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Abstract

Testing for homogeneity in finite mixture models has been investigated by many authors. The

asymptotic null distribution of the likelihood ratio test (LRT) is very complex and difficult to use

in practice. In this paper we propose a modified LRT for homogeneity in finite mixture models

with a general parametric kernel distribution family. The modified LRT has a χ2-type null limiting

distribution and is asymptotically most powerful under local alternatives. Simulations show that

it performs better than competing tests. They also reveal that the limiting distribution with some

adjustment can satisfactorily approximate the quantiles of the test statistic, even for moderate

sample sizes.
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1 Introduction

Finite mixture models are often used to help determine whether data come from a ho-

mogeneous or heterogeneous population. Let {f(x, θ) : θ ∈ Θ} be a parametric family

of probability density functions (pdf). We observe a random sample X1, . . . , Xn from the

mixture pdf

(1− γ)f(x, θ1) + γf(x, θ2), (1)

where θ1 ≤ θ2 ∈ Θ and 0 ≤ γ ≤ 1. We wish to test the hypothesis

H0 : θ1 = θ2, (or equivalently γ = 0, or γ = 1),

that is to test whether the observations come from a homogeneous population f(x, θ). The

pdf f(x, θ) is called the kernel function. The mixture pdf (??) can also be written as
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∫
f(x, θ)dG(θ), where

G(θ) = (1− γ)I(θ1 ≤ θ) + γI(θ2 ≤ θ) (2)

is called the mixing distribution.

Likelihood-based methods play a central role in parametric testing problems, and among

these, the likelihood ratio test (LRT) is often preferred. The LRT has a simple interpreta-

tion, is invariant under re-parameterization and, under standard regularity conditions, has

a simple and elegant asymptotic theory (Wilks, 1938). However, the regularity conditions

required are not satisfied in the mixture problem. Chernoff and Lander (1995), Ghosh and

Sen (1985) and some other authors find that the asymptotic distribution of the LRT in-

volves the supremum of a Gaussian process. Chen and Chen (1998a,b) show that when

f(x, θ0) is the true null distribution, the asymptotic distribution of the LRT for homogeneity

is that of {supθ∈Θ W
+(θ)}2, where W (θ) is a Gaussian process with mean 0, variance 1 and

autocorrelation function

ρ(θ, θ′) =
cov{Zi(θ)− h(θ)Yi(θ0), Zi(θ

′)− h(θ′)Yi(θ0)}√
var{Zi(θ)− h(θ)Yi(θ0)}var{Zi(θ′)− h(θ′)Yi(θ0)}

. (3)

Here

Yi(θ) = Yi(θ, θ0) =
f(Xi, θ)− f(Xi, θ0)

(θ − θ0)f(Xi, θ0)
, θ 6= θ0; Yi(θ0) = Yi(θ0, θ0) =

f ′(Xi, θ0)

f(Xi, θ0)
.

Zi(θ) = Zi(θ, θ0) =
Yi(θ)− Yi(θ0)

θ − θ0

, θ 6= θ0; Zi(θ0) = Zi(θ0, θ0) =
dYi(θ, θ0)

dθ
|θ=θ0 ,

and h(θ) = EYi(θ0)Zi(θ)/EY
2
i (θ0).

This result illustrates that, as a consequence of the breakdown of the usual regularity

conditions, the LRT has unusual asymptotic properties. The main difficulties in applying

these asymptotic results are that:

1. The asymptotic distribution under H0 depends on the true (unknown) value θ0 of θ.

2. The asymptotic null distribution depends on the parametric family. For instance, the

autocorrelation function (??) differs for normal and Poisson kernels.

3. From a more practical point of view, the asymptotic LRT loses its appeal since the

supremum of a Gaussian process is very complicated, compared to the usual χ2 dis-

tribution. As a result, simulation-based tests (see e.g., McLachlan 1987 and Schork

1992) that circumvent the asymptotic theory are often used.
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In this paper we propose a modified LRT which retains the power of the LRT and enjoys an

elegant asymptotic theory as well.

