 and P1. If the true distribution of Y is homogeneous

with density function f(y; θ0), then θ̂k → θ0, k = 1, 2, . . . , K, in probability,

as n → ∞.
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The above theorem shows that introducing penalties to the log-likelihood

function does not void the consistency in estimating G0. The next theorem

establishes the consistency for estimating K0.

Theorem 2 (Consistency of estimating K0). Suppose the kernel density

f(y; θ) satisfies regularity conditions A1-A5, and the penalty function pn(·)
satisfies conditions P0-P2. If the true distribution of Y is homogeneous with

density function f(y; θ0), then the MPLE Ĝn has the property

P{θ̂k+1 − θ̂k = 0} → 1 , k = 1, 2, . . . , K − 1 (5)

as n → ∞.

In what follows we investigate the properties of the MPLE Ĝn when

K0 ≥ 2. Let θ0
k = (θ0k + θ0,k+1)/2, k = 1, 2, . . . , K0 − 1, be the middle points

between each two consecutive support points of the true mixing distribution

G0. The MPLE Ĝn can then be written as

Ĝn(θ) =

K0
∑

k=1

p̂kĜk(θ) (6)

where Ĝ1(θ
0
1) = 1, Ĝ2(θ

0
1) = 0, Ĝ2(θ

0
2) = 1, and so on. Note that p̂1 is

the probability assigned to the support points smaller than θ0
1; p̂2 is the

probability assigned to the support points between θ0
1 and θ0

2; and so on.

Theorem 3 (Consistency of Ĝn when K0 ≥ 2). Suppose the kernel density

f(y; θ) satisfies regularity conditions A1-A5, the penalty function pn(·) satis-

fies conditions P0-P1, and the true distribution of Y is a finite mixture with

density function f(y; G0). Then

(a) Ĝn is a consistent estimator of G0, for that for all k = 1, 2, . . . , K0,
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(i) p̂k = π0k + op(1),

(ii) supθ |Ĝk(θ) − G0k(θ)| = op(1), where G0k(θ) = I(θ0k ≤ θ).

(b) Support points of Ĝk converge in probability to θ0k which is the only

support point of G0k, for each k = 1, 2, . . . , K0.

Let Bk be the event that Ĝk defined in (6) is a degenerate distribution,

for k = 1, 2, . . . , K0. The consistency of estimating K0 is equivalent to having

P (Bk) → 1 for all k which is the result of our next theorem.

Theorem 4 (Consistency of estimating K0). Suppose the kernel density

f(y; θ) satisfies regularity conditions A1-A5, and the penalty function pn(·)
satisfies conditions P0-P3. Then under the true finite mixture density f(y; G0),

if the MPLE Ĝn falls into a n−1/4-neighbourhood of G0, we have

P

( K0
⋂

k=1

Bk

)

→ 1 , n → ∞.

Remark 1 Under some conditions including the strong identifiability in

the Appendix, Chen (1995) shows that, when the order of the finite mixture

model is unknown, the optimal rate of estimating the finite mixing distribu-

tion G is n−1/4. Hence our result is applicable to that class of finite mixture

models which include many commonly discussed models such as Poisson mix-

ture, Normal mixture in location or scale parameter, and Binomial mixture.

Remark 2 In the light of Theorem 4, our order selection method is consis-

tent with the HARD and SCAD penalty functions with a proper choice of

γn. For example, letting γn = n1/4 log n in both penalties will suffice. The

LASSO penalty function, however, cannot be made to satisfy all conditions.
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Once K0 is consistently estimated, the asymptotic properties of Ĝn become

easier to explore. Denote

Ψ = (θ1, θ2, . . . , θK0
, π1, π2, . . . , πK0−1)

and let Ψ0 be the vector of true parameters corresponding to G0. For conve-

nience, in the following we use l̃n(Ψ) instead of l̃n(G) to denote the penalized

log-likelihood function. The following theorem gives the asymptotic proper-

ties of the maximizer of l̃n(Ψ).

Theorem 5 Under the standard regularity conditions in the Appendix and

conditions P0-P1 for the penalty function pn(·), there exists a local maximizer

Ψ̂n of the penalized log-likelihood function l̃n(Ψ) such that

‖Ψ̂n − Ψ0‖ = Op{n−1/2(1 + bn)}. (7)

where bn = max{|p′n(η0k)|/
√

n : 1 ≤ k ≤ (K0 − 1)}.

When bn = O(1), as in the HARD and SCAD penalties, Ψ̂n has usual

convergence rate n−1/2. This result seems to contradict the conclusion on

the optimal rate of n−1/4. The seemingly contradiction is a super-efficiency

phenomenon. Such properties are sometimes referred as Oracle property. In

general, estimators with super-efficiency should be used with caution espe-

cially for constructing confidence intervals.

5. Numerical solutions. As expected, there are no apparent analytical

solutions to the maximization problem posted when applying the new order

selection procedure. In this section we discuss a numerical procedure for

maximizing the penalized log-likelihood function l̃n(G) over the space MK ,

for a given K. For convenience, in the following, we use l̃n(Ψ) instead of
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l̃n(G) to denote the penalized log-likelihood function, where Ψ is the vector

of all parameters of the mixture model with order K ≥ K0.

5.1. Maximization of the penalized log-likelihood function. A

popular numerical method used in finite mixture models is the Expectation-

Maximization (EM) algorithm of Dempster, Laird and Rubin (1977). For

the current application, the algorithm must be revised in the M-step. The

revised EM algorithm is as follows.

Let the complete log-likelihood function be

lcn(Ψ) =
n

∑

i=1

K
∑

k=1

zik [log πk + log{f(yi; θk)}]

where the zik’s are indicator variables showing the component-membership of

the ith observation in the mixture model. Note that the zik’s are unobserved.

The complete penalized log-likelihood function is then given by

l̃cn(Ψ) = lcn(Ψ) −
K−1
∑

k=1

pn(ηk) + CK

K
∑

k=1

log πk.

The EM algorithm maximizes l̃cn(Ψ) iteratively in two steps as follows.

E-Step: Let Ψ(m) be the estimate of the parameters after the mth itera-

tion. The E-step of the algorithm computes the conditional expectation of

l̃cn(Ψ) with respect to zik, given the observed data and assuming that the

current estimate Ψ(m) is the true parameter of the model. The conditional

expectation is given by

Q(Ψ;Ψ(m)) =

n
∑

i=1

K
∑

k=1

w
(m)
ik log{f(yi; θk)} −

K−1
∑

k=1

pn(ηk)

+
n

∑

i=1

K
∑

k=1

[w
(m)
ik +

CK

n
] log πk
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where

w
(m)
ik =

π
(m)
k f(yi; θ

(m)
k )

∑K
l=1 π

(m)
l f(yi; θ

(m)
l )

, k = 1, 2, . . . , K

are the conditional expectation of zik given data and the current estimate

Ψ(m).

M-Step: The M-step on the (m+1)th iteration maximizes Q(Ψ;Ψ(m)) with

respect to Ψ. The updated estimate π
(m+1)
k of the mixing proportion πk is

given by

π
(m+1)
k =

∑n
i=1 w

(m)
ik + CK

n + KCK

, k = 1, 2, . . . , K.

