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Abstract

The finite mixture model is an example of a non-regular parametric family, and most classical
asymptotic results cannot be directly applied. In particular, the asymptotic properties of likelihood
ratio statistics for testing for the number of subpopulations are complicated and difficult to establish.
One approach that has been found to simplify the asymptotic results while preserving the power of the
test is to modify the likelihood function by incorporating a penalty term to avoid boundary problems.
The asymptotic properties and the use of likelihood ratio results are even more difficult when an
unknown structural parameter is involved in the model. In this paper, we study an application of the
modified likelihood approach to finite normal mixture models with a common and unknown variance
in the mixing components and consider a test of the hypothesis of a homogeneous model versus a
mixture on two or more components. We show that the�22 distribution is a stochastic lower bound to
the limiting distribution of the likelihood ratio statistic. This same distribution is also shown to be a
stochastic upper bound to the limiting distribution of the modified likelihood ratio statistic. A small
simulation study suggests that both bounds are relatively tight and practically useful. An example
from genetics is used to illustrate the technique.
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1. Introduction

Finite mixture models are often used to study data from a population that is suspected to
be composed of a number of homogeneous subpopulations. For example, when a disease
has a simple genetic cause, the population may be divided into two or three homogeneous
groups. In the initial stage of these investigations, it is important to have a sensitive test
for the numberk of subpopulations included in the data. The construction of such a test,
however, is often more challenging than might be expected.
Finite mixture models belong to a class of non-regular models and, as a consequence,

many classical asymptotic results do not apply. Many researchers have tried to understand
the large sample properties related to the analysis of finite mixture models.Hartigan (1985)
first demonstrated the peculiar behavior of the likelihood ratio statistic for mixture models.
Ghosh and Sen (1985)obtained the limiting distribution under a separation condition. The
separation condition turned out to be unnecessary, which was shown byChernoff and
Lander (1995)for binomial mixtures, and in general byChen and Chen (2001, 2002),
Dacunha-Castelle and Gassiat (1999), and others.
Even though the large sample behavior of the likelihood ratio statistic under a mixture

model is now better understood, its implementation still poses a challenge. The main diffi-
culty involves determining the critical value based on a limiting distribution that involves
the supremum of a Gaussian process. Techniques given inAdler (1990)andSun (1993)
may be useful in this respect. An alternative, discussed inMcLachlan (1987), Chen and
Chen (2001)and elsewhere, is to use resampling methods. Bayesian methods can also be
applied in this context (Richardson and Green, 1997). Additional recent work can be found
in McLachlan and Peel (2000), Lo et al. (2001), Garel (2001)andGarel and Goussanou
(2002).
Chen and Kalbfleisch (1996), Chen (1998)andChen et al. (2001, 2002)suggest a modi-

fication of the likelihood by incorporating a penalty term that forces certain estimates away
from the boundary of the parameter space. The likelihood ratio statistic based on the modi-
fied estimators is shown, in many instances, to yield relatively simpler limiting distributions
and hence simpler tests.
These results focus on finitemixtures of kernel distributions belonging to a one-parameter

family and are applicable to Poisson and Binomial mixtures, for example, and to normal
mixture when the variance (or the mean) is known. In many applications, however, one
wishes to consider finite mixture models where, in addition to the mixing parameter, the
kernel has a common but unknown structural parameter common to all components. For
example, if a quantitative trait is largely determined by a simple Mendelian gene, then
its distribution is often modeled as a mixture of normal distributions with common (but
typically unknown) variance.
In this paper, we study application of the modified likelihood approach to finite normal

mixture models with a common variance, which is a typical example of location and scale
distribution family. The results on normal mixture are likely applicable to general loca-
tion scale families. However, we believe that a lucid discussion on a specific model can
sometimes be more meaningful than on a class of models under a long list of conditions.
Specifically, we consider a test of a homogeneous normal model withk=1mixture compo-
nents versus a general alternative withk�1 components. We find that the related modified
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likelihood ratio statistic does not have a simple limiting distribution. Nonetheless, we find
a simple chi-squared upper bound for the limiting distribution and carry out simulations to
assess its tightness. As expected, the ordinary or unmodified likelihood ratio statistic also
does not have a simple limiting distribution and it is interesting that the same chi-squared
distribution serves as a lower bound. Simulations indicate that the bounds are very tight in
both cases, at least for sample sizes between 200 and 500. We illustrate our method using
data fromWilson et al. (1988, 1990)andZabetian et al. (2001).

