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Abstract

The modified information criterion (MIC) is applied to detect multiple change points

in a sequence of independent random variables. We find that the method is consistent in

selecting the correct model, and the resulting test statistic has a simple limiting distribution.

We show that the estimators for locations of change points achieve the best convergence rate,

and their limiting distribution can be expressed as a function of a random walk. A simulation

is conducted to demonstrate the usefulness of this method by comparing the powers between

the modified information criterion and the Schwarz information criterion.
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1 Introduction

Information criteria are commonly used for selecting competing statistical models. Out of

several competing statistical models, we do not always choose the one with the best fit to the

data. Such models may simply interpolate the data and have little interpretable value. Model
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complexity is an important factor in information criteria for model selection, see Akaike

(1973) and Schwarz (1978). The model complexity in existing criteria is often measured in

terms of the dimensionality of the parameter space. Although this notion is well founded

in regular parametric models, it lacks some desirable properties when applied to irregular

statistical models. Chen, Gupta and Pan (2006) refined the notion of model complexity in

the context of single change point problems, and modified the existing information criteria.

They showed that the modified information criterion is consistent in selecting the correct

model and has simple limiting behavior. We generalize the modified information criterion in

Chen, Gupta and Pan (2006) so that it can be applied to multiple change point models in

this paper.

Consider the problem of making inference on whether a process has undergone some

changes. In the context of model selection, we want to choose between a model with a single

set of parameters, or a model with two or more sets of parameters plus the locations of

changes.

Compared to usual model selection problems, the change point problem contains some

special parameters: the locations of the changes. When some of them approach the beginning

or the end of the process or cluster somewhere in the process, one or more sets of the

parameter become completely redundant, and the model is un-necessarily complex. Hence,

the model complexity should be considered as a function of both the locations of the change

points and the dimensionality of the parameter space.

The change point problem has been extensively discussed in the literature in recent years.

The study of the change point problem dates back to Page (1954 and 1955) which tested

the existence of single change point, and Chernoff and Zacks (1964) which was motivated

by consideration of a ”tracking” problem. Multiple change point problems also have been

considered by many authors including Yao (1988), Yao and Au (1989), Fu and Curnow

(1990), Bai and Perron (1998), Lee (1996), Siegmund (2004) and Ninomiya (2005). The

problem was also discussed in a Bayesian framework, see Chernoff and Zacks (1964), Yao

(1984), Barry and Hartigan (1992) and Lee (1998). The discussion of change point problem

for dependent observations can be found in Lavielle (1999) and Lai, Liu and Xing (2005).

The present study deviates from other studies by refining the traditional measure of the
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model complexity.

Suppose we have a sequence of independent observations X1, . . . , Xn. It is assumed that

there exist up to R integers τ1, . . . , τR, where 0 = τ0 < τ1 . . . < τR < τR+1 = n, such that

Xi has density function f(x, θr) when τr−1 < i ≤ τr (r = 1, . . . , R + 1) which belong to the

same parametric distribution family {f(x, θ); θ ∈ Θ} with Θ ⊂ Rd.

The problem is then to test whether the R changes have indeed occurred and to esti-

mate the locations of the R changes if they exist. For this purpose, we adopt the modified

information criterion proposed by Chen, Gupta and Pan (2006). It is believed that when

τ1, . . . , τR are distributed evenly between 1 and n, the model is least complex and all param-

eters θ1, . . . , θR+1 are effective. When one or more change points are near 1 or n, or cluster,

some of parameters θ1, . . . , θR+1 become redundant. Hence, some τ1, . . . , τR are increasingly

undesirable parameters and the model is considered as the most complex in this case. To

simplify notation, let θ = (θ1, . . . , θR+1) and τ = (τ1, . . . , τR) be the parameter vector and

the location vector of change points, and use triplet (θ, τ , R) to identify the number of copies

of θ’s in the model under consideration. We denote the log-likelihood function as

ln(θ, τ , R) =
R+1∑
r=1

τr∑
i=τr−1+1

log f(Xi, θr).

The MIC for the multiple change points is defined as

MIC(θ, τ , R) = −2ln(θ, τ , R) + (R + 1)d log n + C
R+1∑
r=1

(
τr − τr−1

n
− 1

R + 1

)2

log n,

where C > 0 is a constant. Note that this criterion favors change point models with change

points spreading out uniformly. This notion in single change point case is shared by many

researchers. The method in Inclán and Tiao (1994) scales down the statistic when the

suspected change point is near 1 or n. The U-statistic in Gombay and Horváth (1995) is

scaled down by multiplying a factor τ(n − τ) when τ is the location of the change. From

a different angle, the modification can also be used to reflect some belief on uniformity in

the change points. Thus, our method also has a link to Lee (1998) who showed that under

uniform prior, the locations of the change points are estimated with a convergence rate of

Op(log n).
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When there is no change point, we define

MIC(θ, n, 0) = −2ln(θ, n, 0) + d log n.

Let

MIC(τ , R) = inf
θ

MIC(θ, τ , R).

We select the model with corresponding θ̂, τ̂ , R̂ minimizing MIC(θ, τ , R). That is

MIC(θ̂, τ̂ , R̂) = inf MIC(θ, τ , R) (1)

among all choices of (θ, τ , R). When R is large, the evaluation of this criterion is a non-trivial

task.

We assume the number of change points R as fixed in this paper. Further research is

needed to investigate the consistency of R̂ if R is not fixed. To test the hypothesis of having

R change points against the null of no changes, we define the test statistic as

Sn = inf
θ
{MIC(θ, n, 0)} − inf

θ,τ
{MIC(θ, τ , R)}+ Rd log n, (2)

and reject the null hypothesis when Sn is larger than a critical value.

In the next section, we present the result on the limiting distribution of the test statistic

Sn under the null hypothesis. We show that Sn diverges to infinity when the alternative model

is true. Further, we show that the convergence rate for estimating τ is Op(1) and derive the

limiting distribution of τ̂ . The proofs are presented in Sections 3 and 4, respectively. In last

section, we present some simulation studies.

2 The Limiting Distribution and Convergence Rate

Csörgö and Horváth (1997) studied the asymptotic distribution of usual likelihood ratio

test statistics in single change point case for exponential family. However, the resulting test

statistics do not have simple null limiting distributions. In addition, we do not aware any

results in the literature on the null limiting distribution of the usual likelihood ratio test

statistic in multiple change point problems. In contrast, we present the simple results on the

limiting distribution of Sn in Theorem ?? and the convergence rate and limiting distribution

of τ̂ in Theorems ?? and ??, respectively. The proofs will be given in Sections ?? and ??.

4



Theorem 1 (a) Under the null hypothesis H0 : θ1 = . . . = θR, Wald conditions W1-W7 and

the regularity conditions R1-R3, to be specified later in the appendix, we have, as n →∞

Sn → χ2
(Rd)

in distribution, where d is the dimension of θ and R is the number of change points specified

by the alternative hypothesis.