We need to maximize Q(Ψ;Ψ(m)) with respect to θk next. Due to condition

P0 on the penalty pn(·), which is essential to achieve consistency in estimating

K0, pn(ηk) is not differentiable at ηk = 0. Thus, the usual Newton-Raphson

method cannot be directly used. However, Fan and Li (2001) suggested of

approximating pn(η) by

p̃n(η; η
(m)
k ) = pn(η

(m)
k ) +

p′n(η
(m)
k )

2η
(m)
k

(η2 − η
(m)2

k ).

Unlike a simple Taylor’s expansion, this function approximates pn(η) well

when η is near η
(m)
k while it tends to infinity as |η| → ∞. With this approx-

imation, the component parameters θk are updated by solving

n
∑

i=1

w
(m)
i1

∂

∂θ1
{log f(yi; θ1)} +

∂p̃n(η1; η
(m)
1 )

∂θ1
= 0,

n
∑

i=1

w
(m)
ik

∂

∂θk
{log f(yi; θk)} −

∂p̃n(ηk−1; η
(m)
k−1)

∂θk
+

∂p̃n(ηk; η
(m)
k )

∂θk
= 0,

k = 2, 3, . . . , K − 1,
n

∑

i=1

w
(m)
iK

∂

∂θK
{log f(yi; θK)} − ∂p̃n(ηK−1; η

(m)
K−1)

∂θK
= 0.
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Starting from an initial value Ψ(0), the iteration between the E-step and

M-step continues until some convergence criterion is satisfied. When the

algorithm converges, some of the equations

∂ln(Ψ)

∂θ1
+

∂pn(η1)

∂θ1
= 0,

∂ln(Ψ)

∂θk

− ∂pn(ηk−1)

∂θk

+
∂pn(ηk)

∂θk

= 0, k = 2, 3, . . . , K − 1,

∂ln(Ψ)

∂θK
− ∂pn(ηK−1)

∂θK
= 0

are satisfied (approximately) for the corresponding non-zero valued η̂k, but

not for zero valued η̂k’s. This enables us to identify zero estimates of ηk’s.

5.2. Choice of the tuning parameters. The next problem in applying

our new method is to choose the sizes of the tuning parameters γn and CK .

Chen, Chen and Kalbfleisch (2001) reported that the choice of CK is not

crucial which is re-affirmed by our simulations. Nonetheless, in practice, the

choice of CK has some effect on the performance of the method. Chen, Chen

and Kalbfleisch (2001) suggested that if the parameters θk are restricted

to be in [−M, M ] or [M−1, M ] for large M , then an appropriate choice is

CK = log M .

The current theory provides only some guidance on the order of γn to

achieve the consistency. In applications, cross validation or CV (Stone, 1974)

and generalized cross validation or GCV (Craven and Wahba, 1979) are often

used for choosing tuning parameters such as γn.

Denote D = {y1, y2, . . . , yn} as the full data set. Let N be the number

of partitions of D. For the ith partition, let Di be the subset of D which

is used for evaluation and D − Di be the rest of the data used for fitting a

model. The parts D −Di and Di are often called the training and test data
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sets respectively. Let Ψ̂n,−i be the MPLE of Ψ based on the training set.

Further, let ln,i(Ψ̂n,−i) be the log-likelihood function evaluated on the test

set Di, using the MPLE Ψ̂n,−i, for i = 1, 2, . . . , N . Then, the cross-validation

criterion is defined by

lCV (γn) = − 1

N

N
∑

i=1

ln,i(Ψ̂n,−i).

The value of γn which minimizes lCV (γn) is chosen as a data-driven choice of

γn. In particular, the five-fold CV (Zhang, 1993) can be used.

The generalized cross validation (GCV) is computationally cheaper than

the CV criterion. The basic idea is to adjust some kind of goodness-of-fit

criterion with the effective number of parameters employed in the model

corresponding to the current tuning parameter. This method, however, is

found not work as well as the simple CV in our simulation.

Using the CV (or GCV) criterion to choose the tuning parameter results

in a random γn. To ensure the validity of the asymptotic results, a common

practice is to place a restriction on the range of the tuning parameter. See

for example, James, Priebe and Marchette (2001). The following result is

obvious and the proof is omitted.

Theorem 6 Consider the HARD or SCAD penalty functions given in Sec-

tion 4. If the tuning parameter λn = γn√
n

is chosen by minimizing the CV

or GCV over the interval [αn, βn] such that 0 ≤ αn ≤ βn, and βn → 0 and
√

nαn → ∞, as n → ∞, then the results in Theorems 1-5 still hold.

Let αn = C1n
−1/4 log n, βn = C2n

−1/4 log n, for some constants 0 < C1 <

C2. Then (αn, βn) meet the conditions in the above theorem.
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6. Simulation study. The performance of the new method is com-

pared with the two information-based criteria AIC and BIC and the Bayesian

method of Ishwaran, James and Sun (2001) via simulations. We considered

the problem of order selection in normal mixture in location parameter and

Poisson mixtures. We used the SCAD penalty function in the new method.

The simulation results are reported in terms of the estimated number of

components of the mixture model, and based on 500 simulated data sets

with sample size n = 100. The CV criterion were used to choose the tuning

parameter γn.

Example 1 The density function of the normal mixture in location param-

eter in our simulation is given by

f(y;Ψ) =
K

∑

k=1

πk

σ
φ(

y − θk

σ
)

where Ψ = (σ, θ1, θ2, . . . , θK , π1, π2, . . . , πK−1), and φ(·) is the density func-

tion for the standard normal N(0, 1). We studied six normal mixtures speci-

fied in Ishwaran, James and Sun (2001). The first three mixtures have K0 = 2

and the next three have K0 = 4. The parameter settings are given in Table

1. The plots of mixture densities corresponding to all the experiments are

given in Figure 1. A normal mixture model may not have its components

appear graphically as separate modes (Figure 1) when their mean difference

is smaller than 2σ.

We set K = 4 and K = 8 in data analysis for the first three and last

three models respectively and we considered two cases: σ known (σ = 1)

and unknown. The normal mixture model with unknown σ2 does not fit

into our theoretical development. Generalizing theoretical results is a very

interesting but difficult problem which will be discussed further. The new
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method can clearly be applied without any obstacles. The simulation results

are reported in Tables 2 and 3. Entries in the last four columns are the

percentages of times that a model with given candidate order was chosen out

of 500 replicates. The values given in brackets correspond to the σ-unknown

case. The values in the last column are quoted directly from Ishwaran, James

and Sun (2001) based on their Bayesian method called the GWCR method,

for the σ-unknown case.

When σ is known, the new method and the AIC and BIC methods have

comparable and very good performances for the first three normal mixture

models. When σ is unknown, the new method substantially out-performs

all other methods. In particular, for the third mixture which has a single

mode, the new method detects the correct model with rate as high 53.6%

which is 2.3 times the next best. In the rest of mixture models, the new

method outperforms all competitors by a big margin when σ is unknown,

and is among the best when σ is known.

Example 2 The probability function of the Poisson finite mixture model

in our simulation is given by

f(y;Ψ) =

K
∑

k=1

πk
θy

k

y!
exp(−θk)

where Ψ = (θ1, θ2, . . . , θK , π1, π2, . . . , πK−1).

We studied two mixtures with K0 = 2, and one with K0 = 4. The parameter

settings are given in Table 4.