The following is a brief review of some key references. The books by Titterington, Smith

and Makov (1985), McLachlan and Basford (1988) and Lindsay (1995) provide extensive

discussion about the background of finite mixture models. Hartigan (1985) gave an important

insight into the irregularity problems of finite mixture models. He proved that the LRT

statistic becomes unbounded in probability when Θ is unbounded and the sample size is

large. Neyman and Scott (1966) studied the use of C(α) tests against the alternative of

any mixture. Lindsay(1989) proposed moment-based testing procedures. Cheng and Traylor

(1995) discussed irregular models which include finite mixture models. Ghosh and Sen

(1985), Bickel and Chernoff (1993), Chernoff and Lander (1995), Lemdani and Pons (1999),

Dacunha-Castelle and Gassiat (1999) and Chen and Chen (1998a) studied the asymptotic

distributions of the LRT in mixture models. This paper extends work in Chen (1998) on

multinomial mixture models.

The paper is organized as follows. Section 2 describes the modified LRT and presents its

asymptotic theory. It is shown that the asymptotic null distribution is a mixture of central

χ2
1 and χ2

0 with equal weights and that the modified LRT is asymptotically most powerful

under local alternatives. To study the testing power for small or moderate sample sizes, three

competing methods, the C(α) test, a bootstrap test and the method of Davies (1977, 1987),

are considered. Section 3 gives a brief summary of the three competing methods and Section

4 presents simulation results. It is demonstrated that the modified LRT is slightly better

than C(α) when an alternative model is close to the null model (i.e., the Kullback-Leibler

information is small), but becomes much more powerful than C(α) as the Kullback-Leibler

information increases. The modified LRT performs better, both in terms of size and power,

than the bootstrap method discussed in McLachlan (1987). Davies’ test for the current

problem is also shown to be less appealing than the modified LRT. The simulations also

reveal that the limiting distribution satisfactorily approximates the quantiles of the test

statistic even for moderate sample sizes.
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2 The modified LRT

Complications of the asymptotic null distribution of the ordinary LRT have two sources:

(a) the null hypothesis lies on the boundary of the parameter space (γ = 0) and (b) the

parameters γ, θ1 and θ2 are not identifiable under the null model. For example, the two

statements γ = 0 and θ1 = θ2 are equivalent. The complications are expected to disappear

if we can overcome the boundary problem and the non-identifiability. The test based on the

following modified log-likelihood function ln(γ, θ1, θ2) provides a satisfactory solution. For

0 < γ < 1, θ1, θ2 ∈ Θ with θ1 ≤ θ2, define

ln(γ, θ1, θ2) =
n∑
i=1

log{(1− γ)f(Xi, θ1) + γf(Xi, θ2)}+ C log{4γ(1− γ)}, (4)

where C > 0 is constant and used to control the level of modification. Even though γ = 0

and 1 are not in the domain of ln(γ, θ1, θ2), the corresponding distributions are not excluded

since they are covered by θ1 = θ2. The modified likelihood function ln(γ, θ, θ) is often called

a penalized likelihood function, referring to the penalty when γ is close to 0 or 1.

The Associate Editor has noted that the modified likelihood function can be motivated

by a Bayesian procedure or by incorporating a conceptual auxiliary experiment. In the

Bayesian motivation, let (γ, θ1, θ2) have prior density proportional to {γ(1 − γ)}C so that

exp{ln(γ, θ1, θ2)} is proportional to the posterior density. Alternatively, one can think of (??)

as the likelihood arising from the mixture experiment along with an auxiliary experiment.

In the auxiliary experiment, an additional 2C observations are taken and we observe that

exactly C arise from the smaller and C from the larger value of θ. This interpretation

enables the construction of a simple EM algorithm for maximizing (??). Specifically, the

E-step results in the imputed log-likelihood

n∑
i=1

[w1i log f(xi, θ1) + w2i log f(xi, θ2)] + (
n∑
i=1

w1i + C) log{2(1− γ)}+ (
n∑
i=1

w2i + C) log(2γ)

where

w1i =
(1− γ)f(xi, θ1)

(1− γ)f(xi, θ1) + γf(xi, θ2)

and w2i = 1 − w1i. For the case of a normal kernel with known variance, this leads to the

self-consistency equations

θ̂j =
n∑
i=1

ŵjixi/
n∑
i=1

ŵji, j = 1, 2
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and γ̂ = (
∑n
i=1 ŵ2i + C)/(n + 2C). Under the null hypothesis, θ1 = θ2 = θ and θ̂ is the

maximum likelihood estimator from the kernel model. In this case, γ̂ = 1/2, so the penalty

term is zero. The penalty term affects only the maximized likelihood under the alternative.