2. Modified likelihood ratio test

2.1. The inference procedure

We consider the normal mixture model with density function

f (x;�,G) =
∫

�−1�{�−1(x − �)}dG(�). (1)

where�(x) is the density function of the standard normal distribution andG is a cumulative
distribution function on the compact parameter space� ⊂ R. Other location-scale mixture
models can be considered in the same manner.
The mixing distributionG is assumed to have a finite number of support points. It is

convenient to define

Mk = {G : G has at mostk support points}.
for k = 1,2, . . . .We consider first a test of the null hypothesisk = 1 versus the alternative
k = 2; or more precisely, we consider a test of the hypothesisG ∈ M1 versusG ∈ M2.
If X1, X2, . . . , Xn is a random sample from density (1), the log likelihood function is

ln(�,G) =
n∑

i=1
log f (Xi;�,G). (2)

If G ∈ M2, then we can writeG(�)= (1−�)I (�1��)+�I (�2��) where� ∈ (0,1) and
�1��2.
The ordinary likelihood ratio statistic for testingG ∈ M1 againstG ∈ M2 is given by

R̃n = 2
{
sup

�,G∈M2

ln(�,G) − sup
�,G∈M1

ln(�,G)

}
.

Due to non-regularity of the finite mixture models,R̃n does not have a usual chi-squared
limiting distribution.
In the modified likelihood approach, we define

pln(�,G) = ln(�,G) + C log{4�(1− �)}, (3)

whereC is a positive constant. When�1= �2, we let� = 0.5. The purpose of the “penalty
term”,C log{4�(1− �)} in (3) is to restore regularity to the problem by avoiding estimates
of � on or near the boundary.
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Let �̂1 andĜ1 maximizepln(�,G) for G ∈ M1, and�̂2 andĜ2 maximizepln(�,G)

for G ∈ M2. The modified likelihood ratio statistic is

Rn = 2{ln(�̂2, Ĝ2) − ln(�̂1, Ĝ1)}. (4)

We consider a test in which the null hypothesisk = 1 is rejected for values ofRn that are
sufficiently large.

2.2. Stochastic bounds of modified and ordinary likelihood ratio statistics

The modified likelihood ratio test cannot be implemented in applications unless the null
distribution ofRn can be computed or estimated in someway.When the structural parameter
� is known, the modified likelihood ratio statistic has a very simple limiting distribution of
0.5�21+ 0.5�20 under the null hypothesisk = 1 (Chen et al., 2001). The analysis of a similar
statistic for testing the hypothesisk = 2 versusk >2 is much more complicated, but also
yields a relatively simple limiting null distribution (Chen et al., 2002). However, with�
unknown and estimated, the exact limiting distribution ofRn defined by (4) does not have
a simple form.
One could consider various strategies to address this situation. For example, one possi-

bility is to revise the penalty term log{4�(1− �)} to achieve a simpler limiting distribution
(Qin and Smith, personal communication). A second possibility is to allowC=Cn in (3) to
approach zero at an appropriate rate asn → ∞ which we conjecture would yield a simpler
limiting distribution. In this paper, we take an alternative approach and provide a simple
upper bound to the asymptotic distribution ofRn. At the same time, we also derive a lower
bound for the ordinary likelihood ratio statistic̃Rn.
For the normal mixture model with� = [−M,M], Chen and Chen (2002)show that

under the null hypothesis

R̃n
D→max

[
sup

|�|�M

{�+(�)}2, �(0)2+ Z2

]
(5)

asn → ∞. In this expression,�(�), |�|�M is a Gaussian process with mean 0, variance 1
and autocorrelation function (forst �= 0)

�(s, t) = sgn(st) b(st)√
b(s2)b(t2)

,

whereb(x)= ex − 1− x − x2/2, and�(0, t)= |t |3/√6b(t2). Also,�(0) andZ ∼ N(0,1)
are independent, and fors �= 0,

Cov{�(s), Z} = s4√
24b(s2)

.