In our simulation, we set K = 4 for the first two models, and K = 8

in the last model. The simulation results are reported in Table 5. Similar

to Example 1, entries in the last three columns are the percentages of times
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that a model with given candidate order is chosen out of 500 samples. It is

obvious that the new method have much better performance than all other

methods.

7. Application examples. In this section we analyze two well-known

real data sets to further demonstrate the use of the new method.

Example 3 (Sodium-Lithium Countertransport (SLC) Data). Suppose that

a trait such as blood pressure is determined by a simple mode of inheritance

compatible with the action of a single gene with two alleles, A1 and A2, which

occur with probabilities p and 1− p. As discussed by Roeder (1994), a finite

mixture of normal distributions with common variance is appropriate if each

observation is composed of the sum of a genetic component Θ and a normally

distributed measurement error. Consider two competing genetic models:

Model I. (Simple dominance model) Genotypes A1A1 and A1A2 have

phenotype θ1, whereas A2A2 has phenotype θ2. Hence P (Θ = θ1) =

p2 + 2p(1 − p) and P (Θ = θ2) = (1 − p)2.

Model II. (Additive model) Each of the three genotypes yields a distinct

phenotype with P (Θ = θ1) = p2, P (Θ = θ2) = 2p(1 − p) and P (Θ =

θ3) = (1 − p)2. Furthermore, θ1 < θ2 < θ3 and θ3 − θ2 = θ2 − θ1.

As Roeder (1994) argued, red blood cell SLC is believed to follow one of the

above two models. Geneticists are interested in SLC because it is correlated

with blood pressure and hence may be an important cause of hypertension.

The data set considered in this example consists of red blood cell SLC

activity measured on 190 individuals. Figure 2 gives a histogram of the SLC
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measurements. Roeder (1994) fitted a mixture of normal of order three to

this data. Her fit in fact corresponds to the additive model (model II above).

Using the new approach we fitted the following model

f(y; Ψ̂n) =
1

0.57

{

0.75 φ

(

y − 2.21

0.57

)

+0.22 φ

(

y − 3.72

0.57

)

+0.03 φ

(

y − 5.64

0.57

)}

A plot of the above density is given in Figure 2. The figure also shows the

density function of a mixture model with two components. As Roeder (1994)

argued, the model with three components corresponds to the additive model

with θ̂2 − θ̂1 ≈ θ̂3 − θ̂2. Ishwaran, James and Sun (2001) also reported a

model of order three.

Example 4 (Number of Death Notices Data). This data set has been

discussed several times in the literature, see Hasselblad (1969), Titterington,

Smith and Markov(1985) and Böhning (2000). The data are shown in Table

6. The table gives the numbers of death notices of women eighty years of

age and over, appearing in The Times of London, on each day for three

consecutive years, namely 1910-1912. Figure 3 shows a histogram of the

observed data. Since the data are counts, one may initially think of fitting a

homogeneous Poisson model to the data. The third column of Table 6 gives

the expected frequency obtained from fitting a homogeneous Poisson model

to the data. The Pearson χ2-value of 26.97 provides strong evidence against

the homogeneous model.

However, after a closer look at the data, we can see that the observed fre-

quencies for 0, 1 and 2 death notices, compared with the rest, are inflated.

Intuitively, this might be considered evidence for non-homogeneity of the

distribution of the variable under study.
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Hasselblad (1969) fitted a Poisson mixture model with two components

to this data. Titterington, Smith and Markov (1985) commented that a

Poisson mixture with two components fits the data quite well. Using the

new penalized likelihood approach we also fitted a finite mixture of Poisson

distributions to the data. We maximized the function l̃n(Ψ) over the space

M6 of finite mixing distributions with at most six support points. We used

the SCAD penalty function. The maximum was obtained at a finite mixing

distribution with two components. The fitted mixture model is

f(y; Ψ̂) = 0.34
e−1.23 (1.23)y

y!
+ 0.64

e−2.64 (2.64)y

y!
.

The fourth column of Table 6 gives the expected frequency obtained from

fitting the above mixture model to the data. The Pearson χ2-value of 1.29

shows that the Poisson mixture model fits the data quite well. Figure 4 shows

the empirical density and two fitted densities: the homogenous Poisson and

the Poisson mixture model with two components. We can see how well the

Poisson mixture model fits the data. Titterington, Smith and Markov(1985)

fitted a Poisson mixture model with order 2 which is very similar to ours.

Böhning (2000) reported the nonparametric maximum likelihood estimate of

the mixing distribution which has an additional third support point at zero

with the small mass 0.0068. However, he pointed out that the difference in

the log-likelihood function between the fitted models with orders 2 and 3 is

negligable. The real-life interpretation of the above fitted mixture model is

that there could be different patterns of death in winter and summer.

8. Conclusion and further discussion. We developed a new order

selection method for finite mixture models. Under certain regularity con-

ditions on the kernel density function, and with appropriate choice of the
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penalty function pn(·), the method results in consistent estimators for both

mixing distribution, and the order of the mixture model.

An EM algorithm was outlined for the maximization problem involved

together with a likelihood-based CV method for choosing the tuning param-

eters. The performance of the new method was investigated via simulations

and compared with AIC, BIC and the Bayesian method of Ishwaran, James

and Sun (2001). The simulation results indicated that the new method per-

forms very well compared to these methods. We also analyzed two well-

known data sets to further demonstrate the application of the new method.

Our findings from these data sets are in agreement with the existing analysis

in the literature.

We observe that in contrast to AIC and BIC methods where all candidate

orders must be fitted, the new method fits a model with maximum possible

number of components and achieves the aim of order selection via merging

these components. Hence, the new method also has a major advantage in

the computational simplicity.

Clearly, the new method is readily applicable to the mixture of multi-

parameter models and to the mixture models with the presence of some

structural parameters. The statistical methodology can be carried to more

general cases easily. However, in the case K0 ≥ 2, the consistency result

is obtained under an n−1/4-convergence rate assumption. By changing the

order of the tuning parameters in the penalty function, more general results

are not hard to obtain but the results become tedious. We welcome other

researchers to join our effort to work on this very interesting and challenging

problem.
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APPENDIX: Regularity Conditions and Proofs

To establish the asymptotic properties of the MPLE Ĝn, some regularity

conditions are needed on f(y; θ). The expectations in the regularity con-

ditions are taken under the true distribution of the data with true mixing

distribution G0.

Regularity Conditions

A1. (Wald’s Integrability Conditions):

(i) E(| log f(y; θ)|) < ∞, ∀ θ ∈ Θ.

(ii) There exists ρ > 0 such that for each θ ∈ Θ , f(y; θ, ρ) is measurable

and E(| log f(y; θ, ρ)|) < ∞, where

f(y; θ, ρ) = 1 + sup
|θ′−θ|≤ρ

f(y; θ′).

A2. (Smoothness) The kernel density f(y; θ) is differentiable with respect

to θ ∈ Θ to order 3. Furthermore, the derivatives f (j)(y; θ) are jointly

continuous in y and θ.

A3. (Strong Identifiability) The finite mixture model is strongly identifiable.

That is, for any m ≤ 2K distinct values θ1, θ2, . . . , θm,

m
∑

j=1

{ajf(y; θj) + bjf
′(y; θj) + cjf

′′(y; θj)} = 0 , ∀y

implies that aj = bj = cj = 0, for j = 1, 2, . . . , m.