(b) In addition, if there are R change points at τ1 = [nλ1], . . . , τR = [nλR] with 0 < λ1 <

. . . < λR < 1, then, as n →∞,

inf
θ
{MIC(θ, n, 0)} − inf

θ,τ
{MIC(θ, τ , R)} → ∞

in probability, which implies that

Sn →∞

in probability.

Theorem ?? implies that the MIC method for testing multiple change points is consistent.

That is, when there are R change points in θ at τ1 = [nλ1], . . . , τR = [nλR] with 0 < λ1 <

. . . < λR < 1, the model with R change points will be chosen with probability approaching

1.

Theorem 2 Under Wald conditions W1-W7, the regularity conditions R1-R3 and the al-

ternative hypothesis H1 that there exist R change points at τ1 = [nλ1], . . . , τR = [nλR], where

0 < λ1 < . . . < λR < 1, then we have, for r = 1, . . . , R,

τ̂r − τr = Op(1)

where τ̂ = (τ̂1, . . . , τ̂R) are defined in (??) if R is fixed.

Obviously Theorem ?? indicates that the estimators τ̂1, . . . , τ̂R of the R change points

attain the best convergence rate.

Our next theorem is to derive the limiting distribution of the MIC estimator τ̂ , which

can be characterized by the minimizer of a random walk. Let {Y (r)
i , i = ±1,±2, . . .}R

r=1 be

R sequences of independent random variables with Y
(r)
i ∼ f(x, θr0) for i < 0, and Y

(r)
i ∼
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f(x, θ(r+1)0) for i > 0 and r = 1, . . . , R, where (θ10, . . . , θ(R+1)0) are the true values of

(θ1, . . . , θ(R+1)) under the alternative. For convenience, let Y
(r)
0 be a non-random number

such that f(Y
(r)
0 , θr0) = f(Y

(r)
0 , θ(r+1)0). Define

Wk =
R∑

r=1

kr∑
j=0

sgn(kr)[log f(Y
(r)
j , θ(r+1)0)− log f(Y

(r)
j , θr0)]

for kr = 0,±1,±2, . . ., where r = 1, . . . , R.

With the help of the above notation, the asymptotic distribution of the MIC estimator

τ̂ is given as follows.

Theorem 3 Under the same conditions as Theorem ??, we have

τ̂ − τ → ξ

in distribution, where

ξ = arg min
−∞<kr<∞, r=1,...,R

{Wk}.

The proofs of the theorems will be given in the next two Sections.

3 The Proof of Null Limiting Distribution

Suppose that the null model is true. That is, all observations in the sequence are

independent and identically distributed. In this situation, increasing the model complexity

should not boost the maximum possible value of the likelihood function. Our first lemma

quantifies this notion. The difference between the maximum values of the likelihood function

under the null model and under the alternative model with R change points is no larger than

a quantity of order Op(log log n). This result implies that the determining factor for choosing

a model is the size of penalty introduced in MIC under the null model. Since the size of

penalty is O(log n), the MIC will select the model with the change points distributed evenly

between 1 and n when n increases to infinity.

Lemma 1 Assume the null hypothesis H0 is true that there have been no changes in param-

eters, and the Wald conditions W1-W7 and the regularity conditions R1-R3 are satisfied by
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f(x, θ). Let θ0 be the true parameter value of θ. We have

sup
θ,τ

ln(θ, τ , R)− ln(θ0, n, 0) = Op(log log n).

Proof: Note that for each given τ and θ,

ln(θ, τ , R)− ln(θ0, n, 0) =
R+1∑
r=1

τr∑
i=τr−1+1

[log f(Xi, θr)− log f(Xi, θ0)].

For each non-random τr and τr−1,

sup
θr

τr∑
i=τr−1+1

[log f(Xi, θr)− log f(Xi, θ0)]

is a usual likelihood ratio statistic. The regularity conditions R1-R3 imply that it converges

to a chi-square distribution in distribution when τr − τr−1 tends to infinity. Hence, each of

them is of order Op(1). Taking maximum over 1 ≤ τ1 < . . . < τR ≤ n will increase its order

to Op(log log n) as shown in Chen, Gupta and Pan (2006). Hence we claim that the lemma

is proved.
⊕

When we are forced to fit the data with a model having R change points, the resulting

model should still be similar to the null model in some way. In the words of the next lemma,

all R + 1 estimators of θ converge to the true parameter θ0 under the null hypothesis. This

result paves the way for the proof of Theorem ??.

Lemma 2 Assume that the Wald conditions W1-W7 are satisfied, the null hypothesis H0 is

true and θ0 is the true parameter value. Let

S =
{
τ = (τ1, . . . , τR) : min

1≤r≤R+1
(τr − τr−1) > cn

}
, (3)

where 0 < c < 1 is a constant. Suppose θ̂τ minimizes MIC(θ, τ , R) for given R and τ .

Then we have, for each component θ̂r of θ̂τ ,

θ̂r → θ0

in probability uniformly for all r = 1, . . . , R + 1 and τ ∈ S as n →∞.
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Proof: Let θ̃ = (θ̃1, . . . , θ̃R+1) 6= (θ0, . . . , θ0), and

N1 = N1(θ̃) = {θ : (θ1 − θ̃1)
2 + . . . + (θR+1 − θ̃R+1)

2 < ρ2}.

Similar to the proof in Wald (1949), we need only show that when ρ is small enough,

max
τ∈S

sup
θ∈N1

[ln(θ, τ , R)− ln(θ0, n, 0)] = max
τ∈S

sup
θ∈N1

R+1∑
r=1

τr∑
i=τr−1+1

[log f(Xi, θr)− log f(Xi, θ0)]

< 0

in probability.

When this is proved, we need only use the compactness of Θ to conclude that θ̂r converges

to θ0 in probability. Let, for τr−1 < i ≤ τr,

Y
(r)
i = log f(Xi, θ̃r, ρ)− log f(Xi, θ0),

where f(X, θ, ρ) is defined in Condition W2 of Appendix. Since θ̃ = (θ̃1, . . . , θ̃R+1) 6=

(θ0, . . . , θ0), there exists at least one r such that EY (r)
τr

< 0 by Jensen’s inequality, and

all other EY (r)
τr

→ 0 or < 0 when ρ → 0. Assume that EY (r0)
τr0

< 0 and choose ρ small enough

such that all other |EY (r)
τr
| < ε for some small ε > 0 (to be specified later). Note that

sup
θ∈N1

[ln(θ, τ , R)− ln(θ0, n, 0)] ≤
R+1∑
r=1

τr∑
i=τr−1+1

Y
(r)
i .