Since�(0)2 + Z2 has a�22 distribution, it is obvious that the�
2
2 distribution is a stochastic

lower bound to the limiting distribution of̃Rn. WhenM goes to infinity, this limiting distri-
bution is un-bounded.WhenM is moderate, however, the chance for the second term in the
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square brackets of (5) to exceed extreme values of the�22 distribution is small. Thus, this
bound is likely to be a good one at least in the upper tail of the distribution. Simulations
presented later suggest this is true.
Our second task is to derive an upper bound for the limiting distribution ofRn. Note from

(5) that

R̃n =Op(1).

As a consequenceC log{�̂(1−�̂)}�−R̃n=Op(1)when the likelihood ismodified as in (3).
Consequently, with themodified likelihood, we can investigate the asymptotic properties of
Rn while restricting attention to those mixing distributionsG ∈ M2 such that	<�<1− 	
for anarbitrarily small positiveconstant	.Under this restrictionon�, themodified likelihood
ratio statistic has the expansion given byR(	; II ) in Chen and Chen (2002). The derivation
of R(	; II ) is long and tedious, and we will not repeat it here. It is interesting that the
expansion itself does not depend on the choice of	 which enables us to obtain an upper
bound for the limiting distribution ofRn.We now present themathematical derivation based
on the result inChen and Chen (2002).
We use the same notation as introduced and motivated inChen and Chen (2002). Specif-

ically, let

Yi = Xi, Y ′
i = Ui = (X2i − 1)/2,

Y ′′
i = (X3i − 3Xi)/3, Y

′′′
i = 2U ′

i = (X4i − 6X2i + 3)/4

and denote the first four moments ofG asmj , j = 1,2,3,4. Let

s1= m1, s2= �2− 1+ m2, s3= m3/2, s4= (m4− 3m22)/6.

Directly fromChen and Chen (2002), we have

Rn� sup
s1,s2,s3,s4

[
2

{
s1

n∑
i=1

Yi + s2

n∑
i=1

Y ′
i + s3

n∑
i=1

Y ′′
i + s4

n∑
i=1

Y
′′′
i

}

−
{
s21

n∑
i=1

Y 2i + s22

n∑
i=1

(Y ′
i )
2+ s23

n∑
i=1

(Y ′′
i )
2+ s24

n∑
i=1

(Y
′′′
i )2

}]

+ C log{4�(1− �)}] − nX̄2+ (2/n)

{
n∑

i=1
Ui

}2
+ op(1).
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Note that the leading term is a quadratic function in the first four moments ofG. Hence,
using the fact that 2ax − x2�a2 for all x, it is easy to show

Rn� sup
s1,s2,s3,s4

[
2

{
s1

n∑
i=1

Yi + s2

n∑
i=1

Y ′
i + s3

n∑
i=1

Y ′′
i + s4

n∑
i=1

Y
′′′
i

}

−
{
s21

n∑
i=1

Y 2i + s22

n∑
i=1

(Y ′
i )
2+ s23

n∑
i=1

(Y ′′
i )
2+ s24

n∑
i=1

(Y
′′′
i )2

}]

− nX̄2+ (2/n)

{
n∑

i=1
Ui

}2
+ op(1).

� (
∑n

i=1Y ′′
i )
2∑n

i=1(Y ′′
i )
2 + (

∑n
i=1Y

′′′
i )2∑n

i=1(Y
′′′
i )2

+ op(1) D−→ �22.

The first inequality follows since log{4�(1−�)} � 0 and the second is the result of a simple
computation. To achieve the upper bound forRn it is clear that� = 0.5 is necessary. But if
� = 0.5, the range ofs1, s2, s3, s4 will be restricted to a three-dimensional manifold. Thus,
limiting distribution ofRn may not achieve the upper bound.
When the sample size is moderate, say in the range of 200–500, many other factors

can affect the accuracy of the above approximation. In particular, the higher order term
represented by op(1) may be relatively large with high probability and the distribution of
Rn could even be stochastically greater than�22. In Section 4, we evaluate the accuracy of
the upper bound as an approximation and find it to be accurate in the cases considered.
The accuracy of�22 as an approximation can perhaps be motivated in another way. IfC

decreases asn increases, the limiting distribution ofRn will increase. We conjecture that
whenC=Cn decreases at a rate of(log n)1/2 or so, the limiting distribution ofRn is indeed
given by�22.