A4. For i = 1, 2, . . . , n; j = 1, 2, 3, define

Uij(θ1, θ2) =
f (j)(Yi; θ1)

f(Yi; θ2)
; Uij(θ, G) =

f (j)(Yi; θ)

f(Yi; G)
.
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There exist a small neighborhood for each support point of G0 and a

function q(Y ) with E{q2(Y )} < ∞ such that for θ1, θ2, θ
′
1, θ

′
2 in this

neighborhood, we have

|Uij(θ1, θ2) − Uij(θ
′
1, θ

′
2)| ≤ q2(Yi){|θ1 − θ′1| + |θ2 − θ′2|}.

Furthermore, Uij(θ, G0) has finite second moment for all θ in the same

neighborhood of support points of G0.

A5. For any two mixing distribution with support points in small neighbor-

hood of those of G0, there exists a function q(Y ) with E{q2(Y )} < ∞
such that

∣

∣

∣

∣

f(Y ; G1)

f(Y ; G2)
− 1

∣

∣

∣

∣

≤ q(Y )‖G1 − G2‖.

Condition A4 implies that the processes n−1/2
∑n

i=1 Uij(θ, G0) (j = 1, 2, 3)

are tight in small neighbourhoods of the support points θ0k and therefore are

all of order Op(1).

Conditions A1-A5 also imply that the finite mixture model with known

order K0 satisfies the standard regularity conditions. Hence the ordinary

maximum likelihood estimator of G (with K0 known) is
√

n-consistency and

asymptotically normal; see Lehman (1983) and Render and Walker (1984).

We establish a lemma first before the proof of Theorem 1.

Lemma 1 Suppose the kernel density f(y; θ) satisfies regularity conditions

A1-A4, and the penalty function pn(η) satisfies conditions P0-P1. If the true

distribution of Y is homogeneous with density function f(y; θ0), then the

MPLE Ĝn has the properties

(a)
∑K

k=1 log π̂k = Op(1),
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(b) η̂k = op(1), for k = 1, 2, . . . , K − 1.

Proof of Lemma 1: Let θ̂n be the usual MLE of θ when K = 1, and Ḡn

be the usual MLE of G in MK . Recall that Ĝn denotes the MPLE of G in

MK . Let

R̃n = 2{l̃n(Ĝn) − l̃n(θ̂n)}

and

Rn = 2{ln(Ḡn) − ln(θ̂n)}.

It is clear that

0 ≤ R̃n ≤ Rn.

By Dacunha-Castelle and Gassiat (1999), the ordinary likelihood ratio statis-

tic Rn = Op(1) under certain conditions which are satisfied here. Conse-

quently, we also have R̃n = Op(1). From

0 ≤ R̃n + 2

[ K−1
∑

k=1

pn(η̂k) − CK

K
∑

k=1

log π̂k

]

≤ Rn,

we conclude that

K−1
∑

k=1

pn(η̂k) − CK

K
∑

k=1

log π̂k = Op(1). (8)

Since both terms in (8) are non-negative, we must have

−CK

K
∑

k=1

log π̂k = Op(1).

This proves (a).

Further, (8) implies that

pn(η̂k) = Op(1) , k = 1, 2, . . . , K − 1.
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Consequently, Conditions P0 and P1 on the penalty function pn(·) imply that

η̂k = op(1) , k = 1, 2, . . . , K − 1.

This completes the proof. ♠
Result (b) in Lemma 1 shows that all η̂k values converge to zero under

homogeneous models. For the purpose of consistent order selection, the θ̂k’s

must be equal and converge to θ0. These are the conclusions of Theorems 1

and 2 to be proved.

Proof of Theorem 1: Let us denote the Kullback-Leibler information as

H(G; θ0) = E0

{

log
f(Y ; G)

f(Y ; θ0)

}

where the expectation is under the true density f(y; θ0). By Condition P1

on pn(·) and Condition A4, we have

1

n

{

l̃n(G) − l̃n(θ0)

}

→ H(G; θ0) (9)

almost surely and uniformly over the compact parameter region πk ∈ [δ1, δ2],

and θk ∈ Θ, for k = 1, 2, . . . , K, and for any two constants 0 < δ1 < δ2 < 1.

Let

A = {G ∈ MK : πk ∈ [δ1, δ2], |θk − θ0| > δ, ηk < δ, k = 1, 2, . . . , K − 1}

for some 0 < δ1 < δ2 < 1, δ > 0. Note that G0, which is a degenerate

distribution with a single support point θ0, does not belong to A.

Suppose that the claim of the theorem is not true. Due to the compactness

of the parameter space Θ, and results (a)-(b) in Lemma 1, there must exist

a corresponding subsequence n′ of n such that

P (Ĝn′ ∈ A) > ε
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for some constants 0 < δ1 < δ2 < 1, δ > 0 and ε > 0, and for all large n′.

Hence

P

{

1

n′

[

l̃n′(Ĝn′) − l̃n′(θ0)

]

= sup
G∈A

1

n′

[

l̃n′(G) − l̃n′(θ0)

]

}

> ε

for all large n′. On the other hand, for any G ∈ A, due to the strong

identifiability, H(G; θ0) < 0. This implies that, from (9) and the above

inequality,

P

{

1

n′

[

l̃n′(Ĝn′) − l̃n′(θ0)

]

< 0

}

> ε

for all large n′. Thus, Ĝn′ cannot be the maximizer of the function l̃n(G),

which is a contradiction. ♠
We now get ready to prove Theorem 2. The following useful result is from

Serfling (1980, page 253).

Lemma 2 Let g(y; θ) be continuous at θ0, uniformly in y. Let F be a distri-

bution function for which
∫

|g(y; θ0)|dF (y) < ∞. Let Y = (Y1, Y2, . . . , Yn) be

a random sample from F and suppose that Tn = Tn(Y ) is a function of the

sample such that Tn → θ0 in probability. Then, also in probability, we have

1

n

n
∑

i=1

g(Yi; Tn) → E0{g(Y ; θ0)}.

Proof of Theorem 2: Note that the MLE θ̂n under homogeneous model

satisfies θ̂n − θ0 = op(1). Theorem 1 shows that the MPLE Ĝn has all its

support points converge to θ0. Our strategy for the proof is to consider all

mixing distributions G ∈ MK with their support points in a small enough

neighbourhood of θ̂n. We show that among them, only those with equal θk

can possibly be the MPLE.
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For G with unequal θk’s and in a small enough neighbourhood of θ̂n, let

us tentatively claim that

ln(G) − ln(θ̂n) = Op(n
1/2)

K
∑

i<j

πiπj(θi − θj)
2. (10)

If so, Condition P2 on the penalty function pn(·) implies that

l̃n(G) − ln(θ̂n) ≤ n1/2
∑

i<j

(θi − θj)
2

{

Op(1) − 1

|θi − θj |

}

< 0

in probability as |θi − θj | is small. That is, none of the G ∈ MK , K ≥ 2, can

be the MPLE by definition and hence the conclusion of the theorem must be

true.

Thus it suffices to prove (10). Define

δi =
K

∑

k=1

πk

[

f(Yi; θk)

f(Yi; θ̂n)
− 1

]

, i = 1, 2, . . . , n.

We may then write

ln(G) − ln(θ̂n) =
n

∑

i=1

log(1 + δi).