Let (γ̂, θ̂1, θ̂2) maximize ln(γ, θ1, θ2) over the full parameter space, and let θ̂ maximize

the null modified likelihood function ln(1/2, θ, θ), θ ∈ Θ. The modified LRT rejects the null

hypothesis H0 for large values of

Mn = 2{ln(γ̂, θ̂1, θ̂2)− ln(1/2, θ̂, θ̂)}. (5)

Note that the additional term C log{4γ(1 − γ)} in (??) is non-positive. Using methods

similar to Chen (1998), we can show that the estimate γ̂ satisfies 0 < γ̂ < 1, and θ̂1 and θ̂2 are

consistent under the null hypothesis. Regularity conditions 1-5, on the kernel distribution

f(x, θ) are given with some discussion in the Appendix. We have the following asymptotic

result.

Theorem 1 If Conditions 1-5 hold, the asymptotic null distribution of the modified LRT

statistic Mn is the mixture of χ2
1 and χ2

0 with equal weights, that is

1

2
χ2

1 +
1

2
χ2

0, (6)

where χ2
0 is a degenerate distribution with all its mass at 0.

An outline of the proof of Theorem ?? is given in the Appendix. For a detailed proof,

see Chen, Chen and Kalbfleisch (2000).

There are two issues related to the applications of Theorem ??. The first concerns

the choice of C in the modified likelihood function (??). The second concerns possible

improvements on the approximation 0.5χ2
1 +0.5χ2

0 when the sample size is small or moderate.

Choice of C. Consider the finite normal mixture model and assume that Θ is unbounded.

Bickel and Chernoff (1993) show that when the sample size is large, the maximum likelihood

estimator of the location parameter does not often take values beyond {log(n)/2}1/2 and

consequently, the rate of divergence of the LRT is log log n. This rate would also hold for a

wide range of kernel functions. From this result, an appropriate choice of C is C = logM ,

when the parameter θ in the kernel density is restricted to [−M,M ]. From a number of

simulation studies, we found that the method is not sensitive to the values of C and the

choice of C = logM works well.
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Adjustment to (??). Since the proportion 1/2 of χ2
0 in (??) is the limit of the probability

pn = PH0(Mn ≤ 0), (1 − pn)χ2
1 + pnχ

2
0 should provide a more accurate approximation.

In most circumstances, pn can be easily evaluated. For example, if f(x, θ) is the normal

density, Mn ≤ 0 if and only if the sample variance is smaller than nσ2
0/(n−1), implying that

pn = 0.547 when n = 100 and pn = 0.533 when n = 200.

We next consider the distribution of Mn under a local alternative: for any 0 < γ0 < 1

and τ > 0, let

Hn
a : γ = γ0, θ1 = θ0 − n−1/4τ1 θ2 = θ0 + n−1/4τ2,

where τ1 = τ{γ0/(1− γ0)}1/2 and τ2 = τ{(1− γ0)/γ0}1/2. The local alternative is contiguous

to the null distribution f(x, θ0); see LeCam and Yang (1990) or Bickel, et al. (1993, page

17). From LeCam’s contiguity theory, the limiting distribution of Mn under Hn
a can be

determined. A sketch of the proof of the following theorem is given in the Appendix.

Theorem 2 Under the alternatives Hn
a , the limiting distribution of Mn is that of {(Z +

σ12)+}2, where Z is a standard normal random variable and σ12 = τ 2{EW 2
1 }1/2 where W1 =

Z1(θ0)− h(θ0)Y1(θ0) and the expectation is with respect to the pdf f(x, θ0).

It can be shown that σ12 = τ 2{EW 2
1 }1/2 > 0 and that the modified LRT is locally

unbiased. Furthermore, it is clear that the ordinary LRT for testing f(x, θ) versus Hn
a

has the same limiting distribution as the modified LRT. Thus, the modified LRT is locally

(asymptotically) optimal for this class of alternatives.

To conclude this section, we remark that the modified LRT approach can be extended

to the finite mixture model with k mixture components: γ1f(x, θ1) + · · ·+ γkf(x, θk) where

θ1 ≤ · · · ≤ θk and
∑
γi = 1. In this case, the penalty term is C

∑k
i=1 log(2γi). The

asymptotic null distribution of this new modified LRT would be (??), the same as before.