Consider the case of r = 1. By Kolmogorov maximal inequality (Sen and Singer, 1993), that

is,

P{max
1≤k≤n

|
k∑

i=1

(Xi − EXi)| ≥ ε} ≤ 1

ε2

n∑
k=1

var(Xk)

if X1, . . . , Xn is a sequence of independent random variables with EX2
i < ∞ for i = 1, . . . , n.

Hence,

τ1∑
i=1

Y
(1)
i ≤

τ1∑
i=1

(Y
(1)
i − EY

(1)
i ) + τ1EY (1)

τ1

≤ τ1 · EY (1)
τ1

+ op(n),

since E[Y (1)
τ1

]2 < ∞ is obvious from Condition W2.

Similarly, for r = 2, . . . , R + 1, we have

τr∑
i=τr−1+1

Y
(r)
i ≤ (τr − τr−1) · EY (r)

τr
+ op(n).
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Hence, we have

max
τ∈S

sup
θ∈N1

[ln(θ, τ , R)− ln(θ0, n, 0)] ≤ max
τ∈S

R+1∑
r=1

(τr − τr−1)EY (r)
τr

+ op(n)

≤ (τr0 − τr0−1)EY (r0)
τr0

+ ε max
τ∈S

∑
r 6=r0

(τr − τr−1) + op(n)

≤
[
cEY (r0)

τr0
+ ε

]
n + op(n)

< 0

in probability, where we choose ε such that cEY (r0)
τr0

+ ε < 0. Thus the required result

follows.
⊕

Remark: In the definition of MIC, we place a penalty term
∑R+1

r=1 ( τr−τr−1

n
− 1

R+1
)2 log n on

the likelihood in addition to (R + 1)d log n. Lemma ?? implies that MIC is relatively large

if
∑R+1

r=1 ( τr−τr−1

n
− 1

R+1
)2 is larger than some given positive value, as n →∞. Therefore, the

minimum of MIC(θ, τ , R) will be reached near τr = r
R+1

n for r = 1, . . . , R. Lemmas ?? and

?? together indicate that the MIC value is chiefly determined by the random fluctuation of

the likelihood function when θ is close to its true value and τr approximately equals to r
R+1

n

for r = 1, . . . , R.

We have seen that θ̂ is a consistent estimator of the true parameter θ0 under the null

model when τ has certain properties. It turns out that the estimator of τ also has some

nice properties.

Lemma 3 Assume that the Wald conditions W1-W7 are satisfied. Let (θ̂, τ̂ ) be the mini-

mizer of MIC(θ, τ , R) for given R. Then under the null hypothesis,

τ̂r

n
→ r

R + 1
, for r = 1, . . . , R

in probability as n →∞.

Proof: For any ε > 0, define

∆ = {τ = (τ1, . . . , τR) :
∣∣∣∣τr

n
− r

R + 1

∣∣∣∣ < ε, r = 1, . . . , R}. (4)

The lemma is true if we show that P (τ̂ ∈ ∆) → 1 when n →∞. Suppose θ0 = (θ0, . . . , θ0)

and τR = ( n
R+1

, 2n
R+1

, . . . , Rn
R+1

). Since the penalty term about the locations of change points
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in MIC disappears if τ = τR and ln(θ0, τR, R) = ln(θ0, n, 0), it is seen that

P (τ̂ 6∈ ∆) ≤ P{min
τ 6∈∆

MIC(θ̂, τ , R) ≤ MIC(θ0, τR, R)}

= P{max
τ 6∈∆

{2ln(θ̂, τ , R)− C
R+1∑
r=1

[
τr − τr−1

n
− 1

R + 1

]2
log n} ≥ 2ln(θ0, τR, R)}

≤ P{max
τ 6∈∆

[ln(θ̂, τ , R)− ln(θ0, n, 0)] ≥ 4C(R + 1)ε2 log n}.

By the result in Lemma ??,

max
τ 6∈∆

[ln(θ̂, τ , R)− ln(θ0, n, 0)] = Op(log log n).

Hence, P (τ̂ 6∈ ∆) → 0 as n →∞. Thus we complete the proof of the lemma.
⊕

With the help of the three lemmas, we are ready to prove Theorem ??.

Proof of Theorem ??:

We first prove the theorem for d = 1. Lemma ?? tells us that the range of τr

n
can be

restricted to an arbitrarily small neighborhood of r
R+1

. When τr

n
is restricted to a small

neighborhood of r
R+1

, we have τ ∈ S for some 0 < c < 1. Thus, we can focus only on θ in

an arbitrarily small neighborhood of θ0 = (θ0, . . . , θ0) according to Lemma ??.

For any ε > 0 and δ > 0, let ∆ be defined as in (??) and define

N2 = {θ : |θr − θ0| < δ, r = 1, . . . , R + 1}.

Let θ̂0 and (θ̂R, τ̂R) be the minimizers of MIC(θ, n, 0) and MIC(θ, τ , R) under the restric-

tion θ ∈ N2 and τ ∈ ∆. Since the penalty in Sn is always negative, we get

Sn ≤ 2[ln(θ̂R, τ̂R, R)− ln(θ̂0, n, 0)] + op(1). (5)

Our main idea of the proof is to obtain a quadratic expansion for this upper bound in

θ̂ − θ0.

By Taylor expansion at θ0, we have

∑
[log f(Xi, θ)− log f(Xi, θ0)] =

∑ ∂ log f(Xi, θ0)

∂θ
(θ − θ0)

+
1

2

∑ ∂2 log f(Xi, θ0)

∂θ2
(θ − θ0)

2

+
1

6

∑ ∂3 log f(Xi, ξ)

∂θ3
(θ − θ0)

3 (6)
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for some ξ ∈ N2. The range of summation could be applied to from i = τr−1 + 1 to τr or

from i = 1 to n.

Compared to the quadratic term in (??), the cubic term is negligible when δ → 0 by

Condition R2. Let

S(X, θ) =
∂ log f(X, θ)

∂θ

be the score function and

Pn(θ, r) = 2
∑

τr−1<i≤τr

S(Xi, θ0)(θ − θ0) +
∑

τr−1<i≤τr

∂S(Xi, θ0)

∂θ
(θ − θ0)

2

for r = 1, . . . , R + 1. We use Pn(θ, 0) for the summation from i = 1 to n.

By ignoring the cubic term in (??), and using (??) and (??), we get

Sn ≤ max
τ∈∆

R+1∑
r=1

Pn(θ̂r, r)− Pn(θ̂0, 0) + op(1). (7)

This is the quadratic expansion of the upper bound of Sn. We will show that this expansion

will lead to a chi-square limiting distribution.

Applying the Kolmogorov maximum inequality (Sen and Singer, 1993) again and noting

that τ ∈ ∆, we have

max
τ∈∆

∣∣∣∣∣∣ 1

τr − τr−1

∑
τr−1<i≤τr

∂S(Xi, θ0)

∂θ
+ I(θ0)

∣∣∣∣∣∣ = op(1) (8)

where I(θ0) is the Fisher information.