By inequality log(1 + x) ≤ x − x2

2
+ x3

3
, we have

ln(G) − ln(θ̂n) ≤
n

∑

i=1

δi −
n

∑

i=1

δ2
i

2
+

n
∑

i=1

δ3
i

3
. (11)

We study each term on the right-hand side of the above inequality separately.

Denote

m1(θ̂n) = m1 =
K

∑

k=1

πk (θk − θ̂n),

m2(θ̂n) = m2 =

K
∑

k=1

πk (θk − θ̂n)2.
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Note that

m2 − m2
1 =

K
∑

i<j

πiπj(θi − θj)
2

which is in fact the variance of the mixing distribution G.

By the standard Taylor’s expansion, we have

n
∑

i=1

δi = m1

n
∑

i=1

Ui1(θ̂n, θ̂n) +
1

2
m2

n
∑

i=1

Ui2(θ̂n, θ̂n)

+
1

6

[ K
∑

k=1

πk(θk − θ̂n)3
n

∑

i=1

Ui3(ξk, θ̂n)

]

where ξk is between θk and θ̂n, for k = 1, 2, . . . , K.

Since θ̂n is the MLE under K0 = 1, θ̂n − θ0 = Op(n
−1/2). Together with

Condition A4, it is simple to see that

1√
n

n
∑

i=1

Ui2(θ̂n, θ̂n) =
1√
n

n
∑

i=1

Ui2(θ0, θ0)

+
1√
n

n
∑

i=1

{Ui2(θ̂n, θ̂n) − Ui2(θ0, θ0)} = Op(1)

and similarly

1√
n

n
∑

i=1

Ui3(ξk; θ̂n) = Op(1) , k = 1, 2, . . . , K.

Thus there exists some constant C0 such that for the first term in (11),

n
∑

i=1

δi ≤ C0

√
n m2 (12)

in probability.
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Using Taylor’s expansion again, we have

n
∑

i=1

δ2
i =

n
∑

i=1

{

m1Ui1(θ̂n, θ̂n) +
1

2
m2Ui2(θ̂n, θ̂n)

+
1

6

[ K
∑

k=1

πk(θk − θ̂n)3 Ui3(ξi,k, θ̂n)

]}2

= (I) + (II) + (III)

where ξi,k is between θk and θ̂n for k = 1, 2, . . . , K, and

(I) =
n

∑

i=1

{

m1Ui1(θ̂n, θ̂n) +
1

2
m2Ui2(θ̂n, θ̂n)

}2

,

(II) =
1

36

n
∑

i=1

{ K
∑

k=1

πk(θk − θ̂n)3 Ui3(ξi,k, θ̂n)

}2

,

(III) =
1

3

n
∑

i=1

{

m1Ui1(θ̂n, θ̂n) +
1

2
m2Ui2(θ̂n, θ̂n)

}{ K
∑

k=1

πk(θk − θ̂n)3 Ui3(ξi,k, θ̂n)

}

.

By Lemma 2, for j = 1, 2,

n−1
∑

U2
ij(θ̂n, θ̂n) → E0{U2

ij(θ0, θ0)}.

That is, n−1(I) with fixed m1 and m2 converges to quadratic form in (m1, m2)

which is positive definite due to the strong identifiability condition. That is,

for some positive constant C1 < C2, we have

C1n(m2
1 + m2

2) ≤ (I) ≤ C2n(m2
1 + m2

2)

in probability. On the other hand, Condition A4 implies that for some ǫ > 0,

(II) ≤ ǫ nm2
2 ≤ ǫ n (m2

1 + m2
2)

in probability. From the above two inequalities and the Cauchy-Schwarz

inequality, we further obtain

|(III)| ≤
√

ǫ C2 n (m2
1 + m2

2)
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in probability. Combining the above three inequalities, in probability, we

conclude that for any small constant ǫ > 0,

n
∑

i=1

δ2
i ≥ (C1 −

√

ǫ C2) n (m2
1 + m2

2). (13)

We now work on the third term in (11). By Taylor’s expansion,

n
∑

i=1

δ3
i =

n
∑

i=1

{

m1Ui1(θ̂n, θ̂n) +
1

2

K
∑

k=1

πk(θk − θ̂n)2 Ui2(ξi,k, θ̂n)

}3

≤ 8 |m1|3
n

∑

i=1

∣

∣

∣

∣

Ui1(θ̂n, θ̂n)

∣

∣

∣

∣

3

+
n

∑

i=1

∣

∣

∣

∣

K
∑

k=1

πk(θk − θ̂n)2 Ui2(ξi,k, θ̂n)

∣

∣

∣

∣

3

≤ 8K−1 n

{

|m1|3 +

K
∑

k=1

π3
k|θk − θ̂n|6

}

where ξi,k is between θk and θ̂n for k = 1, 2, . . . , K. Thus

n
∑

i=1

δ3
i ≤ ǫ n (m2

1 + m2
2) (14)

in probability. The inequalities in (13) and (14) imply that
∑n

i=1 δ2
i dominates

∑n
i=1 δ3

i . Thus, from (11) we have

ln(G) − ln(θ̂n) =
n

∑

i=1

log(1 + δi) ≤
n

∑

i=1

δi − (
1

2

n
∑

i=1

δ2
i ) (1 + op(1)).

Thus by using (12), (13) and the above inequality, and using some generic

constants, we have

ln(G) − ln(θ̂n) ≤ C0

√
n m2 − C3 n (m2

1 + m2
2)

= C0

√
n(m2 − m2

1) − C3 n {(m2
1 + m2

2) −
C0

C3

√
n

m2
1}

≤ C0

√
n(m2 − m2

1)

= C0

√
n

∑

i<j

πiπj(θi − θj)
2
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in probability. Hence,

ln(G) − ln(θ̂n) = Op(
√

n)
∑

i<j

πiπj(θi − θj)
2

which is (10) and this completes the proof of the theorem. ♠
In the proof of Lemma 4 bellow we need the following Lemma which

is from the discussion part of the paper by Wald (1949, pages 601-602).

In a simplistic way, the result states that the likelihood ratio decreases at

exponential rate when a neighborhood of the true value is excluded in its

definition.

Lemma 3 Let η and ǫ be given, arbitrarily small, positive numbers. Let

S(θ0, η) be the open sphere with center θ0 and radius η, and let Ω(η) =

Ω − S(θ0, η). Let Wald′s Assumptions hold. There exists a number h(η),

0 < h < 1, and another positive number N(η, ǫ) such that, for any n >

N(η, ǫ),

P0

{

supθ∈Ω(η)

∏n
i=1 f(Yi; θ)

∏n
i=1 f(Yi; θ0)

> hn

}

< ǫ

where P0 is the probability of the relation in braces according to f(y; θ0).

Lemma 4 Suppose the kernel density f(y; θ) satisfies regularity conditions

A1-A4, and the penalty function pn(η) satisfies conditions P0, P1 and P3. If

the true distribution of Y is a finite mixture with density function f(y; G0),

then the MPLE Ĝn has the property

K
∑

k=1

log π̂k = Op(1) , as n → ∞.