2.3. A genetic model withk = 3

Suppose that a quantitative trait is strongly affected by a gene with two alleles,A anda
say, whose effects are additive. In this case, a normalmixturemodel withk=3 is often used.
According to the Hardy–Weinberg law, the mixture probabilities are�1 = p2,�2 = 2pq
and�3 = q2 wherep ∈ [0,1] is the population frequency of theA allele andq = 1− p.
We call this the H–W mixture model. The theory inChen and Chen (2002)does not apply
directly to the H–Wmixture model and that generalization is left for future work. However,
we discover through simulation that the ordinary andmodified likelihood ratio statistics can
also be approximated by chi-squared distribution with 3 degrees of freedom.

2.4. Computations

TheEM-algorithm is often used for computational problems in finitemixturemodelswith
given number of components (Böhning, 1999). It turns out that it needs only slight modi-
fication for the computational problems of the modified likelihood ratio test. We illustrate
this result with the H–W mixture model.



J. Chen, J.D. Kalbfleisch / Journal of Statistical Planning and Inference 129 (2005) 93–107 99

Note that if the class of each observationXi is known, the complete likelihood function
canbeeasily found. LetIij the indicator that theith observation is from thejth subpopulation,
i = 1,2, . . . , n, j = 1,2,3. The complete log-likelihood function is then

ln(�1, �2, �3, p,�) = −n log � −
n∑

i=1

3∑
j=1

Iij (Xi − �j )2/(2�2) +
3∑

j=1
I.j log(�j ),

whereI.j =∑n
i=1Iij . GivenX1, . . . , Xn and the parameters�, p, �j , j=1,2,3, the E-step

involves the conditional expectations

�̂ij = E{Iij } = �{�−1(Xi − �j )}/
[
3∑

"=1
�j�{�−1(Xi − �")}

]
.

In the M-step, we find

�̂j =
n∑

i=1
�̂ijXi/

n∑
i=1

�̂ij ,

�̂2= n−1
n∑

i=1

3∑
j=1

�̂ij (Xi − �̂j )2,

p̂ =
n∑

i=1
(2�̂i1+ �̂i2)/(2n)

and�̂1= p̂2. The E- and M-steps are then continued to convergence.
Let the modified log-likelihood function be defined as

pln(�1, �2, �3, p,�) = ln(�1, �2, �3, p,�) + C log(�1�2�3).

To maximize this modified likelihood, we need only revise the estimate ofp in the M-step
above to

p̂ =
[

n∑
i=1

(2�̂i1+ �̂i2) + 3C
]
/(2n + 6C).

We implemented the above EM-algorithm in our simulation experiment. In order to
increase the likelihood of finding the global maximum, we used three initial values for each
simulated sample.We found that the EM-algorithm is much more reliable whenC =1 than
whenC=0. In fact, in about 20% of the trials, the algorithm led to a modified LRT statistic
(C = 1) that was larger than the ordinary LRT statistic (C = 0). This is not possible and
indicates the failure of the algorithm to find the global maximum at least whenC=0. More
details are given in the simulation section.
When�2 is known, the modified likelihood ratio statistic for testingG ∈ M1 versus

G ∈ Mr has the same asymptotic distribution for anyr >1. There is also a similar property
for testingG ∈ M2. SeeChen (1998), Chen et al. (2001, 2002)for details. This is a nice
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property that, for example, enables a single test of the hypothesisk = 1 versusk >1.When
�2 is unknown, these results do not appear to generalize.
In the next section, we consider simulations of the null distribution of the ordinary and

the modified likelihood ratio statistics with�2 unknown. The results are compared with the
�22 bound for the simple case of testingk = 1 versusk = 2 as described in Section 2.2, and
the comparison is found to be quite close. For alternatives in the H–W mixture model, we
find that the modified LR statistics can be better approximated by the�23 distribution. Some
theoretical argument would be useful in explaining this.