The power of the test would depend mainly on the Kullback-Leibler information associated

with the alternative hypothesis. If the true mixture model has three components say, the

modified LRT has lower power than that for a two-component alternative (with the same

Kullback-Leibler information). This difference in power is due to the larger penalty in the

three-component case, but this effect is negligible, compared to the effect of the Kullback-

Leibler information.
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3 Competing methods

To study the power of the modified LRT in samples of moderate size, consider three com-

peting methods: Neyman and Scott’s C(α) test; a bootstrap test; and Davies’ test.

Neyman and Scott’s C(α) test is designed to test homogeneity against general mixture

alternatives (Neyman and Scott, 1966, and Lindsay, 1995). The C(α) test reduces to a test

for over-dispersion when the kernel distribution belongs to a regular exponential family. If

the kernel distribution is normal with variance σ2, the C(α) test is based on the ratio of the

sample variance to σ2. If the kernel distribution is Poisson, the test is based on the ratio of

the sample variance to the sample mean. It is known that the C(α) test is also locally most

powerful.

McLachlan (1987) suggested a bootstrap method to evaluate the p-value of the LRT for

normal mixture models. This method involves generating a parametric bootstrap sample

from the null model and comparing the observed LRT statistics with the 95th percentile of

the bootstrap distribution.

Davies (1977, 1987) proposed a method which can be applied to the test of mixture

models when one of the mixture components is completely known. For example, the method

is applicable to H0 : θ1 = θ2 = 0 versus H1 : θ1 = 0, θ2 6= 0 and γ > 0. In this case, the

likelihood function (with θ replacing θ2) is given by

ln(θ, γ) =
n∑
i=1

log[1 + γ{exp(θXi −
1

2
θ2)− 1}].

Davies suggested using the test statistic supθ∈Θ Zn(θ) where Zn(θ) is the standardized score

at γ = 0 with θ treated as known and defined as follows:

Zn(θ) = [n{exp(θ2)− 1}]−1/2
n∑
i=1

{exp(θXi −
1

2
θ2)− 1}.

It can be seen that Zn(θ) converges to a Gaussian process, say S(θ). Since the quantiles

of supθ∈Θ S(θ) are intractable, Davies (1987) suggested approximating the p-value with

Φ(−Q) + V exp(−1

2
Q2)/

√
8π,

where Q = supθ∈Θ Zn(θ) and V =
∫

Θ |S ′(θ)|dθ. The value of V can be approximated with

the total variation of Zn(θ).

The modified LRT to the models with one component completely known can be applied

by defining Mn = 2[supΘ ln(θ, γ) + C log(2γ)]. It can be seen that Mn → χ2
1 in distribution.
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4 Simulation

A simulation experiment was conducted with normal and Poisson kernels. The null dis-

tribution in the normal case is N(0, 1) and in the Poisson case, the null distribution has

a mean of 5. Eight alternative models were selected as follows: Four from a normal mix-

ture, each of which has a mixing distribution with mean (1 − γ)θ1 + γθ2 = 0 and variance

(1− γ)θ2
1 + γθ2

2 = 1/4; and four from a Poisson mixture, each of which has a mixing distri-

bution with mean (1− γ)θ1 + γθ2 = 5 and variance (1− γ)(θ1 − 5)2 + γ(θ2 − 5)2 = 1. The

choice of the null mean has no impact on the power, but the variance does. The four normal

and four Poisson mixtures are identified by γ = 0.5, 0.75, 0.9 and 0.95, respectively. These

alternative models together with their Kullback-Leibler information are listed in Table 1.

For each simulation, except those involving Davies’ method, three significance levels

10%, 5% and 1%, and two sample sizes, n = 64 and n = 100 were considered. As mentioned

in Section 2, we chose C = logM in the modified LRT. In the normal mixture, with the

pdf (1 − γ)φ(x − θ1) + γφ(x − θ2), we assumed that θi ∈ [−10, 10], i = 1, 2 and hence

C = log(10) = 2.303. In the Poisson mixture, (1− γ)θx1 exp{−θ1}/x! + γθx2 exp{−θ2}/x!, we

assumed that θi ∈ [0, 50], i = 1, 2 and C = log(50) = 3.912.

For the two mixture models considered, the C(α) test measures over-dispersion. There-

fore, the test statistic is the sample variance S2
n for the normal mixture, and the ratio S2

n/X̄n

of the sample variance to the sample mean for the Poisson mixture, respectively. The boot-

strap method was applied to normal mixture models with 200 bootstrap samples and 2,000

repetitions.