Proof . By Lemma 3, the difference ln(G)− ln(G0) is negative with order n,

uniformly for any G outside a neighbourhood of G0. On the other hand, due

to condition P1 on the penalty function pn(·),
∑K−1

k=1 pn(ηk)−
∑K0−1

k=1 pn(η0k) =
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o(n), where ηk = θk+1 − θk, k = 1, 2, . . . , K − 1, correspond to the support

points of the G. Thus, l̃n(G)− l̃n(G0) is negative also with order n, uniformly

for any G outside a given neighbourhood of G0. Hence, the MPLE Ĝn must

be in a small neighborhood of G0. This implies that Ĝn has at least K0

distinct support points. Thus, by condition P3 on the penalty function pn(·),
for large n,

K−1
∑

k=1

pn(η̂k) −
K0−1
∑

k=1

pn(η0k) ≥ 0 (15)

in probability. Let Ḡn be the ordinary MLE of G which has at most K

support points. By the definition of l̃n(G) and (15) we have that

0 ≤ l̃n(Ĝn) − l̃n(G0)

=

{

ln(Ĝn) − ln(G0)

}

−
{K−1

∑

k=1

pn(η̂k) −
K0−1
∑

k=1

pn(η0k)

}

+

{

CK

K
∑

k=1

log π̂k − CK0

K0
∑

k=1

log π0k

}

≤
{

ln(Ĝn) − ln(G0)

}

+

{

CK

K
∑

k=1

log π̂k − CK0

K0
∑

k=1

log π0k

}

≤
{

ln(Ḡn) − ln(G0)

}

+

{

CK

K
∑

k=1

log π̂k − CK0

K0
∑

k=1

log π0k

}

.

From Dacunha-Castelle and Gassiat (1999), ln(Ḡn) − ln(G0) = Op(1). Also

CK

∑K
k=1 log π̂k is a negative quantity and CK0

∑K0

k=1 log π0k is constant with

respect to n. Knowing that 0 ≤ l̃n(Ĝn) − l̃n(G0) implies

CK

K
∑

k=1

log π̂k = Op(1).

This completes the proof. ♠
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Proof of Theorem 3. Part(a). Denote

H(G; G0) = E0

{

log
f(Y ; G)

f(Y ; G0)

}

where the expectation is under the true density f(y; G0). By condition P1 of

pn(·) and Condition A4, we have

1

n

{

l̃n(G) − l̃n(G0)

}

→ H(G; G0) (16)

almost surely and uniformly over the compact space of the finite mixing

distribution G. Denote the set

A =

{

G ∈ MK ; πl ∈ [δ1l, δ2l], 1 ≤ l ≤ K, ‖Gk−G0k‖ > δ, |pk−π0k| > δ, 1 ≤ k ≤ K0

}

for some 0 < δ1l < δ2l < 1 and δ > 0. Note that G0 /∈ A. Suppose that the

claim in part (a) of the theorem is not true. Then, in the light of Lemma 4

and compactness of the parameter space Θ, there must exist a subsequence

Ĝn′ of Ĝn such that

P (Ĝn′ ∈ A) > ǫ

for some positive ǫ > 0, and for large n′. Hence we have that

P

{

1

n′

[

l̃n′(Ĝn′) − l̃n′(G0)

]

= sup
G∈A

1

n′

[

l̃n′(G) − l̃n′(G0)

]

}

> ε

for all large n′. On the other hand for any G ∈ A, due to the identifiability

condition A4, H(G, G0) < 0. This implies that, from (16) and the above

inequality,

P

{

1

n′

[

l̃n′(Ĝn′) − l̃n′(G0)

]

< 0

}

> ε

for all large n′. Thus, Ĝn′ cannot be the maximizer of the function l̃n(G),

which is a contradiction. Hence, the result in part (a) holds.
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Part(b). From Part(a)-(ii), we have that

|Ĝk(θ) − G0k(θ)| = |Ĝk(θ) − I(θ0k ≤ θ)| = op(1), ∀ θ ∈ Θ.

By Lemma 4, the mixing proportion on each support point of the MPLE Ĝn

is positive in probability. These facts imply that the support points of Ĝk

must converge to θ0k in probability. ♠
Proof of Theorem 4. Let Ĝ0 be the maximizer of the penalized log-

likelihood function l̃n(G) among those with exactly K0 support points. We

need only to show that in probability, for any mixing distribution G ∈ MK

in a n−1/4-neighbourhood of G0 and with true order larger than K0, we must

have

∆n(K, K0) = l̃n(G) − l̃n(Ĝ0) < 0 (17)

as n → ∞ and therefore they cannot be the MPLE. We proceed as follows.

For any G in the n−1/4-neighbourhood of G0, with at most K but more

than K0 support points, and with properties specified by Theorem 3, we

write

G(θ) =

K0
∑

k=1

pkGk(θ). (18)

Let G̃0 be the maximizer of l̃n(·) over the space of finite mixing distributions

with exactly K0 support points while the mixing proportions are fixed at

p1, p2, . . . , pK0
given in the above G. Since G is in a shrinking neighbourhood

of G0, so must be its corresponding parameters. In that sense, the support

points of G̃0 are also consistent estimators of the support points of the true

mixing distribution G0. By definition, l̃n(G̃0) ≤ l̃n(Ĝ0) which implies

∆n(K, K0) = l̃n(G) − l̃n(Ĝ0) ≤ l̃n(G) − l̃n(G̃0) = ∆̃n(K, K0). (19)
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Thus, our task can be replaced by showing ∆̃n(K, K0) < 0.

It is seen that

∆̃n(K, K0) =

[

ln(G) − ln(G̃0)

]

−
[K−1
∑

k=1

pn(ηk) −
K0−1
∑

k=1

pn(η̃0k)

]

+

[

CK

K
∑

k=1

log πk − CK0

K0
∑

k=1

log pk

]

.

Since K > K0 and by (18), each pk is the sum of some mixing proportions

πj corresponding to Gk. Thus, the third term on the right-hand side of the

above expression is negative. Therefore,

∆̃n(K, K0) ≤
[

ln(G) − ln(G̃0)

]

−
[K−1
∑

k=1

pn(ηk) −
K0−1
∑

k=1

pn(η̃0k)

]

. (20)

We first investigate the second term in the above inequality. The quantities ηk

can be divided into two groups; group one consists of differences of supports

of Gk, and group two consists of differences between the largest support of Gk

and the smallest support of Gk+1. By consistency, ηk’s in the second group

converge to their corresponding η0k 6= 0. Thus, by Condition P3 for pn(·),
K−1
∑

k=1

pn(ηk) −
K0−1
∑

k=1

pn(η̃0k) =

K0
∑

k=1

∑

j∈Ik

pn(ηjk
)

with probability approaching one, where Ik are pairs of neighboring support

points of Gk.