3. Simulation

We use simulation to investigate the precision of the upper bound for the limiting distri-
bution ofRn.
In the first case, we generate 20,000 samples of sizen = 200 and 500 from a standard

normal distribution and compare the sample quantiles ofRn with the quantiles of the�22
distribution. Themodification constantC is set to be 0.0 and 1.0.WhenC=0.0,Rn becomes
the ordinary likelihood ratio statistic, whereas whenC = 1.0,Rn is a modified likelihood
ratio statistic. The theory of Section 2 implies that for large enoughn the quantiles ofRn

whenC = 1 are bounded above by those of�22 and the quantiles ofRn = R̃n whenC = 0
are bounded below by those of�22.
To assess the power of the tests, we generated samples from six alternative models with

k = 2 as summarized inTable 1. We used the simulated quantiles for the null distribution
to obtain estimates of the power.
We used the EM-algorithm in our simulation. It is well known that EM-algorithms can

yield a local rather than the global maximum and we took measures to ensure the validity
of the simulation. First, we used several different initial values to increase the chance of
locating the global maximum. Second, we used two different strategies for picking initial
values and examined the difference between implementations. Although for some samples,
different implementations gave different values ofRn, the overall rejection rates were very
similar.Table 2summarizes the results, based on 20,000 repetitions, in which the null rates
are with reference to the critical values of a�22 distribution.Fig. 1 displays plots of the
simulation results under the null model with sample sizen = 200.
As seen inTable 2, the null rejection rates of both ordinary and modified LR tests based

on critical values from the�22 distribution are very close to the nominal values. The first
row of Fig. 1 gives Q–Q plots of the simulated LR statistics under the null model versus
the�22 for n=200 and indicates good agreement over a much broader region. The rejection
rates under the alternative models inTable 2represent the empirical powers of the methods

Table 1
The alternative models considered for the normal mixtures withk = 2 components
Model A1 A2 A3 A4 A5 A6


1 −1.0 −1.0 −1.0 −1.0 −1.0 −1.0

2 1.5 1.5 1.5 2.0 2.0 2.0
� 0.5 0.3 0.1 0.5 0.3 0.1
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Table 2
The rejection rates of the ordinary (C = 0) and modified (C = 1) likelihood ratio tests fork = 1 versusk = 2

C = 0 C = 1
n = 200
Nominal 0.100 0.050 0.010 0.100 0.050 0.010
Null 0.117 0.061 0.013 0.101 0.054 0.012
A1 0.935 0.878 0.704 0.944 0.888 0.717
A2 0.964 0.927 0.792 0.969 0.932 0.802
A3 0.910 0.853 0.683 0.909 0.851 0.683
A4 0.999 0.997 0.985 0.999 0.998 0.986
A5 1.000 0.999 0.995 1.000 0.999 0.995
A6 0.995 0.990 0.962 0.994 0.989 0.963

n = 500
Null 0.108 0.055 0.012 0.088 0.047 0.011
A1 1.000 0.999 0.995 1.000 0.999 0.995
A2 1.000 1.000 0.999 1.000 1.000 0.999
A3 1.000 0.998 0.991 1.000 0.998 0.991

using the simulated quantiles to control the size of the test. The two methods, ordinary and
modifiedLR tests, haveverysimilar powers.Note that somealternativemodelsundern=500
are omitted since the rejection rates are all nearly 100%. The second row of plots inFig. 1
illustrate the effect of themodification on estimation of the “penalty” term log{4�1(1−�1)}
under the null hypothesis. The size of this term ismuch larger for themodified LR test which
provides some illustration that themodification has the effect of restoring regularity of finite
mixture models by pushing the estimates away from the boundary.
ChenandChen (2002)show that theMLEof�2 is consistent, but the rateof convergence is

n−1/4 insteadof theusualn−1/2.Histogramsof theordinary andmodifiedvarianceestimates
under the null are given in the third row of theFig. 1, and the mean, variance, and mean
squared error of the variance estimators are given inTable 3. Under the null hypothesis with
n=200, the common variance parameter is seriously under estimated. Some decrease in the
bias is seen forn=500,but the improvement is relatively small.Under thealternativemodels,
however, the biases are small and even negligible. Histograms of the variance estimates
are given in row 3 ofFig. 1. These histograms tend to have two modes corresponding to
situations where the data are best fitted withk = 1 or with k = 2 components. When the
null model is true, fitting a mixture model withk = 2 and smaller common variance can
be viewed as a type of over-fitting. Such models allow more flexibility to fit some spurious
observations in one of the tails that may appear by chance. One approach to prevent such
over-fitting and so reduce the bias of the variance estimator might be to incorporate a
prior distribution for the common variance. Further investigation of the estimation of� is
needed.
Based on the above simulation, we recommend the modified likelihood approach using

the�22 approximation. This test tends to be conservative and is somewhat more accurate. It
is also easier to implement since, as we noted, the EM-algorithm has better convergence
properties whenC = 1.