Davies’ method was applied to normal mixture models (with θ1 assumed known) in a

separate simulation.

To conduct a fair and meaningful power comparison, we should ensure comparable finite

sample size significance levels between various methods. For each nominal significance level,

the critical value and the null rejection level were obtained by using 10,000 Monte Carlo

trials for the modified LRT and the C(α) test, and 2,000 Monte Carlo trials for the bootstrap

method. The simulated results are quite close to the values given by the asymptotic theory.

To save space, only null rejection rates are reported in Tables 2 and 3.

The simulation results for power comparison under normal mixture models are reported in

Table 2. We see that when the Kullback-Leibler information is small, so that the alternatives
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are near the null, the modified LRT and the C(α) test have comparable power, but the

bootstrap method does relatively poorly. When the Kullback-Leibler information is large,

however, the modified LRT is clearly preferable to the C(α) test and comparable with the

bootstrap test.

Simulations comparing powers of the modified LRT and the C(α) test for Poisson mixture

models are reported in Table 3. The outcomes are similar to the corresponding results in

Table 2. The modified LRT is superior to the C(α) test.

Comparisons between the modified LRT and Davies’ method for the four normal mixture

alternatives are given in Table 4. The nominal significance level is 5% and n = 100. The

four sets of parameters used are θ = γ = 0, 0.1, 0.2, 0.3. Davies’ approximation to the p-value

is found to be very precise. The simulation results show, however, that Davies’ method is

decidedly less powerful than the modified LRT.

APPENDIX

In the Appendix, we list the regularity conditions on the kernel function for the validity

of the asymptotic results given in Section 2, and we outline the main ideas in the proofs of

Theorems 1 and 2. For detailed proofs, see Chen, Chen and Kalbfleisch (2000).

A.1 Regularity conditions on the kernel function

Condition 1. Wald’s integrability conditions. For each θ ∈ Θ, (i) E| log f(X, θ)| <
∞, and (ii) there exists ρ > 0 such that E log f(X, θ, ρ) < ∞, where f(x, θ, ρ) = 1 +

sup|θ′−θ|≤ρ{f(x, θ′)}.
Condition 2. Smoothness. The kernel function f(x, θ) has support independent of θ and

is twice continuously differentiable with respect to θ. The first two derivatives are denoted

by f ′(x, θ) and f ′′(x, θ).

Condition 3. Strong identifiability. The kernel function f(x, θ) is strongly identifiable.

That is,

(i) For any G1 and G2 such that∫
f(x, θ)dG1(θ) =

∫
f(x, θ)dG2(θ), for all x,

we must have G1 = G2.
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(ii) For any θ1 6= θ2 in Θ,

2∑
j=1

{ajf(x, θj) + bjf
′(x, θj) + cjf

′′(x, θj)} = 0, for all x,

implies that aj = bj = cj = 0, j = 1, 2.

The condition (ii) above was first proposed by Chen (1995), who proved that location and

scale kernels satisfy (ii) if f(±∞, θ) = f ′(±∞, θ) = 0. Using the same argument, it can be

shown that all regular exponential families are strongly identifiable.

Condition 4. Condition for uniform strong law of large numbers. There exists an integrable

g and δ > 0 such that |Yi(θ)|4+δ ≤ g(Xi) and |Y ′i (θ)|3 ≤ g(Xi) for all θ ∈ Θ.

Condition 5. Tightness. The processes n1/2∑Yi(θ), n
1/2∑Y ′i (θ) and n1/2∑Y ′′i (θ) are

tight.

A.2 Sketch of the proof of Theorem 1

A key step in the proof of Theorem 1 is to note that since ln(γ, θ1, θ2) is Op(1) uniformly, it

follows that log{4γ̂(1− γ̂)} = Op(1). This implies that γ̂ is bounded away from 0 and 1. It

then follows that both θ̂1 and θ̂2 must converge to the true value θ0 in probability under the

null model. This justifies the approximation of the modified likelihood ratio statistic by a

quadratic form. The typical technique of quadratic approximation to the modified likelihood

function is then applicable and yields the result desired.

A.3 Sketch of the proof of Theorem 2

Let

Λn =
n∑
i=1

log
(1− γ0)f(Xi, θ0 − n−1/4τ1) + γ0f(Xi, θ0 + n−1/4τ2)

f(Xi, θ0)
.