For the first term in (20), similar to what we did earlier,

ln(G) − ln(G̃0) ≤
n

∑

i=1

δi −
1

2

n
∑

i=1

δ2
i +

1

3

n
∑

i=1

δ3
i ,

with

δi =
f(Yi; G) − f(Yi; G̃0)

f(Yi; G̃0)
=

K0
∑

k=1

pk
f(Yi; Gk) − f(Yi; θ̃0k)

f(Yi; G̃0)
.
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For θ such that θ − θ̃0k = op(n
−1/4), we have

n
∑

i=1

f(Yi; θ) − f(Yi; θ̃0k)

f(Yi; G̃0)
= (θ − θ̃0k)

n
∑

i=1

Ui1(θ̃0k, G̃0) +
1

2
(θ − θ̃0k)

2

n
∑

i=1

Ui2(θ̃0k, G̃0)

+
1

6
(θ − θ̃0k)

3
n

∑

i=1

Ui3(ξk, G̃0)

for some ξk between θ and θ̃0k. Letting mj(θ̃k) = mjk =
∫

(θ − θ̃0k)
jdGk(θ)

for j = 1, 2, 3, we get the expansion

n
∑

i=1

f(Yi; Gk) − f(Yi; θ̃0k)

f(Yi; G̃0)
= m1k

n
∑

i=1

Ui1(θ̃0k; G̃0) +
1

2
m2k

n
∑

i=1

Ui2(θ̃0k; G̃0)

+
1

6

∫

(θ − θ̃0k)
3

n
∑

i=1

Ui3(ξk; G̃0) dGk(θ)

for k = 1, 2, . . . , K0. Therefore,

n
∑

i=1

δi =
K0
∑

k=1

pk

{

m1k

n
∑

i=1

Ui1(θ̃0k, G̃0) +
1

2
m2k

n
∑

i=1

Ui2(θ̃0k, G̃0)

+
1

6

∫

(θ − θ̃0k)
3

n
∑

i=1

Ui3(ξk; G̃0) dGk(θ)

}

. (21)

Since G̃0 is the MPLE with K0 support points, it must satisfy the following

(score-type) equations:

n
∑

i=1

p1 Ui1(θ̃01; G̃0) + p′n(η̃01) = 0,

n
∑

i=1

pK0
Ui1(θ̃0K0

; G̃0) − p′n(η̃0,K0−1) = 0,

and for k = 2, 3, . . . , K0 − 1,

n
∑

i=1

pk Ui1(θ̃0k; G̃0) − p′n(η̃0,k−1) + p′n(η̃0k) = 0.
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By the consistency of G̃0, we have

η̃0k = θ̃0k − θ̃0,k−1 → η0k 6= 0

in probability, which implies, with probability tending to one, p′n(η̃0k) = 0 by

condition P3 on pn(·). The score-type equations hence reduce to

n
∑

i=1

Ui1(θ̃0k; G̃0) = 0

for all k = 1, 2, . . . , K0. This fact then simplifies (21) into

n
∑

i=1

δi =

K0
∑

k=1

pk

{

1

2
m2k

n
∑

i=1

Ui2(θ̃0k; G̃0)+
1

6

∫

(θ−θ̃0k)
3

n
∑

i=1

Ui3(ξk; G̃0) dGk(θ)

}

in probability. Note that

n
∑

i=1

Ui2(θ̃0k; G̃0) =
n

∑

i=1

Ui2(θ̃0k; G0) +
n

∑

i=1

{Ui2(θ̃0k; G̃0) − Ui2(θ̃0k; G0)}.

It is seen that the first term is
∑n

i=1 Ui2(θ̃0k; G0) = Op(n
1/2). For the second

term, we have

n
∑

i=1

|Ui2(θ̃0k; G̃0) − Ui2(θ̃0k; G0)| =
n

∑

i=1

|Ui2(θ̃0k; G0)|
{

∣

∣

∣

∣

∣

f(Yj; G0)

f(Yj; G̃0)
− 1

∣

∣

∣

∣

∣

}

≤
n

∑

i=1

q(Yi)|Ui2(θ̃0k; G0)|‖G0 − G̃0‖

= Op(n
3/4)

by Conditions A4 and A5. Hence,

n
∑

i=1

Ui2(θ̃0k; G̃0) = Op(n
3/4).

Similarly,
n

∑

i=1

Ũi3(ξk; G̃0) = Op(n
3/4).
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Thus for large n, there exist some constant C0 such that

n
∑

i=1

δi ≤ C0 n3/4
K0
∑

k=1

pkm2k (22)

in probability.

Now we focus on the quadratic term
∑n

i=1 δ2
i . By Taylor’s expansion,

n
∑

i=1

δ2
i =

n
∑

i=1

{

K0
∑

k=1

pk

[

m1kUi1(θ̃0k; G̃0) +
1

2
m2kUi2(θ̃0k; G̃0) +

1

6

∫

(θ − θ̃0k)
3Ui3(ξik; G̃0)dGk(θ)

]

}2

= (I) + (II) + (III)

where

(I) =
n

∑

i=1

{

K0
∑

k=1

pk

[

m̃1kUi1(θ̃0k; G̃0) +
1

2
m̃2kUi2(θ̃0k; G̃0)

]

}2

,

(II) =
1

36

n
∑

i=1

{

K0
∑

k=1

pk

∫

(θ − θ̃0k)
3Ui3(ξik; G̃0) dGk(θ)

}2

,

(III) =
1

3

n
∑

i=1

{

K0
∑

k=1

pk

[

m̃1kUi1(θ̃0k; G̃0) +
1

2
m̃2kŨi2(θ̃0k; G̃0)

]

}

×
{

K0
∑

k=1

pk

∫

(θ − θ̃0k)
3Ũi3(ξik; G̃0) dGk(θ)

}

.

Using completely the same arguments as in the proof of Theorem 2, it is

seen that there exist some positive constants C1 and C2 such that

C1 n

K0
∑

k=1

(m2
1k + m2

2k) ≤ (I) ≤ C2 n

K0
∑

k=1

(m2
1k + m2

2k)

(II) ≤ ǫ n
K0
∑

k=1

(m2
1k + m2

2k)
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and

|(III)| ≤
√

C2ǫ n

K0
∑

k=1

(m2
1k + m2

2k).

Thus combining the above inequalities, we have

n
∑

i=1

δ2
i ≥ (C1 −

√

ǫ C2) n
K0
∑

k=1

(m̃2
1k + m̃2

2k) (23)

in probability. It further implies

ln(G) − ln(G̃0) =
n

∑

i=1

log(1 + δi) ≤
n

∑

i=1

δi − (
1

2

n
∑

i=1

δ2
i ) (1 + op(1)).

Substituting order assessments we have obtained, for some generic constant

C,

ln(G) − ln(G̃0) ≤ C n3/4

K0
∑

k=1

∑

i<j

(θik − θjk)
2 ≤ C n1/2

K0
∑

k=1

∑

i<j

|θik − θjk|

in probability. Thus, we get

∆̃n(K, K0) = C0

√
n

K0
∑

k=1

∑

i<j

|θik − θjk| −
K0
∑

k=1

∑

j∈Ik

pn(ηjk
)

in probability. Condition P2 on pn(·) is designed to make the right-hand side

of the above inequality negative for large n. Thus by (19),

∆n(K, K0) ≤ ∆̃n(K, K0) < 0

for large n. This completes the proof. ♠
Proof of Theorem 5. Let rn = n−1/2(1 + bn). It suffices to show that

for any given ε > 0, there exists a constant Mε such that

P

{

sup
‖u‖=Mε

l̃n(Ψ0 + rnu) < l̃n(Ψ0)

}

> 1 − ε. (24)
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This implies that with probability at least 1 − ε, a local maximum of the

function is in the ball {Ψ0 + rnu; ‖u‖ ≤ Mε}. Thus this local maximizer

satisfies (7).