Due to I(θ0) > 0 and (??), it is obvious that the maximum of Pn(θ, r) is attained at∑
τr−1<i≤τr

S(Xi, θ0)/
∑

τr−1<i≤τr

∂S(Xi,θ0)
∂θ

when n →∞. That is, for r = 1, . . . , R + 1,

Pn(θ̂r, r) = I−1(θ0)

(τr − τr−1)
−1/2

τr∑
i=τr−1+1

S(Xi, θ0)

2

+ op(1)

and

Pn(θ̂0, 0) = I−1(θ0)

[
n−1/2

n∑
i=1

S(Xi, θ0)

]2

+ op(1).

Without loss of generality, assume that I(θ0) = 1, and let Yi = S(Xi, θ0) and Wk =
∑k

i=1 Yi.

Then we have, from (??),

Sn ≤ max
τ∈∆

R+1∑
r=1

(τr − τr−1)
−1/2

τr∑
i=τr−1+1

S(Xi, θ0)

2

−
[
n−1/2

n∑
i=1

S(Xi, θ0)

]2

+ op(1)
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= max
τ∈∆

R+1∑
r=1

[
(τr − τr−1)

−1/2(Wτr −Wτr−1)
]2
−
[
n−1/2Wn

]2
+ op(1)

= max
τ∈∆

R∑
r=1

{[
τ−1/2
r Wτr

]2
+
[
(τr+1 − τr)

−1/2(Wτr+1 −Wτr)
]2
−
[
τ
−1/2
r+1 Wτr+1

]2}
+ op(1)

= max
τ∈∆

R∑
r=1

[τr+1sr(1− sr)]
−1 (Wτr − srWτr+1)

2 + op(1)

≤ max
t∈∆∗

R∑
r=1

T 2
nr(tr) + op(1) (9)

where sr = τr

τr+1
, ∆∗ = {(t1, . . . , tR) : |tr − r

r+1
| < ε}, and

Tnr(tr)

=
{

[τr+1tr]
τr+1

(1− [τr+1tr]
τr+1

)
}−1/2

τ
−1/2
r+1

{
W[τr+1tr] + (τr+1tr − [τr+1tr])Y[τr+1tr]+1 −

[τr+1tr]
τr+1

Wτr+1

}
.

It is obvious that Tnr(tr), r = 1, . . . , R are asymptotic independent. By Donsker’s theo-

rem (Csörgö and Révész, 1981), as n → ∞, for tr ∈
[

r
r+1

− ε, r
r+1

+ ε
]
, Tnr(tr) → [tr(1 −

tr)]
−1/2Br0(tr) in distribution as a random continuous function, and Br0(t), r = 1, . . . , R, are

R mutually independent Brownian bridges. As a consequence, as n →∞, we have

sup
|tr− r

r+1
|≤ε

T 2
nr(tr) → sup

|tr− r
r+1

|≤ε

[tr(1− tr)]
−1B2

r0(tr)

in distribution.

Consequently, from (??) we have shown that

Sn ≤
R∑

r=1

sup
|tr− r

r+1
|<ε

T 2
nr(tr) + op(1) →

R∑
r=1

sup
|tr− r

r+1
|<ε

[tr(1− tr)]
−1B2

r0(tr). (10)

As ε → 0, the P. Lévy modulus of continuity of the Wiener process implies,

sup
|tr− r

r+1
|≤ε
|Br0(tr)−Br0(

r

r + 1
)| → 0

almost surely. Since ε > 0 can be chosen arbitrarily small, and[
r

r + 1

(
1− r

r + 1

)]−1

B2
r0(

r

r + 1
) ∼ χ2

1,

(??) implies

lim
n→∞

P{Sn ≤ x} ≥ P{χ2
R ≤ x}

for all x > 0.
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On the other hand, it is straightforward to show that

Sn ≥ inf
θ
{MIC(θ, n, 0)} − inf

θ
{MIC(θ, τR, R)}+ Rd log n

→ χ2
R as n →∞,

where τR = ( n
R+1

, 2n
R+1

, . . . , Rn
R+1

). Thus,

limn→∞P (Sn ≤ x) ≤ P (χ2
R ≤ x) for all x > 0.

Hence, Sn → χ2
R in distribution as n →∞.

Consider the case when θ has dimension d > 1. The proof for d = 1 is also valid

up to (??). What we need to pay attention is that Yk is a vector now. The subsequent

order comparison remains the same as the Fisher Information is positive definite matrix

by the regularity conditions. Therefore, this strategy also works for (??). Then we re-

parameterize the model so that the Fisher information is an identity matrix under the null

model, and consequently the components of Yk are un-correlated. The term T 2
nr(tr) in (??)

becomes T 2
nr(tr, 1) + T 2

nr(tr, 2) + · · · + T 2
nr(tr, d). Also Tnr(tr, 1), Tnr(tr, 2), · · · , Tnr(tr, d) are

asymptotically independent by the central limit theorem for sum of iid random vectors. The

remaining proof applies to each of the summands. Hence, we have Sn → χ2
Rd in distribution

as n →∞. This proves the conclusion of Theorem 1 under the null hypothesis.

To prove the conclusion of Theorem 1 under the alternative hypothesis H1. Let θ10, . . . , θ(R+1)0

be the true parameter values, not all equal, and θ̂ be the MLE of θ under H0. Then,

Sn ≥ 2
R+1∑
r=1

[nλr]∑
i=[nλr−1]+1

log f(Xi, θr0)− 2
n∑

i=1

log f(Xi, θ̂)

−C
R+1∑
r=1

(
λr − λr−1 −

1

R + 1

)2

log n

= 2
R+1∑
r=1

[nλr]∑
i=[nλr−1]+1

[log f(Xi, θr0)− log f(Xi, θ̂)] + O(log n).

That is, Sn is a sum of R + 1 likelihood ratio statistics. Each has sample size of order n

as it is assumed that τ1 = [nλ1], . . . , τR = [nλR] for some 0 < λ1 < . . . < λR < 1. Since

θ10, . . . , θ(R+1)0 are not all equal, θ̂ cannot converge to all of them at the same time. The

classical arguments similar to Theorem 1 in Wald (1949) implies that∑
[nλr−1]<i≤[nλr]

[log f(Xi, θr0)− log f(Xi, θ̂)] ≥ cn + op(n)

13



for some c > 0 in probability for at least one r. For other cases,

∑
[nλr−1]<i≤[nλr]

[log f(Xi, θr0)− log f(Xi, θ̂)] = Op(1).