102 J. Chen, J.D. Kalbfleisch / Journal of Statistical Planning and Inference 129 (2005) 93–107

0 5 10 15 20 0 5 10 15 20

0

5

10

15

20

0

5

10

15

20

−4 −3 −2 −1 0

0

2000

4000

6000

8000

−3.5 −3.0 −2.5 −2.0 −1.5 −1.0 −0.5 0.0

0

5000

10000

15000

0.4 0.6 0.8 1.0 1.2

0

500

1000

1500

2000

0.4 0.6 0.8 1.0 1.2 1.4

0

500

1000

1500

2000

2500

Fig. 1. Null distributions of estimates and tests in the normal mixture withk=2 using modified likelihood (C =0,
left column;C = 1, right column). Row 1: Q–Q plots ofRn against�22. Row 2: histograms of log{4�1(1− �1)}.
Row 3: histograms of̂�2.

We conducted a similar simulation for the H–W mixture model as specified inTable 4.
Table 5gives the null rejection rates of both ordinary and modified LR tests using a�23
distribution to define critical values. The null rejection rates are very close to the nominal
values.Fig. 2gives Q–Q plots forC = 0 and 1 withn = 200. The agreement between the
simulated quantiles and those of the�23 is very good. At this stage, the�

2
3 approximation

is entirely empirical and perhaps provides motivation to a future theoretical investigation.
Table 6summarizes the variance estimator. Under the null model, the common variance is
again seriously under estimated, and the bias is reduced when the sample size increases. As
before, but more apparently, the histograms of the variance estimators inFig. 2 have two
modes again corresponding to fits withk = 1 andk >1 components.
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Table 3
The mean, variance, and MSE of�̂2 under the ordinary and modified likelihood

C = 0 C = 1
n = 200
Null 0.730 0.026 0.101 0.720 0.029 0.107
A1 0.990 0.025 0.025 0.990 0.024 0.024
A2 0.988 0.024 0.024 0.983 0.022 0.023
A3 0.974 0.021 0.021 0.950 0.018 0.021
A4 0.991 0.018 0.018 0.991 0.018 0.018
A5 0.991 0.017 0.018 0.989 0.017 0.017
A6 0.983 0.016 0.016 0.972 0.015 0.015

n = 500
Null 0.790 0.017 0.060 0.780 0.019 0.066
A1 0.995 0.009 0.009 0.995 0.009 0.009
A2 0.995 0.009 0.009 0.993 0.009 0.009
A3 0.989 0.009 0.009 0.978 0.008 0.008

Table 4
The alternative models considered for the H–W mixture

Model A1 A2 A3 A4 A5 A6


1 −1.0 −1.0 −1.0 −1.0 −1.0 −1.0

2 0.0 0.0 0.0 0.0 0.0 0.0

3 1.0 1.0 2.0 2.0 3.0 3.0
p 0.5 0.3 0.5 0.3 0.5 0.3

Table 5
The rejection rates of tests fork = 1 versus the H–W mixture model based on 20,000 simulations

C = 0 C = 1
n = 200
Nominal 0.100 0.050 0.010 0.100 0.050 0.010
Null 0.100 0.051 0.010 0.098 0.054 0.011
A1 0.116 0.062 0.015 0.119 0.063 0.014
A2 0.144 0.079 0.021 0.146 0.078 0.021
A3 0.586 0.442 0.207 0.626 0.482 0.237
A4 0.575 0.438 0.202 0.586 0.443 0.202
A5 0.999 0.998 0.988 1.000 0.999 0.990
A6 0.999 0.998 0.986 0.999 0.997 0.982

n = 500
Null 0.077 0.039 0.008 0.073 0.039 0.008
A1 0.147 0.083 0.019 0.153 0.085 0.020
A2 0.220 0.130 0.035 0.220 0.129 0.037
A3 0.947 0.889 0.711 0.956 0.907 0.746

The rejection rates under the null distribution are with reference to critical values from a�23 distribution.
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Fig. 2. Null distributions of estimates and tests in the H–W mixture model using modified likelihood (C = 0, left
column;C = 1, right column). Row 1: Q–Q plots ofRn against�23. Row 2: histograms of log{4p(1− p)}. Row
3: histograms of̂�2.