Let ∆n(u) = l̃n(Ψ0 + rnu) − l̃n(Ψ0). By definition of the penalized log-

likelihood function l̃n(·),

∆n(u) ≤ {ln(Ψ0+rnu)−ln(Ψ0)}−
K0−1
∑

k=1

{pn(η0k+rnuk)−pn(η0k)}−CK0

K0
∑

k=1

log π0k.

(25)

By the standard Taylor’s expansion, we have

ln(Ψ0+rnu)−ln(Ψ0) = n−1/2(1+bn) [l′n(Ψ0)]
τ u−(1 + bn)2

2
[uτI(Ψ0)u] (1+op(1)),

∣

∣

∣

∣

K0−1
∑

k=1

{pn(η0k +rnuk)−pn(η0k)}
∣

∣

∣

∣

≤
√

K0 − 1 bn(1+bn)‖u‖+
cn

2
(1+bn)

2‖u‖2.

By the standard regluarity conditions, l′n(Ψ0) = Op(
√

n) and that I(Ψ0) is

positive definite. In addition, cn = o(1). An order comparison of the terms

in the above two expressions implies that

−1

2
(1 + bn)2[uτI(Ψ0)u](1 + op(1))

which is the sole leading term on the right-hand side of (25). Therefore, for

any given ε > 0, there exists a sufficiently large Mε such that

lim
n→∞

P

{

sup
‖u‖=Mε

∆n(u) < 0

}

> 1 − ǫ

which implies (24), and this completes the proof. ♠
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Table 1: Parameter values in Example 1.

Parameter Values

Model (π1, θ1) (π2, θ2) (π3, θ3) (π4, θ4)

1 (1/3, 0) (2/3, 3)

2 (0.5, 0) (0.5, 3)

3 (0.5, 0) (0.5, 1.8)

4 (0.25, 0) (0.25, 3) (0.25, 6) (0.25, 9)

5 (0.25, 0) (0.25, 1.5) (0.25, 3) (0.25, 4.5)

6 (0.25, 0) (0.25, 1.5) (0.25, 3) (0.25, 6)

Table 2: Simulation results of Example 1 (Models 1-3).

Model K0 # Modes K AIC BIC NEW GWCR

1 0.000 (0.024) 0.000 (0.150) 0.006 (0.010) (0.018)

1 2 2 2 0.952 (0.862) 0.994 (0.838) 0.988 (0.966) (0.920)

3 0.048 (0.072) 0.006 (0.012) 0.006 (0.024) (0.058)

4 0.000 (0.042) 0.000 (0.000) 0.000 (0.000) (0.004)

1 0.000 (0.028) 0.000 (0.224) 0.006 (0.026) (0.030)

2 2 2 2 0.962 (0.874) 0.996 (0.772) 0.988 (0.918) (0.916)

3 0.036 (0.054) 0.004 (0.004) 0.006 (0.054) (0.054)

4 0.002 (0.044) 0.000 (0.000) 0.000 (0.002) (0.000)

1 0.006 (0.668) 0.062 (0.950) 0.038 (0.392) (0.868)

3 2 1 2 0.978 (0.234) 0.938 (0.048) 0.924 (0.536) (0.130)

3 0.016 (0.052) 0.000 (0.002) 0.038 (0.072) (0.002)

4 0.000 (0.046) 0.000 (0.000) 0.000 (0.000) (0.000)

The values in brackets are results for σ-unknown case.
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Table 3: Simulation results of Example 1 (Models 4-6).

Model K0 # Modes K AIC BIC NEW GWCR

1 0.000 (0.000) 0.000 (0.110) 0.000 (0.000) (0.000)

2 0.000 (0.178) 0.000 (0.596) 0.000 (0.044) (0.102)

3 0.008 (0.110) 0.076 (0.110) 0.044 (0.154) (0.554)

4 4 4 4 0.976 (0.674) 0.924 (0.182) 0.908 (0.772) (0.306)

5 0.016 (0.038) 0.000 (0.002) 0.048 (0.030) (0.038)

6 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) (0.000)

7 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) (0.000)

8 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) (0.000)

1 0.000 (0.244) 0.000 (0.748) 0.000 (0.066) (0.144)

2 0.284 (0.556) 0.670 (0.246) 0.046 (0.450) (0.818)

3 0.704 (0.142) 0.330 (0.004) 0.744 (0.374) (0.032)

5 4 1 4 0.012 (0.044) 0.000 (0.002) 0.210 (0.092) (0.006)

5 0.000 (0.014) 0.000 (0.000) 0.000 (0.018) (0.000)

6 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) (0.000)

7 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) (0.000)

8 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) (0.000)

1 0.000 (0.016) 0.000 (0.188) 0.000 (0.006) (0.000)

2 0.006 (0.474) 0.036 (0.698) 0.020 (0.288) (0.612)

3 0.944 (0.392) 0.960 (0.106) 0.818 (0.572) (0.368)

6 4 2 4 0.050 (0.102) 0.004 (0.008) 0.158 (0.114) (0.020)

5 0.000 (0.014) 0.000 (0.000) 0.004 (0.018) (0.000)

6 0.000 (0.000) 0.000 (0.000) 0.000 (0.002) (0.000)

7 0.000 (0.002) 0.000 (0.000) 0.000 (0.000) (0.000)

8 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) (0.000)
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Table 4: Parameter values in Poisson mixture model.

Parameter Values

Experiment (π1, θ1) (π2, θ2) (π3, θ3) (π4, θ4)

1 (1/3, 4) (2/3, 6)

2 (0.5, 4) (0.5, 6)

3 (0.25, 4) (0.25, 6) (0.25, 10) (0.25, 15)

Table 5: Simulation Results for Poisson Mixture Models

Model K0 K AIC BIC NEW

1 0.724 0.958 0.462

1 2 2 0.274 0.042 0.532

3 0.002 0.000 0.006

4 0.000 0.000 0.000

1 0.684 0.938 0.450

2 2 2 0.316 0.062 0.544

3 0.000 0.000 0.006

4 0.000 0.000 0.000

1 0.000 0.000 0.000

2 0.706 0.940 0.112

3 0.290 0.060 0.608

3 4 4 0.004 0.000 0.238

5 0.000 0.000 0.040

6 0.000 0.000 0.002

7 0.000 0.000 0.000

8 0.000 0.000 0.000
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Figure 2: Dashed line: Fitted normal mixture model of order two; Solid line:

Fitted normal mixture model of order three.
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Histogram of the Observed data

Number of Death Notices

Fr
eq

ue
nc

y

0 2 4 6 8 10

0
10

0
20

0
30

0
40

0
50

0

Figure 3: Histogram of the observed frequency of number of death notices.
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Table 6: Number of death notices and the results of fitting two models to

the data: a homogeneous Poisson and the Poisson mixture fitted by the new

method.

Number of Observed Expected Frequency Expected Frequency

Death Notices Frequency Homogeneous Poisson Poisson Mixture

0 162 126.78 160.77

1 267 273.46 270.09

2 271 294.92 261.97

3 185 212.04 191.97

4 111 114.34 114.94

5 61 49.32 57.83

6 27 17.73 24.88

7 8 5.46 9.29

8 3 1.47 3.05

9 1 0.35 0.89

χ2
6 = 26.97 χ2

4 = 1.29
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Figure 4: Empirical density: Solid line (O); Estimated Poisson density:

dashed line (+); Estimated Poisson mixture density: dashed-dot line (X).
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