Thus, there exist constants c > 0, such that

Sn ≥ cn + op(n) →∞

and also

inf
θ
{MIC(θ, n, 0)} − inf

θ,τ
{MIC(θ, τ , R)} = Sn −Rd log n →∞

as n →∞. Hence we complete the proof of Theorem ??.
⊕

4 The Proofs of Asymptotic Results under Alternative

As noticed in the last section, the estimated change points will be forced to distribute

evenly between 1 and n under the null model. When the alternative model is true, we might

wonder if the MIC estimator of τ is close to the true value.

In this section, we demonstrate that the MIC estimator of τ have the best convergence

rate (Theorem ??) and derive its limiting distribution (Theorem ??). The key point for

proving these results is the consistency of θ̂ upon some conditions. For this purpose, we

present that τ̂r− τr = Op[n(log n)−1] in the next lemma, where τ1, . . . , τR are the locations of

the true change points. These facts further help us to determine the best convergence rate

and limiting distribution.

Lemma 4 Assume that the Wald conditions W1-W7 and regularity conditions R1-R3 are

satisfied and there exist R change points at τ1 = [nλ1], . . . , τR = [nλR] with 0 < λ1 < . . . <

λR < 1. Then, we have for r = 1, . . . , R,

τ̂r − τr = Op[n(log n)−1]

where τ̂ = (τ̂1, . . . , τ̂R) is the MIC estimator satisfying

MIC(θ̂, τ̂ , R) = min
θ,k

MIC(θ,k, R).

14



Proof: For each r = 1, . . . , R, we define

Ar(n) = {k : 0 < k1 < . . . < kR < n, and |ks − τr| > n(log n)−1, 1 ≤ s ≤ R}.

We claim that P{τ̂ ∈ Ar(n)} → 0, as n →∞ for r = 1, . . . , R. Since 0 < λ1 < . . . < λR < 1,

the claim implies that, with probability approaching 1, exactly one of τ̂1, . . . , τ̂R is between

τr − n(log n)−1 and τr + n(log n)−1, r = 1, . . . , R. Obviously, this one must be τ̂r. That is,

τ̂r − τr = Op[n(log n)−1].

To prove the claim, we need only show that

P{MIC(k, R) > MIC(τ , R), for all k ∈ Ar(n)} → 1.

This is true if we show

MIC(θ̂
(k)

,k, R)−MIC(θ0, τ , R) > Cn(log n)−1 + op[n(log n)−1] (11)

uniformly for k ∈ Ar(n).

For any k = (k1, . . . , kR) ∈ Ar(n), let θ∗ ∈ R2(R+1)d be any a vector, and k∗ ∈

R2R+1 be the vector with the components k1, . . . , kR, τ1, . . . , τr−1, [τr − n(log n)−1], [τr +

n(log n)−1], τr+1, . . . , τR, then, by the definition of the maximum likelihood estimator,

MIC(θ̂
(k)

,k, R) − MIC(θ0, τ , R)

= 2ln(θ0, τ , R)− 2ln(θ̂
(k)

,k, R)

+C
R+1∑
r=1


[
kr − kr−1

n
− 1

R + 1

]2

−
[
τr − τr−1

n
− 1

R + 1

]2 log n

≥ 2ln(θ0, τ , R)− 2ln(θ̂∗,k∗, 2R + 1) + Op(log n), (12)

where θ̂∗ = (θ̂∗1, . . . , θ̂
∗
2R+2) is the corresponding MLE of θ∗ when there are 2R + 2 segments.

Assume that

ln(θ̂∗,k∗, 2R + 1) = T1 + . . . + TR+2, (13)

where Ts for s = 1, . . . , r−1, r+2, . . . , R+1 is the log likelihood involving Xi (τs−1 < i ≤ τs),

Tr is that involving Xi (τr−1 < i ≤ [τr − n(log n)−1]), Tr+1 is that involving Xi ([τr +

n(log n)−1] < i ≤ τr+1), and TR+2 is that involving Xi ([τr − n(log n)−1] < i ≤ [τr +

n(log n)−1]).
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Moreover, let t(1, s) < . . . < t(N(s), s) denote the elements of the set {k1, . . . , kR} ∩

{τs−1 + 1, . . . , τs}. Then, for s = 1, . . . , r − 1, r + 2, . . . , R + 1, by Lemma ??,

Ts =
N(s)+1∑

j=1

t(j,s)∑
i=t(j−1,s)+1

log f(Xi, θ̂
∗
A(j,s))

=
τs∑

i=τs−1+1

log f(Xi, θs0) + Op(log log n) (14)

where t(0, s) = τs−1, t(N(s) + 1, s) = τs, and A(j, s) =
∑s−1

i=1 N(i) + s + j. Similarly,

Tr =
[τr−n(log n)−1]∑

i=τr−1+1

log f(Xi, θr0) + Op(log log n), (15)

Tr+1 =
τr+1∑

i=[τr+n(log n)−1]+1

log f(Xi, θ(r+1)0) + Op(log log n). (16)

Also, since θr0 6= θ(r+1)0 and k ∈ Ar(n) implies that there is no any component of k between

τr − n(log n)−1 and τr + n(log n)−1, by Theorem 1 in Wald (1949),

TR+2 = max
θ

[τr+n(log n)−1]∑
i=[τr−n(log n)−1]+1

log f(Xi, θ)=̂
[τr+n(log n)−1]∑

i=[τr−n(log n)−1]+1

log f(Xi, θ̂)

≤
τr∑

i=[τr−n(log n)−1]+1

log f(Xi, θr0) +
[τr+n(log n)−1]∑

i=τr+1

log f(Xi, θ(r+1)0)

−Cn(log n)−1 + op[n(log n)−1]. (17)

Hence, by (??)-(??),

ln(θ̂∗,k∗, 2R + 1) ≤ ln(θ0, τ , R)− Cn(log n)−1 + op[n(log n)−1].

Thus we get (??) from (??) and hence the claim. This completes the proof.
⊕

Lemma 5 Assume that the Wald conditions W1-W7 are satisfied and there exist R change

points at τ1 = [nλ1], . . . , τR = [nλR] with 0 < λ1 < . . . < λR < 1. Assume also that θ̂
(k)

minimizes MIC(θ,k, R) for each k=(k1, . . . , kR) and given R. Then we have,

θ̂
(k)
→ θ0

in probability uniformly for |kr − τr| < n(log n)−1 as n → ∞, where θ0 = (θ10, . . . , θ(R+1)0)

is the true value of θ under H1.
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Proof: Define, for θ̃ = (θ̃1, . . . , θ̃R) 6= θ0 and ρ > 0,

N3 = N3(θ̃) = {θ : (θ1 − θ̃1)
2 + . . . + (θR+1 − θ̃R+1)

2 < ρ2}

and

∆̄ = {k : |kr − τr| < n(log n)−1, r = 1, . . . , R}.

The lemma is equivalent to that when ρ is small enough,

sup
k∈∆̄

sup
θ∈N3

[ln(θ,k, R)− ln(θ0,k, R)] < 0 (18)

with probability approaching 1.