4. A genetic example

Wilson et al. (1988, 1990)andZabetian et al. (2001), give analyses of family data on
dopamine-�-hydroxylase (D�H), a chemical that catalyzes the conversion of dopamine
to norepinephrine. Altered plasma-D�H activity has been reported in a variety of psy-
chiatric and neurological disorders. A large study of European Americans (EAs) identi-
fied a subgroup consisting of 3–4% of the population with very low levels of plasma-
D�H activity. It is postulated that there exists a functional low-activity allele, D�HL,
with a frequency of about 20% in the EA population. Further, this gene is believed to
be linked with the ABO blood-group gene. Their analyses support these findings in
general.
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Table 6
The mean, variance, and MSE of�̂2 under the H–W mixture model based on 20,000 simulations

C = 0 C = 1
n = 200
Null 0.61 0.054 0.206 0.60 0.051 0.211
A1 0.833 0.112 0.140 0.812 0.106 0.141
A2 0.807 0.099 0.136 0.790 0.093 0.137
A3 1.025 0.078 0.079 0.897 0.078 0.089
A4 0.882 0.062 0.076 0.852 0.058 0.080

n = 500
Null 0.72 0.40 0.478 0.70 0.35 0.440
A1 0.958 0.086 0.088 0.930 0.077 0.082
A2 0.929 0.074 0.079 0.912 0.067 0.075
A3 1.141 0.030 0.049 1.020 0.045 0.046
A4 0.963 0.031 0.032 0.951 0.028 0.030

Table 7
The maximum modified likelihood estimates withC = 1 of mixture models for the family data on D�H
Family �1 
1 
2 � MLRT p-value

HGAR 6 0.255 2.73 4.75 0.95 2.78 0.249
HGAR 7 0.163 3.03 6.05 1.26 13.65 0.001
HGAR 9 0.438 3.82 6.56 1.14 2.73 0.255
HGAR 10 0.265 3.20 5.21 1.34 0.99 0.610

The data set contains four families with a total of 923 individuals. The number of indi-
viduals with D�H values determined in the four families are 56, 204, 48 and 191 to give
a total of 499. Due to the complexity of the family structure, it is very difficult to use the
complete likelihood function based on the finite normal mixture model. FollowingWilson
et al. (1988)and others, we fit the mixture model with common but unknown variance
to the square root of the D�H reading, and treat the observations within each family as
independent and identically distributed. We consider tests of the null hypothesis of a ho-
mogeneous model in favor of a mixture model withk = 2 or an H–W mixture model with
k = 3 components.
Since the families are not randomsamples from the population, their corresponding gene-

frequencies may vary, but the subpopulation means should be the same. In fitting models,
however, we introduced no such restrictions on the parameters. The fitted models based on
the modified likelihood withC = 1 are reported inTables 7and8.
FromTable 7, only the data in family HGAR 7 lead to rejection of the null homogeneous

normal model.
The modified likelihood approach produced similar estimates to those inWilson et al.

(1988)except that the estimate of the gene frequency for HGAR 7 is only about half of that
which they obtained. Using the�23 distribution as a benchmark, the correspondingp-values
are given and again there is significant evidence that the HGAR 7 family can be better



106 J. Chen, J.D. Kalbfleisch / Journal of Statistical Planning and Inference 129 (2005) 93–107

Table 8
The maximum modified likelihood estimates withC = 1 of the H–Wmixture models for the family data on D�H
Family p 
1 
2 
3 � MLRT p-value

HGAR 6 0.334 1.85 3.76 5.27 0.76 5.17 0.160
HGAR 7 0.179 1.23 4.17 6.37 1.09 15.32 0.0016
HGAR 9 0.376 2.76 4.71 7.02 0.91 2.83 0.419
HGAR 10 0.453 2.90 4.82 5.66 1.28 1.22 0.748

modeled with the H–W mixture than the homogeneous case. Comparing H–W mixture to
normal mixture withk = 2, the MLRT values are increased but only moderately so. There
is no statistical evidence that the H–W mixture should be favored over the simpler two
component normal mixture.
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