For the values of θ1 and θ2 in a small neighbourhood of θ0, the following quadratic approxi-

mation can be obtained:

Λn = τ 2n−1/2
n∑
i=1

Zi −
1

2
τ 4n−1

n∑
i=1

Z2
i + op(1),

andMn = {∑Wi)
+}2/nEW 2

1 +op(1), whereWi = Zi(θ0)−h(θ0)Yi(θ0). Let Vn =
∑
Wi/

√
nEW 2

1 .

It is clear that the joint limiting distribution of (Vn,Λn) is bivariate normal with the mean

vector (0,−τ 4EZ2
1/2) and the covariance matrix σ11 σ12

σ21 σ22

 =

 1 τ 2E(W1Z1)/
√
EW 2

1

τ 2E(W1Z1)/
√
EW 2

1 τ 4EZ2
1

 .
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Since −τ 4EZ2
1/2 + σ22/2 = 0, the limiting distribution of Vn under the alternatives Hn

a is

normal with mean σ12 = τ 2E(W1Z1)/
√
EW 2

1 and variance 1. Since Mn is asymptotically

equivalent to {V +
n }2, the theorem follows.
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Table 1: Alternative models with their Kullback-Leibler information.

Normal mixture: (1− γ)N(θ1, 1) + γN(θ2, 1)

γ 0.5 0.75 0.9 0.95

θ1 -0.500 -0.866 -1.500 -2.179

θ2 0.500 0.289 0.167 0.115

KL× 100 1.358 1.444 1.842 2.583

Poisson mixture: (1− γ)P (θ1) + γP (θ2)

γ 0.5 0.75 0.9 0.95

θ1 4.000 3.268 2.000 0.641

θ2 6.000 5.577 5.333 5.229

KL× 100 0.889 0.996 1.45 2.91
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Table 2: Rejection rates (%) for the modified LRT, C(α) test and bootstrap tests.

Nominal significance levels are 10%, 5% and 1%.

Modified LRT C(α) Bootstrap

Normal Mixture n = 64

H0 9.4 4.8 1.2 10.8 5.4 1.3 10.5 5.6 1.0

γ = 0.5 53.1 38.8 16.4 53.3 39.1 16.7 46.8 33.4 12.5

γ = 0.75 52.5 38.9 16.9 52.7 39.0 16.6 46.6 33.0 13.2

γ = 0.90 53.2 40.1 19.4 52.4 39.2 17.9 49.8 36.8 17.2

γ = 0.95 53.1 42.4 23.7 51.1 39.6 19.3 54.5 43.2 23.6

Normal Mixture n = 100

H0 9.5 4.9 1.1 9.6 4.75 0.9 9.3 5.1 0.7

γ = 0.5 63.7 49.6 25.9 63.9 50.3 26.9 57.2 41.1 18.3

γ = 0.75 63.5 50.1 26.8 63.6 50.5 27.4 56.9 42.5 19.2

γ = 0.9 63.5 51.3 29.5 62.5 50.1 28.1 63.7 51.0 27.4

γ = 0.95 64.1 52.9 34.0 61.1 48.9 28.7 67.4 56.1 36.7

Table 3: Rejection rates (%) for the modified LRT and C(α) tests.

Nominal significance levels are 10%, 5% and 1%.

Poisson Mixture

n = 64 n = 100

Modified LRT C(α) Modified LRT C(α)

H0 9.7 4.7 1.0 8.6 4.5 1.1 9.6 4.8 1.2 9.0 4.7 1.4

γ=0.5 38.7 27.8 10.3 38.6 27.7 12.0 51.6 38.6 15.4 51.6 38.4 16.0

γ=0.75 40.2 28.9 11.5 38.5 27.8 12.3 53.6 40.6 16.4 52.2 38.5 14.8

γ=0.9 44.5 33.3 14.8 39.8 28.6 12.7 56.4 44.0 20.8 52.7 38.7 15.5

γ=0.95 48.7 39.2 22.4 39.9 29.1 13.3 61.9 52.2 31.0 52.5 39.3 16.0
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Table 4: Rejection rates (%) of the modified LRT and of Davies’ method.

The nominal significance level is 5% and n = 100.

(θ, γ) (0, 0) (.1, .1) (.2, .2) (.3, .3)

Davies’ method 4.9 4.9 5.9 9.7

Modified LRT 5.2 5.3 6.9 15.5

15