Note that, for k ∈ ∆̄,

ln(θ,k, R)− ln(θ0,k, R) =
R+1∑
r=1

kr∑
i=kr−1+1

[log f(Xi, θr)− log f(Xi, θr0)]

=
R+1∑
r=1

τr∑
i=τr−1+1

[log f(Xi, θr)− log f(Xi, θr0)] + op(n).

Hence similar to the proof in Lemma 2, we have

sup
k∈∆̄

sup
θ∈N3

[ln(θ,k, R)− ln(θ0,k, R)] < 0

when n is large enough. This completes the proof of the lemma.
⊕

The lemma indicates that we need only focus on a small neighborhood of θ0 to study the

asymptotic properties of MIC when k is in ∆̄. Now we are ready to prove Theorems 2 and

3.

Proof of Theorem ??:

According to Lemma ??, the convergence rate of τ̂ is at least Op[n(log n)−1]. We now

refine the rate based on the initial result.

For any fixed ε > 0, we want to show that there exists M > 0, such that

P{|τ̂r − τr| > M} < ε

for n large enough. For this purpose, we define

B(n) = {k : 0 < k1 < . . . < kR < n, |ks − τs| < n(log n)−1, s = 1, . . . , R}
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and

Br(n, M) = {k ∈ B(n) : kr − τr < −M}.

By Lemma ??, P{τ̂ ∈ B(n)} > 1− ε
4

for n large enough. Hypothetically, if

P{τ̂ ∈ Br(n,M)} <
ε

4
, (19)

then for n large enough,

P{τ̂r − τr < −M} ≤ P{τ̂ 6∈ B(n)}+ P{τ̂ ∈ Br(n, M)}

<
ε

4
+

ε

4
=

ε

2
.

Similarly, P{τ̂r − τr > M} < ε
2

and hence P{|τ̂r − τr| > M} < ε.

With the above conclusion, the theorem amounts to show that there exists an M such

that (??) holds. For given M and every k ∈ Br(n, M), define

l = (k1, . . . , kr−1, τr, kr+1, . . . , kR)

which belongs to B(n)−Br(n,M). To prove (??), we need only show that

MIC(θ̂
(k)

,k, R)−MIC(θ̂
(l)

, l, R) > 0

uniformly for k ∈ Br(n, M) with probability approaching 1. Note that

MIC(θ̂
(k)

,k, R)−MIC(θ̂
(l)

, l, R)

= 2[ln(θ̂
(l)

, l, R)− ln(θ̂
(k)

,k, R)]

+C

(kr+1 − kr

n
− 1

R + 1

)2

−
(

kr+1 − τr

n
− 1

R + 1

)2
 log n

+C

(kr − kr−1

n
− 1

R + 1

)2

−
(

τr − kr−1

n
− 1

R + 1

)2
 log n.

Since M < τr − kr < n(log n)−1, it is obvious that(kr+1 − kr

n
− 1

R + 1

)2

−
(

kr+1 − τr

n
− 1

R + 1

)2
 log n = Op(1)

and (kr − kr−1

n
− 1

R + 1

)2

−
(

τr − kr−1

n
− 1

R + 1

)2
 log n = Op(1).

18



At the same time,

2[ln(θ̂
(l)

, l, R)− ln(θ̂
(k)

,k, R)] = 2
kr∑

i=kr−1+1

[log f(Xi, θ̂
(l)
r )− log f(Xi, θ̂

(k)
r )]

+2
kr+1∑

i=τr+1

[log f(Xi, θ̂
(l)
r+1)− log f(Xi, θ̂

(k)
r+1)]

+2
τr∑

i=kr+1

[log f(Xi, θ̂
(l)
r )− log f(Xi, θ̂

(k)
r+1)]

=̂ Hk1 + Hk2 + Hk3.

By Lemma ??, both θ̂(l)
r and θ̂(k)

r converge to θr0, we may write

Hk1 = 2
kr∑

i=kr−1+1

[log f(Xi, θ̂
(l)
r )− log f(Xi, θr0)]

−2
kr∑

i=kr−1+1

[log f(Xi, θ̂
(k)
r )− log f(Xi, θr0)],

which is the difference between two likelihood ratio statistics. Hence Hk1 = Op(1). Similarly,

Hk2 = Op(1). Now the focus is on Hk3, and we write it as

Hk3 = 2
τr∑

i=kr+1

[log f(Xi, θ̂
(l)
r )− log f(Xi, θr0)]

+2
τr∑

i=kr+1

[log f(Xi, θr0)− log f(Xi, θ̂
(k)
r+1)].

By Lemma ??, we know that θ̂(l)
r → θr0, θ̂

(k)
r+1 → θ(r+1)0. And also note that θr0 6= θ(r+1)0,

then we choose M large enough such that the second term in the right hand side of Hk3 is

larger than CM +M · op(1) by Theorem 1 in Wald (1949), and the first term is Op(1). That

is,

Hk3 ≥ CM + M · op(1).

Hence, we have shown that, with probability approaching 1,

min
k∈Br(n,M)

[MIC(θ̂
(k)

,k, R)−MIC(θ̂
(l)

, l, R)] > CM + M · op(1) > 0,

which implies (??). This completes the proof.
⊕

Proof of Theorem ??:
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The Theorem is equivalent to that, for any given M > 0,

MIC(τ + k)−MIC(τ ) → 2Wk (20)

in probability uniformly for all k = (k1, . . . , kR) such that |kr| ≤ M for r = 1, . . . , R.

Denote k0 = kR+1 = 0 for convenience. For all −M ≤ kr ≤ 0, we have

MIC(τ + k)−MIC(τ )

= 2[ln(θ̂
(τ )

, τ , R)− ln(θ̂
(τ+k)

, τ + k, R)] + op(1), (21)

and

2[ln(θ̂
(τ )

, τ , R)− ln(θ̂
(τ+k)

, τ + k, R)]

= 2
R∑

r=1

τr∑
i=τr+kr+1

[log f(Xi, θ̂
(τ )
r )− log f(Xi, θ̂

(τ+k)
(r+1) )]

+2
R+1∑
r=1

τr+kr∑
i=τr−1+1

[log f(Xi, θ̂
(τ )
r )− log f(Xi, θ̂

(τ+k)
r )]. (22)

Since θ̂(τ )
r → θr0, θ̂

(τ+k)
(r+1) → θ(r+1)0 by Lemma ?? and |kr| ≤ M , we have

R∑
r=1

τr∑
i=τr+kr+1

[log f(Xi, θ̂
(τ )
r )− log f(Xi, θ̂

(τ+k)
(r+1) )] = Wk + op(1). (23)

For the second term in (??), we can easily prove under regularity conditions and Lemma ??,

2
R+1∑
r=1

τr+kr∑
i=τr−1+1

[log f(Xi, θ̂
(τ )
r )− log f(Xi, θ̂

(τ+k)
r )] = op(1). (24)

Hence we get (??) from (??) to (??). The proof is similar when some k′rs are such that

−M ≤ kr ≤ 0 and others such that 0 ≤ kr ≤ M . Thus we complete the proof.
⊕

5 Simulation Study: The Power Comparison between

MIC and Generalized Likelihood Ratio Test

In this section, we conduct a simulation to investigate the finite sample properties of the

MIC method applied to two change points problems. We further compare the properties of

the MIC and the BIC methods for a couple of penalty constants.
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Simulation experiments are done based on four models: normal model with both changes

in the mean, normal model with both changes in the variance, exponential model with both

changes in the mean, and normal model with both changes in the mean and variance.

The sample sizes of observations are chosen to be n = 30, n = 60, n = 90 and n = 120.

Under the alternative model we assume that there are two change points in the sequence and

place the two change points at n/6 and 5n/6, n/3 and 2n/3, n/2 and 3n/4, and n/2 and 2n/3,

respectively. The changes in the normal model are a 0.5 difference in the mean parameter

and a factor of 2 in the variance parameter, and in exponential model, the mean parameter

change is a factor of
√

2. We choose the nominal levels α as 0.05 and 0.10 respectively.

The simulation was repeated 5000 times for each combinations of sample size, location of

changes, and so on. To examine the effect of constant C, our simulation was done over a

wide range of C including but no limited to C = 0.0001, 1, 10, 100, and 1000.

Based on our simulation results, when C < 1, both the MIC and BIC methods have very

similar power properties. However, the χ2 distribution is a poor approximation to that of

Sn. When C ≥ 100, the χ2 approximation is good and the power of the MIC is fine, but the

estimators of the change points are severely biased toward n/3 and 2n/3 due to the large

penalty. Hence we decide to report only the results when C = 1 and 10 in the paper. In

Tables ?? and ??, we list the powers for both the MIC (C = 1 and 10) and BIC methods

under the normal levels 0.05 and 0.10, respectively.

Based on the results in Tables ?? and ??, we have the following observations. First, both

the MIC and the BIC are consistent, and have higher convergence rates compared to the

corresponding methods in the single change point case (see Chen, Gupta and Pan, 2006).

Second, when the sample size increases, the powers increase significantly for both methods.

Third, the MIC method has high powers when C = 10 than ones for the method if C = 1.

Furthermore, there are no any significant differences between the two methods when the two

true change points are located at the beginning and the end of the sequence. In other cases,

the powers of the MIC are always higher than the powers of BIC for both C = 1 or 10. We

consider 2% as significant difference with 5000 repetition.
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6 Appendix: Conditions

In this appendix, we present the conditions required in the proof of asymptotic results

presented in Sections 2 and 3.

Suppose θ̂τ minimizes MIC(θ, τ , R) for given R and τ , then one basic requirement

for the solution of change point problems is to estimate the parameters consistently. The

modified information criterion is based on the likelihood function, hence it is the minimal

requirement to guarantee the consistence of maximum likelihood estimators under i.i.d.

observations, which is specified in Wald (1949). Consequently, the following conditions look

similar to the conditions there.

W1. The distribution of X1 is either discrete for all θ or is absolutely continuous for all θ.

W2. For sufficiently small ρ and sufficiently large r, the expected values E[log f(X, θ, ρ)]2 <

∞ and E[log ϕ(X, r)]2 < ∞ for all θ, where

f(x, θ, ρ) = sup
‖θ′−θ‖≤ρ

f(x, θ′); ϕ(x, r) = sup
‖θ′−θ0‖>r

f(x, θ′).

W3. The density function f(x, θ) is continuous in θ for every x.

W4. If θ1 6= θ2, then F (x, θ1) 6= F (x, θ2) for at least one x, where F (x, θ) is the cumulative

distribution function corresponding to the density function f(x, θ).

W5. lim‖θ‖→∞ f(x, θ) = 0 for all x.

W6. The parameter space Θ is a closed subset of the d-dimensional Cartesian space.

W7. f(x, θ, ρ) is a measurable function of x for any fixed θ and ρ.

We will understand the notation E as expectation under the null distribution which has

parameter value θ0 unless otherwise specified.

Furthermore, we require the corresponding regularity conditions (Serfling, 1980) since the

limiting distribution of Sn is built on the asymptotic normality of the parameter estimators.
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R1. For each θ ∈ Θ, the derivatives

∂ log f(x, θ)

∂θ
,

∂2 log f(x, θ)

∂θ2
,

∂3 log f(x, θ)

∂θ3

exist for all x.

R2. For each θ0 ∈ Θ, there exist functions g(x) and H(x) (possibly depending on θ0) such

that for θ in a neighborhood N(θ0) the relations

∣∣∣∣∂f(x, θ)
∂θ

∣∣∣∣ ≤ g(x) ,

∣∣∣∣∣∂2f(x, θ)
∂θ2

∣∣∣∣∣ ≤ g(x) ,

∣∣∣∣∣∂2 log f(x, θ)
∂θ2

∣∣∣∣∣
2

≤ H(x) ,

∣∣∣∣∣∂3 log f(x, θ)
∂θ3

∣∣∣∣∣ ≤ H(x)

hold for all x, and∫
g(x)dx < ∞, Eθ[H(X)] < ∞ for θ ∈ N(θ0).

R3. For each θ ∈ Θ,

0 < Eθ


(

∂ log f(X, θ)

∂θ

)2
 , Eθ


∣∣∣∣∣∂ log f(X, θ)

∂θ

∣∣∣∣∣
3
 < ∞.

When θ is a vector, the above conditions are assumed true for all components.
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E. Gombay and L. Horváth, An application of U-statistics to change-point analysis, Acta.
Sci. Math. 60 (1995) 345-357.

C. Inclán and G. C. Tiao, Use of sums of squares for retrospective detection of changes of
variance, J. Amer. Statist. Assoc. 89 (1994) 913-923.

T-L. Lai, H. Liu and H. Xing, Autoregressive models with piecewise constant volatility and
regression parameters, Statistica Sinica 15 (2005), 279-301.

M. Lavielle , Detection of multiple changes in a sequence of dependent variables, Stochastic
Processes and their applications 83 (1999) 79-102.

C.-B. Lee, Nonparametric multiple change-point estimators, Statistics & Probability Letters
27 (1996) 295-304.

C.-B. Lee, Bayesion estimation of the number of change points. Statistica Sinica 8 (1998)
923-939.

Y. Ninomiya, Information criterion for Gaussian change-point model, Stat & Prob. Letters
72 (2005) 237-247.

E. S. Page, Continuous inspection schemes, Biometrika, 41 (1954) 100-116.

E. S. Page, A test for a change in a parameter occurring at an unknown point, Biometrika
42 (1955) 523-526.

G. Schwarz, Estimating the dimension of a model, Ann. Statist. 6 (1978) 461-464.

P. K. Sen and J. M. Singer, Large sample methods in statistics: An introduction with
applications, Chapman and Hall, New York, 1993.

D. Siegmund, Model selection in irregular problems: Applications to mapping quantitative
trait loci, Biometrika 91 (2004) 785-800.

R. J. Serfling, Approximation theorems of mathematical statistics, Wiley, New York, 1980.

A. Wald, Note on the consistency of the maximum likelihood estimate, Ann. Math. Statist.
20 (1949) 595-601.

Y-C. Yao, Estimation of a noisy discrete-time step function: Bayes and Empirical Bayes
approaches, Ann. Statist. 12 (1984) 1434-1447.

Y-C. Yao, Estimating the number of change-point via Schwarz’ criterion, Statist. Prob.
Letters 6 (1988) 181-189.

Y-C. Yao and S. T. Au, Least-squares estimation of a step function, Sankhya 51 (1989)
Series A 370-381.

24



Table 1: Power Comparison between MIC and BIC (α = 0.05)

τ1 n/6 n/3 n/2 n/2 n/6 n/3 n/2 n/2

τ2 5n/6 2n/3 3n/4 2n/3 5n/6 2n/3 3n/4 2n/3

C 1.0 10.0 1.0 10.0 1.0 10.0 1.0 10.0 1.0 10.0 1.0 10.0 1.0 10.0 1.0 10.0

n=30 n=60

Normal Model: change 0.5 in the mean

MIC 25.9 25.0 32.2 38.3 22.8 25.1 20.7 23.6 50.9 52.1 58.6 70.1 42.9 51.1 41.9 49.5

BIC 26.0 31.2 22.4 20.3 50.7 55.6 41.2 40.1

Normal Model: change 2 in the variance

MIC 12.1 12.5 26.3 29.9 32.0 35.6 35.8 40.1 21.9 22.3 51.0 58.5 59.1 64.2 66.9 73.5

BIC 12.2 25.7 31.2 35.3 22.1 50.1 57.7 65.4

Exponential Model: change
√

2 in the mean

MIC 08.2 08.5 14.9 16.5 15.8 18.2 18.5 21.1 14.2 14.9 30.0 35.2 33.5 37.8 39.4 44.2

BIC 08.3 14.8 15.6 18.4 14.2 28.7 32.3 37.8

Normal Model: changes 0.5 and 2 in the mean and variance

MIC 13.2 14.4 27.1 32.0 32.5 38.1 37.2 43.5 23.6 23.5 55.4 65.1 64.7 72.4 74.6 81.8

BIC 13.3 26.9 32.5 36.8 23.0 53.9 63.2 73.1

n=90 n=120

Normal Model: change 0.5 in the mean

MIC 72.5 73.2 81.1 88.9 62.8 70.5 59.6 67.8 82.8 84.8 90.1 95.8 75.8 83.8 73.1 80.9

BIC 71.3 78.7 59.8 56.8 82.6 88.5 73.2 70.7

Normal Model: change 2 in the variance

MIC 33.9 36.1 73.2 81.5 80.0 85.3 85.2 91.0 44.6 46.8 87.0 92.2 89.8 93.3 94.4 96.4

BIC 34.1 71.8 78.3 84.2 45.2 86.1 89.1 93.8

Exponential Model: change
√

2 in the mean

MIC 17.9 17.4 42.5 47.9 45.3 51.1 54.0 59.9 24.2 24.9 56.1 63.1 60.9 66.4 69.0 75.3

BIC 17.9 41.7 44.3 52.5 24.9 54.8 59.3 67.2

Normal Model: changes 0.5 and 2 in the mean and variance

MIC 34.7 36.4 79.2 86.8 86.5 91.0 90.9 94.8 49.7 52.8 92.6 96.9 95.3 97.6 98.0 99.3

BIC 34.5 77.6 85.3 89.9 48.4 91.3 94.5 97.6
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Table 2: Power Comparison between MIC and BIC (α = 0.10)

τ1 n/6 n/3 n/2 n/2 n/6 n/3 n/2 n/2

τ2 5n/6 2n/3 3n/4 2n/3 5n/6 2n/3 3n/4 2n/3

C 1.0 10.0 1.0 10.0 1.0 10.0 1.0 10.0 1.0 10.0 1.0 10.0 1.0 10.0 1.0 10.0

n=30 n=60

Normal Model: change 0.5 in the mean

MIC 36.9 37.1 44.4 51.3 33.1 36.9 30.3 34.7 63.0 64.1 69.4 79.8 55.3 62.5 53.8 61.5

BIC 36.4 42.2 31.7 28.9 62.4 67.2 53.7 52.1

Normal Model: change 2 in the variance

MIC 19.7 19.9 36.9 40.8 43.2 46.7 47.3 51.9 32.6 33.7 64.3 71.6 70.1 75.6 77.7 83.0

BIC 19.9 36.2 42.3 46.3 33.1 62.8 69.0 76.3

Exponential Model: change
√

2 in the mean

MIC 15.3 15.3 25.5 26.5 26.6 29.2 28.6 30.5 23.5 22.6 41.4 45.8 44.2 48.9 50.9 55.9

BIC 15.4 25.1 26.3 28.0 23.3 40.0 42.7 49.0

Normal Model: changes 0.5 and 2 in the mean and variance

MIC 22.6 23.7 39.6 43.9 46.5 51.7 51.8 57.4 33.9 35.5 68.1 76.2 75.7 81.6 83.2 88.9

BIC 22.7 39.3 46.3 51.2 33.8 66.3 74.0 81.8

n=90 n=120

Normal Model: change 0.5 in the mean

MIC 80.2 81.2 87.1 93.7 72.4 79.5 69.0 77.2 89.7 90.2 94.3 97.8 83.9 90.0 81.7 88.1

BIC 79.1 85.1 70.5 66.6 89.2 93.0 82.2 79.9

Normal Model: change 2 in the variance

MIC 46.3 47.9 82.4 88.7 87.4 90.7 91.4 94.7 58.4 61.2 92.6 96.1 94.5 96.4 97.2 98.5

BIC 46.2 81.6 86.3 90.4 58.8 91.7 93.5 96.7

Exponential Model: change
√

2 in the mean

MIC 27.8 28.6 55.2 61.7 58.3 64.7 65.4 71.7 34.7 36.5 68.2 74.4 71.2 77.0 78.4 83.7

BIC 27.6 53.3 56.4 63.4 34.7 66.2 69.5 76.4

Normal Model: changes 0.5 and 2 in the mean and variance

MIC 47.0 48.8 87.7 93.1 91.9 94.9 94.9 97.1 62.0 65.3 96.0 98.5 97.4 98.9 99.1 99.7

BIC 46.8 86.7 90.9 94.2 61.4 95.5 96.8 98.8
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